1
|
Xu Y, Chen Q, Zhao C, Ma X, Wang L, Qian F, Guan X, Du H, Zhang H. A novel mutation of ramR involved in tigecycline resistance in Klebsiella pneumoniae. Microbiol Spectr 2025:e0320424. [PMID: 40372027 DOI: 10.1128/spectrum.03204-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/12/2025] [Indexed: 05/16/2025] Open
Abstract
This study aims to investigate the novel potential tigecycline resistance mechanism in Klebsiella pneumoniae and provide new insights for the clinical treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In vitro experiments were conducted to induce tigecycline resistance in Klebsiella pneumoniae, simulating potential genetic mutations that may arise under the selective pressure of tigecycline in clinical settings. Next-generation sequencing and real-time quantitative PCR (RT-qPCR) were employed to analyze bacterial genomic mutations and the transcription of related genes, respectively. Gene knockout technology, broth microdilution method, and resistance stability tests were utilized to further validate the function of the identified gene mutation sites. A novel two-base pair deletion mutation (position 517-518) in the ramR gene (g. 517_518 del) was identified in Klebsiella pneumoniae strains cultured in broth medium containing progressively increasing concentrations of tigecycline (4, 8, and 16 mg/L). The impact of this mutation on tigecycline resistance was characterized. The RT-qPCR analysis revealed a consistent upregulation of ramR expression across all tigecycline-induced strains, with significant elevation observed at various concentrations (0.5, 1, 2, 4, 8, and 16 mg/L). Furthermore, the g. 517_518 del mutation in ramR was associated with sustained tigecycline resistance. This study illustrated a novel ramR mutation, leading to tigecycline resistance in Klebsiella pneumoniae. IMPORTANCE In this study, a novel missense mutation (g. 517_518 del GC) was detected in the ramR of tigecycline-induced Klebsiella pneumoniae, which was conducted in vitro, and the effects of anti-tigecycline caused by this mutation in ramR were confirmed. A high expression of ramR was observed in all tigecycline-induced strains. In addition, g. 517_518 del GC in ramR maintained tigecycline resistance. In summary, we illustrated a novel mutation of ramR, leading to tigecycline resistance in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Laboratory Medicine, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, Jiangsu, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Wang
- Department of Laboratory Medicine, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, Jiangsu, China
| | - Feinan Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiangyu Guan
- Department of Laboratory Medicine, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, Jiangsu, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhong G, Deng S, Hong Y, Zhou F, Liang D, Lin Y, Yang L, Guan Y, Pan C, Yan L, Zheng L, Zhang J. AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens. SMALL METHODS 2025; 9:e2401663. [PMID: 39797429 DOI: 10.1002/smtd.202401663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge. Rigorous validation demonstrates that ITPM possesses superior fluorescence imaging capabilities and exceptional antibacterial efficacy. And its broad-spectrum activity is verified through a multi-center study involving six clinically relevant MDR strains. Additionally, resistance development studies and comparisons with advanced clinical antibiotics reveal that ITPM exhibits potent, broad-spectrum antimicrobial activity with minimal resistance development. This efficacy is attributed to its unique antibacterial mechanism involving disrupting bacterial internal structures. These findings establish ITPM as a promising candidate for broad-spectrum antimicrobial therapy, offering a potential solution to the growing crisis of AMR in clinical settings.
Collapse
Affiliation(s)
- Guanqing Zhong
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shuangling Deng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yunyun Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P. R. China
| | - Fang Zhou
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Dawei Liang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
- Clinical Laboratory of Medicine, Jiangmen Central Hospital, Jiangmen, 529030, P. R. China
| | - Yiling Lin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lin Yang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yajuan Guan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chunqiu Pan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lizhi Yan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jing Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
3
|
Wasselin V, Budin-Verneuil A, Rincé I, Desriac F, Plouhinec J, Boukerb AM, Hartke A, Benachour A, Riboulet-Bisson E. Tetracyclines at subinhibitory concentrations are lethal for NADH peroxidase-deficient mutants of Enterococcus faecium. J Antimicrob Chemother 2025:dkaf105. [PMID: 40208209 DOI: 10.1093/jac/dkaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVES Tigecycline is a bacteriostatic antibiotic member of the glycylcycline family that inhibits protein synthesis. Tigecycline is a last-line treatment for infections caused by MDR pathogens like vancomycin-resistant Enterococcus faecium (VR-Efm). We recently explored oxidative stress defences in E. faecium and we here aimed to assess their role in antibiotic resistance. METHODS Antibiotic susceptibility was evaluated in mutants deficient in primary oxidative stress defences by monitoring bacterial survival after a 24 h treatment. Hydrogen peroxide (H2O2) levels were quantified to link bacterial survival to oxidative stress. RESULTS Unexpectedly, tigecycline and other tetracyclines were lethal for VR-Efm AUS0004 mutants deficient in NADH peroxidase (Npr) at concentrations below their MICs. Lethality seemed to correlate with increased H2O2 accumulation in the Δnpr mutant. H2O2 production in Efm AUS0004 was mainly mediated by lactate oxidase Lox1, whereas Lox2 and pyruvate oxidase (Pox) had minor or no roles. Tigecycline was not lethal for a ΔnprΔlox1 double mutant, suggesting lethality results from both antibiotic effect and peroxide accumulation. CONCLUSIONS This study might pave the way to develop strategies aimed at potentiating tigecycline action by increasing endogenous H2O2 production and/or impairing H2O2 detoxification, potentially improving treatment efficiencies for VR-Efm infections with this last-line antibiotic.
Collapse
Affiliation(s)
- Valentin Wasselin
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Aurélie Budin-Verneuil
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Isabelle Rincé
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Florie Desriac
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Julie Plouhinec
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Amine M Boukerb
- CBSA UR 4312, Plateforme de Génomique, Univ Rouen Normandie, Université de Caen Normandie, Normandie Univ, Evreux F-27 000, France
| | - Axel Hartke
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Abdellah Benachour
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| | - Eliette Riboulet-Bisson
- CBSA UR 4312, Université de Caen Normandie, Univ Rouen Normandie, Normandie Univ, Caen F-14 000, France
| |
Collapse
|
4
|
Xing H, Zhang L, Li C, Schwarz S, Li D, Du XD. Identification of a mepR mutation associated with tigecycline resistance in a clinical Staphylococcus aureus isolate. J Antimicrob Chemother 2025; 80:1059-1066. [PMID: 39913246 DOI: 10.1093/jac/dkaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVES To identify the role and function of mepR variants in conferring resistance to tigecycline in clinical Staphylococcus aureus. METHODS The identification of the mepR and mepA variants in S. aureus DMB26a was performed by whole-genome sequencing and Blast alignment. The effects of the mepRD and mepAD variants of DMB26a on tigecycline susceptibility were evaluated through deletion and complementation analyses, as well as the determination of gene expression levels by RT-qPCR. Minimal inhibitory concentrations (MICs) for DMB26a and its mutants were determined by antimicrobial susceptibility testing. RESULTS A mepR variant, designated mepRD, and a mepA variant, designated mepAD, were identified in the clinical tigecycline-resistant S. aureus isolate DMB26a, which showed 78.72% and 84.92% amino acid identity to the MepR and MepA proteins of S. aureus NCTC 8325-4, respectively. Our findings revealed that deletion of mepA in the tigecycline-susceptible S. aureus RN4220 did not lead to a decrease in the MIC of tigecycline, and that there was also no change in the tigecycline MIC after the complementation with mepAD. Furthermore, we constructed a mepR + mepA deletion strain of S. aureus RN4220 and complemented it with mepRD + mepAD. In that case, a 4-fold increase in the tigecycline MIC was observed in S. aureus RN4220ΔmepR + mepA-pLI50_mepRD + mepAD compared with S. aureus RN4220ΔmepR + mepA. In addition, the relative expression of mepAD was increased 6-fold under the regulation of mepRD. CONCLUSIONS This study provides the identification of a mepR variant contributing indirectly to tigecycline resistance via mediating increased expression of mepA in a clinical S. aureus isolate.
Collapse
Affiliation(s)
- Hongjie Xing
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Likuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Dexi Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| |
Collapse
|
5
|
Huang X, Xu X, Zhou L, Ma C, Wang W, Li C, Wang J, Zhang G, Li D, Che Q, Zhu T. Naphpyrones A-H, Antibacterial Aromatic Polyketides Isolated from the Streptomyces coelicolor A3(2)/ spi1 Δ spiH3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:541-548. [PMID: 39705555 DOI: 10.1021/acs.jafc.4c09101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Staphylococcus aureus, a common foodborne pathogen, has a close association with agriculture and food. With the rapid emergence and widespread dissemination of antimicrobial resistance, efforts have been directed toward developing and studying new antimicrobial compounds to inhibit the growth of S. aureus and other foodborne pathogens, thereby preventing contamination and ensuring food safety. Herein, we reported eight new aromatic polyketides, naphpyrones A-H (1-8), from the heterologous expression strain Streptomyces coelicolor A3(2)/spi1 ΔspiH3. Their structures and absolute configurations were elucidated by extensive NMR, MS, theoretical NMR calculations, DP4+ probability analysis, Mosher's method, and ECD analyses. Notably, naphpyrone A (1) featured an unprecedented 6/6/6/6/5 neocyclic skeleton. Bioactivity evaluation revealed that compounds 1 and 2 exhibited antibacterial activity against S. aureus, with MIC values of 1 μg/mL and 4 μg/mL, respectively. These findings highlight the potential for screening and developing therapeutic agents from actinomycetes-derived aromatic polyketides against food pathogens.
Collapse
Affiliation(s)
- Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiaxiang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Huang CF, Yang JL, Chuang YC, Sheng WH. Evaluating Risk Factors for Clinical Failure Among Tigecycline-Treated Patients. Infect Drug Resist 2024; 17:5387-5393. [PMID: 39649431 PMCID: PMC11625427 DOI: 10.2147/idr.s496809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Clinical trials have documented that tigecycline has a higher mortality risk than other treatments; it continues to be widely used for various infections in real-world settings, where its associated risk factors for clinical failure are understudied. Patients and Methods This retrospective analysis included a prospective 2019-2021 cohort of tigecycline-treated patients, excluding those with multiple infection sites. We assessed the outcomes on day 28, with clinical failure defined by mortality, persistent initial infection symptoms, or the requirement for continued antimicrobial treatment. Multivariable logistic regression was used for the outcome analysis. Results Of 253 patients included in the study, 94 experienced clinical failure. The infection foci included pneumonia (46.3%), bloodstream infection (BSI) (25.3%), and skin/soft tissue infections (10.3%). There were no significant differences in high-dose tigecycline administration or monotherapy rates between patients with favorable outcomes and those with clinical failure. A higher Charlson comorbidity index (adjusted odds ratio [aOR] = 1.20, P = 0.001), Pitt bacteremia score (aOR = 1.25, P = 0.007), and BSI (aOR = 3.94, P < 0.001) were significant predictors of clinical failure. Concomitant use of Pseudomonas aeruginosa-active fluoroquinolone (aOR = 1.97, P = 0.03) and carbapenem (aOR = 2.20, P = 0.01) was linked to increased clinical failure. Conclusion Multiple comorbidities, BSI, and higher Pitt bacteremia scores are associated with increased risk of clinical failure in tigecycline-treated patients. These results suggest clinicians should consider alternatives to tigecycline for patients with these risk factors. When administering tigecycline, vigilant monitoring is indicated to manage potential clinical failures.
Collapse
Affiliation(s)
- Chun-Fu Huang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Jia-Ling Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Wang Z, Li H. The tigecycline resistance mechanisms in Gram-negative bacilli. Front Cell Infect Microbiol 2024; 14:1471469. [PMID: 39635040 PMCID: PMC11615727 DOI: 10.3389/fcimb.2024.1471469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Tigecycline, hailed as a pivotal agent in combating multidrug-resistant bacterial infections, confronts obstacles posed by the emergence of resistance mechanisms in Gram-negative bacilli. This study explores the complex mechanisms of tigecycline resistance in Gram-negative bacilli, with a particular focus on the role of efflux pumps and drug modification in resistance. By summarizing these mechanisms, our objective is to provide a comprehensive understanding of tigecycline resistance in Gram-negative bacilli, thereby illuminating the evolving landscape of antimicrobial resistance. This review contributes to the elucidation of current existing tigecycline resistance mechanisms and provides insights into the development of effective strategies to manage the control of antimicrobial resistance in the clinical setting, as well as potential new targets for the treatment of tigecycline-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
8
|
Abramowicz M, Trampuz A, Kühn KD. Tigecycline Containing Polymethylmethacrylate Cement Against MRSA, VRE, and ESBL-In Vitro Mechanical and Microbiological Investigations. Antibiotics (Basel) 2024; 13:1102. [PMID: 39596795 PMCID: PMC11591008 DOI: 10.3390/antibiotics13111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The use of antibiotic-loaded bone cements (ALBCs) in arthroplasty has been well established for the prevention and treatment of infections. Tigecycline (Tig), a broad-spectrum antibiotic, has shown efficacy against various pathogens, including vancomycin-resistant strains. METHOD ISO and DIN mechanical and microbiological inhibition zone tests were performed on PMMA cement with manually added Tigecycline. RESULTS Manually adding 0.5 and 1.0 g Tigecycline to PMMA always meets the mechanical requirements of ISO and DIN standards. Mixtures containing 0.5 g were microbiologically effective for up to 7 days and those containing 1.0 g were effective for 28-42 days. CONCLUSION In revision surgery, manually adding Tigecycline in doses of 0.5-1 g to 40 g of PMMA is effective against MRSA, VRE, and ESBL without negatively affecting the cement's properties.
Collapse
Affiliation(s)
| | - Andrej Trampuz
- Faculty of Health, School of Clinical Medicine, Queensland University of Technology (QUT), Brisbane 4006, Australia;
| | - Klaus-Dieter Kühn
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria
| |
Collapse
|
9
|
Choi BJ, Choi U, Ryu DB, Lee CR. PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli. mSystems 2024; 9:e0096424. [PMID: 39345149 PMCID: PMC11495068 DOI: 10.1128/msystems.00964-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Tetracyclines and glycylcycline are among the important antibiotics used to combat infections caused by multidrug-resistant Gram-negative pathogens. Despite the clinical importance of these antibiotics, their mechanisms of resistance remain unclear. In this study, we elucidated a novel mechanism of resistance to tetracycline and glycylcycline antibiotics via lipopolysaccharide (LPS) modification. Disruption of the Escherichia coli PhoPQ two-component system, which regulates the transcription of various genes involved in magnesium transport and LPS modification, leads to increased susceptibility to tetracycline, minocycline, doxycycline, and tigecycline. These phenotypes are caused by enhanced expression of phosphoethanolamine transferase EptB, which catalyzes the modification of the inner core sugar of LPS. PhoPQ-mediated regulation of EptB expression appears to affect the intracellular transportation of doxycycline. Disruption of EptB increases resistance to tetracycline and glycylcycline antibiotics, whereas the other two phosphoethanolamine transferases, EptA and EptC, that participate in the modification of other LPS residues, are not associated with resistance to tetracyclines and glycylcycline. Overall, our results demonstrated that PhoPQ-mediated modification of a specific residue of LPS by phosphoethanolamine transferase EptB governs intrinsic resistance to tetracycline and glycylcycline antibiotics. IMPORTANCE Elucidating the resistance mechanisms of clinically important antibiotics helps in maintaining the clinical efficacy of antibiotics and in the prescription of adequate antibiotic therapy. Although tetracycline and glycylcycline antibiotics are clinically important in combating multidrug-resistant Gram-negative bacterial infections, their mechanisms of resistance are not fully understood. Our research demonstrates that the E. coli PhoPQ two-component system affects resistance to tetracycline and glycylcycline antibiotics by controlling the expression of phosphoethanolamine transferase EptB, which catalyzes the modification of the inner core residue of lipopolysaccharide (LPS). Therefore, our findings highlight a novel resistance mechanism to tetracycline and glycylcycline antibiotics and the physiological significance of LPS core modification in E. coli.
Collapse
Affiliation(s)
- Byoung Jun Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Umji Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Dae-Beom Ryu
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| |
Collapse
|
10
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Inosine reverses multidrug resistance in Gram-negative bacteria carrying mobilized RND-type efflux pump gene cluster tmexCD-toprJ. mSystems 2024; 9:e0079724. [PMID: 39254032 PMCID: PMC11495011 DOI: 10.1128/msystems.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is rapidly increasing worldwide, highlighting the urgent need for pharmaceutical and nonpharmaceutical interventions to tackle different-to-treat bacterial infections. Tigecycline, a semi-synthesis glycylcycline for parenteral administration, is widely recognized as one of the few effective therapies available against pan-drug resistant Gram-negative pathogens. Regrettably, the efficacy of multiple drugs, including tigecycline, is currently being undermined due to the emergence of a recently discovered mobilized resistance-nodulation-division-type efflux pump gene cluster tmexCD1-toprJ1. Herein, by employing untargeted metabolomic approaches, we reveal that the expression of tmexCD1-toprJ1 disrupts bacterial purine metabolism, with inosine being identified as a crucial biomarker. Notably, the supplementation of inosine effectively reverses tigecycline resistance in tmexCD1-toprJ1-positive bacteria. Mechanistically, exogenous inosine enhanced bacterial proton motive force, which promotes the uptake of tigecycline. Furthermore, inosine enhances succinate biosynthesis by stimulating the tricarboxylic acid cycle. Succinate interacts with the two-component system EnvZ/OmpR and upregulates OmpK 36, thereby promoting the influx of tigecycline. These actions collectively lead to the increased intracellular accumulation of tigecycline. Overall, our study offers a distinct combinational strategy to manage infections caused by tmexCD-toprJ-positive bacteria. IMPORTANCE TMexCD1-TOprJ1, a mobilized resistance-nodulation-division-type efflux pump, confers phenotypic resistance to multiple classes of antibiotics. Nowadays, tmexCD-toprJ has disseminated among diverse species of clinical pathogens, exacerbating the need for novel anti-infective strategies. In this study, we report that tmexCD1-toprJ1-negative and -positive bacteria exhibit significantly different metabolic flux and characteristics, especially in purine metabolism. Intriguingly, the addition of inosine, a purine metabolite, effectively restores the antibacterial activity of tigecycline by promoting antibiotic uptake. Our findings highlight the correlation between bacterial mechanism and antibiotic resistance, and offer a distinct approach to overcome tmexCD-toprJ-mediated multidrug resistance.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
12
|
Radkowski P, Derkaczew M, Mazuchowski M, Moussa A, Podhorodecka K, Dawidowska-Fidrych J, Braczkowska-Skibińska M, Synia D, Śliwa K, Wiszpolska M, Majewska M. Antibiotic-Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics (Basel) 2024; 13:503. [PMID: 38927170 PMCID: PMC11201170 DOI: 10.3390/antibiotics13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Interactions between drugs are a common problem in Intensive Care Unit patients, as they mainly have a critical condition that often demands the administration of multiple drugs simultaneously. Antibiotics are among the most frequently used medications, as infectious diseases are often observed in ICU patients. In this review, the most important antibiotic-drug interactions, based on the pharmacokinetic and pharmacodynamic mechanisms, were gathered together and described. In particular, some of the most important interactions with main groups of antibacterial drugs were observed in patients simultaneously prescribed oral anticoagulants, NSAIDs, loop diuretics, and valproic acid. As a result, the activity of drugs can be increased or decreased, as dosage modification might be necessary. It should be noted that these crucial interactions can help predict and avoid negative consequences, leading to better patient recovery. Moreover, since there are other factors, such as fluid therapy or albumins, which may also modify the effectiveness of antibacterial therapy, it is important for anaesthesiologists to be aware of them.
Collapse
Affiliation(s)
- Paweł Radkowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
- Hospital zum Heiligen Geist in Fritzlar, 34560 Fritzlar, Germany;
- Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland
| | - Maria Derkaczew
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Michał Mazuchowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Annas Moussa
- Hospital zum Heiligen Geist in Fritzlar, 34560 Fritzlar, Germany;
| | - Katarzyna Podhorodecka
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | | | - Małgorzata Braczkowska-Skibińska
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Daria Synia
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Karol Śliwa
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| |
Collapse
|
13
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Lan X, Qin S, Liu H, Guo M, Zhang Y, Jin X, Duan X, Sun M, Liu Z, Wang W, Zheng Q, Liao X, Chen J, Kang Y, Xie Y, Song X. Dual-targeting tigecycline nanoparticles for treating intracranial infections caused by multidrug-resistant Acinetobacter baumannii. J Nanobiotechnology 2024; 22:138. [PMID: 38555444 PMCID: PMC10981309 DOI: 10.1186/s12951-024-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aβ11 and Tween 80 (Aβ11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aβ11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.
Collapse
Affiliation(s)
- Xing Lan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Shugang Qin
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyang Jin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Xing Duan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Min Sun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Zhenjun Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Wang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Jinpeng Chen
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Yan Kang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Yongmei Xie
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Hakeam HA, Sarkhi KA, Iansavichene A. Tigecycline and Hypoglycemia, When and How? J Pharm Technol 2024; 40:37-44. [PMID: 38318259 PMCID: PMC10838537 DOI: 10.1177/87551225231211737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Objective: To describe the clinical characteristics of hypoglycemia that develop with tigecycline therapy and to review and summarize the current evidence of this uncommonly occurring metabolic adverse effect of tigecycline therapy. Underlying risk factors and potential mechanisms are also discussed. Data source: A 3-phase literature search was performed. In phase 1, the Cochrane Central Register of Controlled Trials (CENTRAL) Library, MEDLINE, and Embase electronic databases were searched for hypoglycemia and tigecycline, published from inception until August 2023. In phase 2, MEDLINE was searched for tigecycline randomized controlled trials and results were manually screened for hypoglycemia. In phase 3, the US Food and Drug Administration Adverse Event Reporting System public dashboard was searched for reports on tigecycline and hypoglycemia from June 2005 until July 2023. Study selection and data extraction: Relevant English-language citations and those conducted in humans were considered. Relevance to patient care and clinical practice: Hypoglycemia of various causes is an independent mortality risk. This review raises awareness among clinicians about the possibility of hypoglycemia with tigecycline therapy. Conclusion: Data on tigecycline-related hypoglycemia are scarce. Hypoglycemia may occur at any time during tigecycline therapy and can be severe and persist for days after tigecycline cessation. Renal dysfunction or renal replacement therapy may predispose to severe hypoglycemia during tigecycline therapy. Tigecycline-related hypoglycemia may develop in patients with or without diabetes mellitus and appears independent of insulin or antidiabetic agents. Intravenous dextrose showed efficacy in the restoration of euglycemia. Studies are needed to determine whether tigecycline-related hypoglycemia is iatrogenic or spontaneous.
Collapse
Affiliation(s)
- Hakeam A. Hakeam
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khadija A. Sarkhi
- Pharmaceutical Care Services, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Alla Iansavichene
- Health Sciences Library, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
16
|
Park S, Choi J, Shin D, Kwon KT, Kim SH, Wi YM, Ko KS. Conversion to colistin susceptibility by tigecycline exposure in colistin-resistant Klebsiella pneumoniae and its implications to combination therapy. Int J Antimicrob Agents 2024; 63:107017. [PMID: 37884228 DOI: 10.1016/j.ijantimicag.2023.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVES This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jihyun Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dongwoo Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki Tae Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Si-Ho Kim
- Division of Infectious Diseases, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
17
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
18
|
Rakholiya B, Shah P, Patel Y, Patel G, Patel S, Patel A. A Review on Analytical Methods for Tigecycline Estimation From Its Bulk and Dosage Form. J AOAC Int 2023; 106:1689-1695. [PMID: 37676830 DOI: 10.1093/jaoacint/qsad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Tigecycline (TIG) is a third-generation glycylcycline derivative used as an antimicrobial and anticancer agent for the past few years. Its intricate structure makes it more vulnerable toward degradation under the influence of various environmental factors and leads to the generation of impurities. Due to its stability issues, TIG is available as a lyophilized powder for injection. The analysis of TIG becomes a cumbersome task for analysts due to its instability in solution form. As TIG works as a life-saving drug, it is important to review its analytical methods for its quality control. OBJECTIVE The present review discusses various analytical methodologies for determining TIG from its bulk, lyophilized powder, pharmacopoeial methods and factors responsible for its instability. METHODS The present review represents the analysis of data reported in the literature from 1999-2022 for the analysis of TIG. RESULTS Numerous alternative analytical techniques such as UV-visible spectrophotometry, spectrofluorimetric methods, RP-HPLC (reversed-phase high-performance liquid chromatography) and FT-IR (Fourier transform infrared), and electrophoresis has been reported for quantification, identification, and characterization of TIG. CONCLUSIONS Several analytical techniques are available to be used as a quality control tool for tigecycline, including HPLC without derivatization, whereas the fluorescence technique requires derivatization using acidic dye. A few methods require tedious pre-sample preparation techniques, become time-consuming, and involve using one or more organic solvents; there is a need to develop eco-friendlier methods for analyzing tigecycline. HIGHLIGHTS Various analytical methods such as spectrometric, fluorimetric and chromatographic methods have been discussed for estimation of TIG from its bulk and different dosage form.
Collapse
Affiliation(s)
- Bansi Rakholiya
- Charotar University of Science and Technology, Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat 388 421, India
| | - Priyangi Shah
- Charotar University of Science and Technology, Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat 388 421, India
| | - Yash Patel
- Charotar University of Science and Technology, Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat 388 421, India
| | - Gayatri Patel
- Charotar University of Science and Technology, Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat 388 421, India
| | - Samir Patel
- Charotar University of Science and Technology, Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat 388 421, India
| | - Archita Patel
- Charotar University of Science and Technology, Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat 388 421, India
| |
Collapse
|
19
|
Yao H, Xing H, Wang N, Zhang L, Schwarz S, Li C, Cai C, Xu C, Du XD. IS257-mediated amplification of tet(L) variant as a novel mechanism of enhanced tigecycline resistance in Staphylococcus cohnii. Res Microbiol 2023; 174:104114. [PMID: 37572822 DOI: 10.1016/j.resmic.2023.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The mechanism of enhanced tigecycline MIC in Staphylococcus cohnii after in vitro tigecycline exposure was investigated. S. cohnii 11-B-312 was exposed to incremental concentrations of tigecycline (2-32 mg/L) and the mutants growing at 8, 16 and 32 mg/L were determined by AST and WGS. Copy number and relative transcription level of the tet(L) gene were determined by quantitative PCR. The fitness cost was evaluated by growth kinetics and competition assays. The results revealed that enhanced tigecycline MIC was identified in S. cohnii mutants. Copy number and relative transcription level of tet(L) in the mutants increased 8-, 20-, and 23-fold and 20-, 34-, and 39-fold in the presence of 8, 16, and 32 mg/L tigecycline, respectively. The read-mapping depth ratio analysis indicated that a multidrug resistance region carrying the tet(L) variant has a gradually increased copy number, correlating with the tigecycline selection pressure. S. cohnii strain 11-B-312_32 had a fitness cost, and enhanced tigecycline MIC can revert to the initial level in the absence of tigecycline. In summary, enhanced tigecycline MIC develops with extensive amplification of an IS257-flanked tet(L)-carrying segment in S. cohnii. IS257 seems to play a vital role in the gain and loss of the amplification product.
Collapse
Affiliation(s)
- Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Hongjie Xing
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Nannan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Likuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Chang Cai
- College of Arts, Business, Law and Social Sciences, Murdoch University, Murdoch, WA, Australia
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
20
|
Heidary M, Sholeh M, Koupaei M, Asadi A, Khah SM, Kheirabadi F, Saeidi P, Darbandi A, Taheri B, Ghanavati R. Prevalence of tigecycline resistance in methicillin-resistant Staphylococcus aureus: a systematic review and meta-analysis. Diagn Microbiol Infect Dis 2023; 108:116088. [PMID: 39491944 DOI: 10.1016/j.diagmicrobio.2023.116088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/05/2024]
Abstract
Tigecycline (TG) is one of the newest antimicrobial drugs used in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The TG Resistance Evaluation and Monitoring Test (T.E.S.T.) is a global surveillance study aimed at monitoring bacterial resistance to TG in MRSA. This study will provide comprehensive data on the activity of TG against MRSA strains across the world by 2022. An electronic search was conducted for articles published during 1997 to 2022 in Pubmed/Medline (n = 361), Scopus (n = 1735) and Web of science (n = 439) for the following keywords: ((Tygacil [Title/Abstract]) OR (Tigecycline [Title/Abstract])) AND (((Staphylococcus aureus [Title/Abstract]) OR (Methicillin resistant Staphylococcus aureus [Title/Abstract])) OR (MRSA [Title/Abstract])). The titles and abstracts of 2535 articles were screened and 48 publications that fulfilled the inclusion criteria were included. From all studies, 35 studies had a cross-sectional design, 11 studies were cohort and 2 studies were case control. Blood and respiratory tract were the main specimen source in MRSA. Meta-analysis showed the proportion of TG resistance is more than 0.004. The region (countries, continent), study type and detection method were examined as the contributing factors of heterogeneity among the studies. Microbial resistance to this antibiotic has been reported to be low, but this does not mean that it can be used widely and without supervision, but the resistance caused by it in MRSA and other pathogens should be carefully and regularly evaluated.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Koupaei
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Setayesh Mohebi Khah
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faezeh Kheirabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Parisa Saeidi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
21
|
Catalano A, Iacopetta D, Ceramella J, Pellegrino M, Giuzio F, Marra M, Rosano C, Saturnino C, Sinicropi MS, Aquaro S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023; 15:1843. [PMID: 37766250 PMCID: PMC10537211 DOI: 10.3390/v15091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibacterial resistance is a renewed public health plague in modern times, and the COVID-19 pandemic has rekindled this problem. Changes in antibiotic prescribing behavior, misinformation, financial hardship, environmental impact, and governance gaps have generally enhanced the misuse and improper access to antibiotics during the COVID-19 pandemic. These determinants, intersected with antibacterial resistance in the current pandemic, may amplify the potential for a future antibacterial resistance pandemic. The occurrence of infections with multidrug-resistant (MDR), extensively drug-resistant (XDR), difficult-to-treat drug-resistant (DTR), carbapenem-resistant (CR), and pan-drug-resistant (PDR) bacteria is still increasing. The aim of this review is to highlight the state of the art of antibacterial resistance worldwide, focusing on the most important pathogens, namely Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae, and their resistance to the most common antibiotics.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| |
Collapse
|
22
|
Ziółkowski H, Szteyn K, Jędrzkiewicz D, Rasiński B, Jaroszewski J. Tigecycline Absorption Improved by Selected Excipients. Pharmaceuticals (Basel) 2023; 16:1111. [PMID: 37631025 PMCID: PMC10457872 DOI: 10.3390/ph16081111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
To investigate the effects of (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), tocopherol polyethylene glycol 1000 succinate (TPGS), sodium desoxycholate (SDOCH), trimethyl chitosan (TMC), and sodium caprate (C10) on the plasma concentration and the oral bioavailability of tigecycline in broiler chickens. To test the effects of the excipients on absorption of tigecycline, a tetracycline that is poorly absorbed from the gastrointestinal tract, broiler chickens were used as an animal model. Tigecycline (10 mg/kg body weight) was administered intravenously, orally, and orally with one of the excipients. Plasma samples were taken after administration. To measure tigecycline concentrations, high-performance liquid chromatography coupled with tandem mass spectrometry was used. Compartmental and non-compartmental analyses were used for pharmacokinetic analyses of mean plasma concentrations versus time. With the exception of sodium caprate, all the excipients significantly increased the area under the curve and bioavailability of tigecycline (p < 0.05). These parameters were approximately doubled by HP-β-CD, TPGS, and SDOCH, with 95% confidence intervals (95% CIs) for the difference that included only increases of 1.5-fold or higher (bioavailability: control, 1.67%; HP-β-CD, 3.24%; TPGS, 3.30%; and SDOCH, 3.24%). The increases in these parameters were smaller with DM-β-CD and TMC (DM-β-CD, 2.41%; TMC, 2.55%), and the 95% CIs ranged from close to no difference to nearly double the values in the control group. These results indicate that HP-β-CD, TPGS, and SDOCH substantially increase the area under the curve and oral bioavailability of tigecycline. They suggest that DM-β-CD and TMC may also substantially increase these parameters, but more research is needed for more precise estimates of their effects.
Collapse
Affiliation(s)
- Hubert Ziółkowski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (K.S.); (J.J.)
| | - Kalina Szteyn
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (K.S.); (J.J.)
| | - Dawid Jędrzkiewicz
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Bartosz Rasiński
- Waters Spółka z Ograniczoną Odpowiedzialnością, Wybrzeże Gdyńskie 6B, 01-531 Warszawa, Poland;
| | - Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (K.S.); (J.J.)
| |
Collapse
|
23
|
Huang CF, Wang JT, Chuang YC, Sheng WH, Chen YC. In vitro susceptibility of common Enterobacterales to eravacycline in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:358-366. [PMID: 36243669 DOI: 10.1016/j.jmii.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND New tetracycline derivatives exhibit broad-spectrum antimicrobial activities. This study aimed to assess the in vitro activity of eravacycline against common Enterobacterales. METHODS Clinical Enterobacterales isolates were collected between 2017 and 2021. The minimum inhibitory concentration (MIC) was determined using a broth microdilution test. RESULTS We identified Klebsiella pneumoniae (n = 300), Escherichia coli (n = 300), Klebsiella oxytoca (n = 100), Enterobacter cloacae complex (n = 100), Citrobacter freundii (n = 100), and Proteus mirabilis (n = 100). All P. mirabilis strains were resistant to eravacycline. Excluding P. mirabilis, the susceptibility rates to eravacycline, omadacycline, and tigecycline were 75.2%, 66.9%, and 73%, respectively. The MIC50 and MIC90 (mg/L) of eravacycline were 0.5 and 4 for K. pneumoniae, 0.5 and 1 for E. coli, 0.5 and 1 for K. oxytoca, 0.5 and 2 for E. cloacae complex, and 0.25 and 1 for C. freundii. In cefotaxime non-susceptible and meropenem susceptible Enterobacterales, excluding P. mirabilis, the susceptibility rates of eravacycline, omadacycline, and tigecycline were 69.7%, 57.1%, and 66.2%. We found decreased susceptibility rates of three new tetracycline derivatives against meropenem non-susceptible Enterobacterales (eravacycline: 47.1%, omadacycline: 39.4%, and tigecycline: 39.4%). Eravacycline showed a high susceptibility rate against cefotaxime non-susceptible and meropenem susceptible K. oxytoca (100%), C. freundii (93.2%), E. coli (85.9%), and meropenem non-susceptible E. coli (100%). CONCLUSION This study provides the MIC and susceptibility rate of eravacycline for common Enterobacterales. Eravacycline could be a therapeutic choice for cefotaxime non-susceptible or meropenem non-susceptible Enterobacterales, especially K. oxytoca, C. freundii, and E. coli.
Collapse
Affiliation(s)
- Chun-Fu Huang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan.
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
24
|
Huang F, Cao WX, Yan YY, Mao TT, Wang XW, Huang D, Qiu YS, Lu WJ, Li DJ, Zhuang YG. Influence of continuous renal replacement therapy on the plasma concentration of tigecycline in patients with septic shock: A prospective observational study. Front Pharmacol 2023; 14:1118788. [PMID: 36969878 PMCID: PMC10034132 DOI: 10.3389/fphar.2023.1118788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Objective: The influence of continuous renal replacement therapy (CRRT) on the steady-state plasma concentration of high-dose tigecycline was investigated in septic shock patients to provide references for drug dosing.Methods: In this prospective observational study, 17 septic shock patients presenting with severe infections needing a broad-spectrum antibiotic therapy with high-dose tigecycline (100 mg per 12 h) in the intensive care unit were included and divided into CRRT group (n = 6) or non-CRRT group (n = 11). The blood samples were collected and plasma drug concentration was determined by SHIMADZU LC-20A and SHIMADZU LCMS 8040. The steady-state plasma concentration was compared between groups using unpaired t-test. Furthermore, between-groups comparisons adjusted for baseline value was also done using multivariate linear regression model.Results: Peak concentration (Cmax) of tigecycline was increased in CRRT group compared to non-CRRT group, but there were no statistical differences (505.11 ± 143.84 vs. 406.29 ± 108.00 ng/mL, p-value: 0.129). Trough concentration (Cmin) of tigecycline was significantly higher in CRRT group than in non-CRRT group, with statistical differences (287.92 ± 41.91 vs. 174.79 ± 33.15 ng/mL, p-value: 0.000, adjusted p-value: 0.000). In safety, Cmin was reported to be a useful predictor of hepatotoxicity with a cut-off of 474.8 ng/mL. In our studies, Cmin of all patients in CRRT group was lower than 474.8 ng/mL.Conclusion: The plasma concentration of tigecycline was increased in septic shock patients with CRRT treatment and only Cmin shown statistical differences. No dose adjustment seems needed in the view of hepatotoxicity.Clinical Trial Registration:https://www.chictr.org.cn/, identifier ChiCTR2000037475.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Xiang Cao
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Ying Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Mao
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xian-Wen Wang
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Shuang Qiu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Jie Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Dong-Jie Li, ; Yu-Gang Zhuang,
| | - Yu-Gang Zhuang
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Dong-Jie Li, ; Yu-Gang Zhuang,
| |
Collapse
|
25
|
Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, Immanuel SRC, Brooks AN, Shepherd TR, Baliga NS. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. mSystems 2023; 8:e0090422. [PMID: 36537814 PMCID: PMC9948699 DOI: 10.1128/msystems.00904-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 02/24/2023] Open
Abstract
There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.
Collapse
Affiliation(s)
| | - Min Pan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, Washington, USA
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
| | | | - Ananya Dash
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
- Department of Microbiology, University of Washington, Seattle Washington, USA
| |
Collapse
|
26
|
Haddad N, Carr M, Balian S, Lannin J, Kim Y, Toth C, Jarvis J. The Blood-Brain Barrier and Pharmacokinetic/Pharmacodynamic Optimization of Antibiotics for the Treatment of Central Nervous System Infections in Adults. Antibiotics (Basel) 2022; 11:antibiotics11121843. [PMID: 36551500 PMCID: PMC9774927 DOI: 10.3390/antibiotics11121843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial central nervous system (CNS) infections are serious and carry significant morbidity and mortality. They encompass many syndromes, the most common being meningitis, which may occur spontaneously or as a consequence of neurosurgical procedures. Many classes of antimicrobials are in clinical use for therapy of CNS infections, some with established roles and indications, others with experimental reporting based on case studies or small series. This review delves into the specifics of the commonly utilized antibacterial agents, updating their therapeutic use in CNS infections from the pharmacokinetic and pharmacodynamic perspectives, with a focus on the optimization of dosing and route of administration that have been described to achieve good clinical outcomes. We also provide a concise synopsis regarding the most focused, clinically relevant information as pertains to each class and subclass of antimicrobial therapeutics. CNS infection morbidity and mortality remain high, and aggressive management is critical in ensuring favorable patient outcomes while averting toxicity and upholding patient safety.
Collapse
Affiliation(s)
- Nicholas Haddad
- College of Medicine, Central Michigan University (CMU), Mt Pleasant, MI 48859, USA
- Correspondence: ; Tel.: +1-(989)-746-7860
| | | | - Steve Balian
- CMU Medical Education Partners, Saginaw, MI 48602, USA
| | | | - Yuri Kim
- CMU Medical Education Partners, Saginaw, MI 48602, USA
| | - Courtney Toth
- Ascension St. Mary’s Hospital, Saginaw, MI 48601, USA
| | | |
Collapse
|
27
|
Du N, Mao EQ, Yang ZT, Qu HP, Qian X, Shi Y, Bian XL, He J, Chen EZ. Intrathecal or Intraventricular Tigecycline Therapy for Central Nervous System Infection Associated with Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2022; 15:7219-7226. [PMID: 36533251 PMCID: PMC9747839 DOI: 10.2147/idr.s387346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 09/21/2023] Open
Abstract
PURPOSE Infection with carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great challenge. Central nervous system (CNS) infection caused by CRKP is rarely reported, and effective treatment is limited. Thus, this study aimed to assess intrathecal (IT) or intraventricular (IVT) injection of tigecycline for clearing infection with CRKP in CNS. PATIENTS AND METHODS Two patients who had intracranial infection with CRKP after craniotomy were treated in our institution and analyzed retrospectively, summarizing their therapeutic schedules. RESULTS They all had a fever with the positive results of cerebrospinal fluid (CSF) test, and CSF culture showed positive for CPKP, which was sensitive only to tigecycline. In addition, the MIC of polymyxin B was not tested due to the limited laboratory conditions. After IT or IVT injection of tigecycline treatment, the temperature of the patients became normal in 3 days, with normal levels of white blood cells, protein, glucose and chlorine concentrations in the CSF. Crucially, twice CSF cultures also became negative with no clinical symptoms of intracranial infection after IT or IVT injection of tigecycline treatment. Moreover, there were no adverse drug reactions observed. CONCLUSION IT or IVT injection of tigecycline may be a bright choice to control intracranial infection with CRKP.
Collapse
Affiliation(s)
- Ning Du
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People’s Republic of China
| | - En-Qiang Mao
- Emergency Intensive Care Unit, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhi-Tao Yang
- Emergency Intensive Care Unit, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hong-Ping Qu
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xian Qian
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, People’s Republic of China
| | - Ying Shi
- Department of Clinical Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine, Zhejiang, People’s Republic of China
| | - Xiao-Lan Bian
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Juan He
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Er-Zhen Chen
- Emergency Intensive Care Unit, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
28
|
Lee H, Krishnan M, Kim M, Yoon YK, Kim Y. Rhamnetin, a Natural Flavonoid, Ameliorates Organ Damage in a Mouse Model of Carbapenem-Resistant Acinetobacter baumannii-Induced Sepsis. Int J Mol Sci 2022; 23:12895. [PMID: 36361685 PMCID: PMC9656386 DOI: 10.3390/ijms232112895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2023] Open
Abstract
In sepsis, the persistence of uncontrolled inflammatory response of infected host cells eventually leads to severe lung and organ failure and, ultimately, death. Carbapenem-resistant Acinetobacter baumannii (CRAB), causative bacteria of sepsis and lung failure in acute cases, belongs to a group of critical pathogens that cannot be eradicated using the currently available antibiotics. This underlines the necessity of developing new modes of therapeutics that can control sepsis at the initial stages. In this study, we investigated the anti-inflammatory activities in vitro and in vivo and the antiseptic effects of rhamnetin, a naturally occurring flavonoid. We found that among its isoforms, the potency of rhamnetin was less explored but rhamnetin possessed superior anti-inflammatory activity with least cytotoxicity. Rhamnetin showed significant anti-inflammatory effects in lipopolysaccharide-, CRAB-, and Escherichia coli (E. coli)-stimulated mouse macrophages by inhibiting the release of interleukin-6 and nitric oxide. In a mouse model of sepsis infected with clinically isolated CRAB or E. coli, rhamnetin significantly reduced the bacterial burden in the organs. In addition, normalized pro-inflammatory cytokine levels in lung lysates and histological analysis of lung tissue indicated alleviation of lung damage. This study implies that a potent natural product such as rhamnetin could be a future therapeutic for treating carbapenem-resistant gram-negative sepsis.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
29
|
Almufarij RS, Abdulkhair BY, Salih M, Alhamdan NM. Sweep-Out of Tigecycline, Chlortetracycline, Oxytetracycline, and Doxycycline from Water by Carbon Nanoparticles Derived from Tissue Waste. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203617. [PMID: 36296807 PMCID: PMC9610714 DOI: 10.3390/nano12203617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/27/2023]
Abstract
Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers' concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs). The TEM results showed a particle size range of 30.2 nm to 48.1 nm, the BET surface area was 283 m2 g-1, and the XRD pattern indicated cubical-graphite crystals. The synthesized CRNPs were tested for removing tigecycline (TGCN), chlortetracycline (CTCN), oxytetracycline (OTCN), and doxycycline (DXCN) via the batch process. The adsorption equilibrium time for TGCN, DXCN, CTCN, and OTCN was 60 min, and the concentration influence revealed an adsorption capacity of 172.5, 200.1, 202.4, and 200.0 mg g-1, respectively. The sorption of the four drugs followed the PSFO, and the LFDM models indicated their high sorption affinity to the CRNPs. The adsorption of the four drugs fitted the multilayer FIM that supported the high-affinity claim. The removals of the four drugs were exothermic and spontaneous physisorption. The fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW; therefore, CRNPs are suggested for water remediation as low-cost sorbent.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mutaz Salih
- Department of Chemistry, College of Science and Humanities-Hurrymilla, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Nujud M. Alhamdan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
30
|
Influence of Antibiotics on Functionality and Viability of Liver Cells In Vitro. Curr Issues Mol Biol 2022; 44:4639-4657. [PMID: 36286032 PMCID: PMC9600611 DOI: 10.3390/cimb44100317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
(1) Antibiotics are an important weapon in the fight against serious bacterial infections and are considered a common cause of drug-induced liver injury (DILI). The hepatotoxicity of many drugs, including antibiotics, is poorly analyzed in human in vitro models. (2) A standardized assay with a human hepatoma cell line was used to test the hepatotoxicity of various concentrations (Cmax, 5× Cmax, and 10× Cmax) of antibiotics. In an ICU, the most frequently prescribed antibiotics, ampicillin, cefepime, cefuroxime, levofloxacin, linezolid, meropenem, rifampicin, tigecycline, and vancomycin, were incubated with HepG2/C3A cells for 6 days. Cell viability (XTT assay, LDH release, and vitality), albumin synthesis, and cytochrome 1A2 activity were determined in cells. (3) In vitro, vancomycin, rifampicin, and tigecycline showed moderate hepatotoxic potential. The antibiotics ampicillin, cefepime, cefuroxime, levofloxacin, linezolid, and meropenem were associated with mild hepatotoxic reactions in test cells incubated with the testes Cmax concentration. Rifampicin and cefuroxime showed significantly negative effects on the viability of test cells. (4) Further in vitro studies and global pharmacovigilance reports should be conducted to reveal underlying mechanism of the hepatotoxic action of vancomycin, rifampicin, tigecycline, and cefuroxime, as well as the clinical relevance of these findings.
Collapse
|
31
|
Outcomes of Short-Term Tigecycline-Containing Regimens for Mycobacterium abscessus Pulmonary Disease. Antimicrob Agents Chemother 2022; 66:e0077422. [PMID: 36165626 PMCID: PMC9578423 DOI: 10.1128/aac.00774-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short-term intravenous tigecycline therapy during a 1-month initial phase may improve early microbiological response in patients with Mycobacterium abscessus pulmonary disease (PD). However, short-term use of tigecycline did not improve the long-term culture conversion rate of M. abscessus PD. Further studies on the efficacy of prolonged intravenous tigecycline-containing regimens are needed.
Collapse
|
32
|
Treatment of MDR Gram-Negative Bacteria Infections: Ongoing and Prospective. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance is a serious public health concern across the world. Gram-negative resistance has propagated over the globe via various methods, the most challenging of which include extended-spectrum β-lactamases, carbapenemases, and AmpC enzymes. Gram-negative bacterial infections are difficult to treat in critically extremely sick persons. Resistance to different antibiotic treatments nearly always lowers the probability of proper empirical coverage, sometimes resulting in severe outcomes. Multidrug resistance can be combated with varying degrees of success using a combination of older drugs with high toxicity levels and novel therapeutics. The current therapies for multidrug-resistant Gram-negative bacteria are discussed in this review, which includes innovative medications, older pharmaceuticals, creative combinations of the two, and therapeutic targets.
Collapse
|
33
|
Lei H, Liu X, Li Z, Wang C. Analysis of the clinical characteristics of tigecycline-induced hypofibrinogenemia. J Chemother 2022:1-6. [PMID: 35904191 DOI: 10.1080/1120009x.2022.2105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Knowledge regarding the association between hypofibrinogenemia and tigecycline is based mainly on case reports. However, the clinical features of tigecycline-induced hypofibrinogenemia are unclear. We collected 20 patients (16 males and 4 females) with tigecycline-induced hypofibrinogenemia by searching the Chinese and English databases from June 2005 to May 2021, with a median age of 63.5 years (range 39∼90 years). Hypofibrinogenemia developed at a median of 9 days (range 2∼35 days). Most patients had no typical clinical manifestations, and only a few patients had bleeding and ecchymosis. Fibrinogen levels gradually decreased from 3.98 ± 2.05 g/L to 0.87 ± 0.45 g/L (P = 0.000), and the activated partial thromboplastin time (APTT) increased from 38.26 ± 8.80 s to 83.43 ± 47.23 s (P = 0.002). Fibrinogen levels in all patients recovered to the normal range within a median of 4 days (range 1∼12 days) after tigecycline cessation. Our results suggest that fibrinogen levels should be closely monitored in patients treated with tigecycline, specifically patients who may have renal insufficiency or patients with long-term use.
Collapse
Affiliation(s)
- Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Zuojun Li
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunjiang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Zhou CC, Huang F, Zhang JM, Zhuang YG. Population Pharmacokinetics of Tigecycline: A Systematic Review. Drug Des Devel Ther 2022; 16:1885-1896. [PMID: 35747442 PMCID: PMC9211078 DOI: 10.2147/dddt.s365512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Although tigecycline is widely used in clinical practice, its efficiency and optimal dosage regimens remain controversial. The purpose of this article was to help guide tigecycline dosing in different patient subpopulations through comparing the published population pharmacokinetic models of tigecycline, as well as summarizing and determining the potential covariates that markedly influence tigecycline pharmacokinetics. In this review, literature was systematically searched from the PubMed database from inception to March 2022. The articles focusing on population pharmacokinetics for tigecycline in healthy volunteers or patients were included; finally, a total of eight studies were included in this review. NONMEM methods were used in five studies to generate the population pharmacokinetic models. Tigecycline pharmacokinetics were mostly described by a two-compartment model in these included studies. Estimated clearance and volumes of distribution of tigecycline at steady state (Vss) varied widely in different target patient populations, with a range of 7.5-23.1 L/h and 212.7-1087.7 L, respectively. Body-weight and creatinine clearance were the most important predictors of clearance in these studies, while other predictors include age, gender, bilirubin and aspartate aminotransferase. In conclusion, this review showed the large variability of tigecycline population pharmacokinetics, which can provide guide dosing in different target populations. For clinicians, the individual dosing adjustment should be based not only on the indication and pathogen susceptibility but also on the potential important predictors. However, more studies were needed to confirm the necessity of modified dosage regimens in different patient subpopulations.
Collapse
Affiliation(s)
- Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Jing-Ming Zhang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Yu-Gang Zhuang
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
35
|
Huang G, Lai W, Wu D, Huang Q, Zhong Q, Ye X. Two Cases Report of Intrathecal Tigecycline Therapy for Intracranial Infection with Acinetobacter baumannii and Review of Literatures. Infect Drug Resist 2022; 15:2211-2217. [PMID: 35502226 PMCID: PMC9056109 DOI: 10.2147/idr.s357087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore the treatment scheme for intracranial infection with Acinetobacter baumannii. METHODS We retrospective analyzed two cases of patients of intracranial infection with Acinetobacter baumannii. RESULTS The intracranial infection was controlled effectively by the scheme to intravenous"tigecycline + cefperazone-sulbactam"combined with intrathecal tigecycline injection, the two patients recover well with 21 months' follow-up. CONCLUSIONS Tigecycline-based drug scheme combined with intrathecal tigecycline injection can achieve the effect of controlling intracranial infection. Lumbar cisterna drainage tube plays a major role in controlling intracranial infection.
Collapse
Affiliation(s)
- Guanlin Huang
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Wentao Lai
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Daxing Wu
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Qi Zhong
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| |
Collapse
|
36
|
Senol G, Bicmen C, Gunduz A, Dereli S, Erbaycu A. Evaluation of antimicrobial susceptibilities of non-tuberculous mycobacteria against linezolid and tigecycline. Indian J Med Microbiol 2022; 40:446-448. [PMID: 35450734 DOI: 10.1016/j.ijmmb.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
Mycobacterial susceptibility testing is important for the management of nontuberculous mycobacteria (NTM) infections. The aim of the study is to determine the susceptibilities of tigecycline (TGC) and linezolid (LZD) against NTM. The study was carried out using stocks of NTM strains in the tuberculosis department of the microbiology laboratory. It was designed a retrospective study. LZD and TGC sensitivities of study isolates were analyzed by microdilution. Forty NTM isolates have been studied. LZD and TGC sensitivities varied according to the NTM type. It is concluded that each isolate should be individually evaluated due to variable susceptibilities to LZD and TGC.
Collapse
Affiliation(s)
- Gunes Senol
- Department of Infectious Diseases and Clinical Microbiology, Izmir Bakircay University Ciğli Eğitim ve Araştırma Hastanesi, Izmir, Turkey.
| | - Can Bicmen
- Department of Medical Microbiology, Izmir Chest Diseases and Chest Surgery Training Hospital, Izmir, Turkey
| | - Ayriz Gunduz
- Department of Medical Microbiology, Izmir Chest Diseases and Chest Surgery Training Hospital, Izmir, Turkey
| | - Sevket Dereli
- Department of Chest Diseases, Izmir Chest Diseases and Chest Surgery Training Hospital, Izmir, Turkey
| | - Ahmet Erbaycu
- Department of Chest Diseases, Izmir Chest Diseases and Chest Surgery Training Hospital, Izmir, Turkey
| |
Collapse
|
37
|
Cui J, Men J, Liu B. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C 9H 10N 2O 4. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C9H10N2O4, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 9.722(2) Å, b = 10.805(2) Å, c = 10.947(2) Å, α = 67.938(4)°, β = 66.250(4)°, γ = 72.978(4)°, V = 961.8(3) Å3, Z = 4, R
gt
(F) = 0.0421, wR
ref
(F
2) = 0.1339, T = 173 K.
Collapse
Affiliation(s)
- Jianqiang Cui
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xianyang , Shaanxi , China
| | - Jing Men
- Xi’an Wan Long Pharmaceutical Co, Ltd. , Xi’an , Shaanxi , China
| | - Bin Liu
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xianyang , Shaanxi , China
| |
Collapse
|
38
|
Li Z, An Y, Li L, Yi H. Intrathecal Injection of Tigecycline and Polymyxin B in the Treatment of Extensively Drug-Resistant Intracranial Acinetobacter baumannii Infection: A Case Report and Review of the Literature. Infect Drug Resist 2022; 15:1411-1423. [PMID: 35392365 PMCID: PMC8980296 DOI: 10.2147/idr.s354460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 01/17/2023] Open
Abstract
Purpose Intracranial infection after neurosurgery is one of the most serious complications, especially extensively drug-resistant (XDR) Acinetobacter baumannii (A. baumannii) seriously affects the prognosis of patients. At present, there is little experience in the treatment of this infection and limited effective treatment options, like tigecycline or polymyxin B. Therefore, this report aims to describe the efficacy of tigecycline combined with polymyxin B by intrathecal (ITH) injection in the treatment of XDR intracranial infection with A. baumannii. Methods We report a case of intracranial infection with XDR A. baumannii after ventricular drainage, treated by daily ITH and intravenous (IV) tigecycline, combined with polymyxin B ITH route. Moreover, tigecycline and polymyxin B treatments for XDR intracranial infection with A. baumannii that were reported in the literature were also reviewed and summarized. Results The white blood cells (WBCs) of the patient’s cerebrospinal fluid dropped to normal, and the symptoms of intracranial infection disappeared. The patient finally obtained good clinical results and transferred to the local hospital. Conclusion The polymyxin B ITH route is an ideal treatment strategy for XDR A. baumannii. The IV plus ITH tigecycline may be an effective treatment option. However, more researches should be conducted to confirm our observation.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yuling An
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Lijuan Li
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Huimin Yi
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Correspondence: Huimin Yi, Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People’s Republic of China, Email
| |
Collapse
|
39
|
Xiao X, Huan Q, Huang Y, Liu Y, Li R, Xu X, Wang Z. Metformin Reverses tmexCD1-toprJ1- and tet(A)-Mediated High-Level Tigecycline Resistance in K. pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11020162. [PMID: 35203765 PMCID: PMC8868462 DOI: 10.3390/antibiotics11020162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Tigecycline (TIG) is one of the last effective options against multidrug resistance bacteria. Recently, the RND (resistance–nodulation–division) efflux pump gene cluster, tmexCD1-toprJ1, and the tetracycline-efflux pump tet(A) mutation were reported to mediate high level resistance to TIG in clinically important pathogens, weakening the efficacy of TIG. In this study, we report the potent synergistic effect of the antidiabetic drug metformin in combination with TIG against tet(A) mutant and tmexCD1-toprJ1 positive K. pneumoniae. The fractional inhibitory concentration index (FICI) of TIG and metformin were less than 0.05 for all the tested isolates. The time–kill curve assay showed that the combination of TIG and metformin exhibited much better antimicrobial effect than TIG alone. The synergistic effect was also confirmed in vivo using a well-studied Galleria mellonella larvae model. Mechanistic studies demonstrated that metformin disrupted the important component of proton motive force, the electric potential (Δψ) and the function of efflux pump, thereby increasing the intracellular concentration of TIG. This finding revealed that metformin might be a possible adjuvant of TIG for combating with superbugs carrying the tet(A) mutant and tmexCD1-toprJ1 genes.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (Q.H.); (Y.H.); (Y.L.); (R.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (Q.H.); (Y.H.); (Y.L.); (R.L.)
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (Q.H.); (Y.H.); (Y.L.); (R.L.)
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (Q.H.); (Y.H.); (Y.L.); (R.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (Q.H.); (Y.H.); (Y.L.); (R.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xilan Xu
- Pizhou Animal Health Supervision Institute, Xuzhou 320300, China;
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (Q.H.); (Y.H.); (Y.L.); (R.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-51487979224; Fax: +86-51487972218
| |
Collapse
|
40
|
Zou D, Yao G, Shen C, Ji J, Ying C, Wang P, Liu Z, Wang J, Jin Y, Xiao Y. The Monte Carlo Simulation of Three Antimicrobials for Empiric Treatment of Adult Bloodstream Infections With Carbapenem-Resistant Enterobacterales in China. Front Microbiol 2021; 12:738812. [PMID: 34899628 PMCID: PMC8656417 DOI: 10.3389/fmicb.2021.738812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: The aim of this study was to predict and evaluate three antimicrobials for treatment of adult bloodstream infections (BSI) with carbapenem-resistant Enterobacterales (CRE) in China, so as to optimize the clinical dosing regimen further. Methods: Antimicrobial susceptibility data of blood isolates were obtained from the Blood Bacterial Resistance Investigation Collaborative Systems in China. Monte Carlo simulation was conducted to estimate the probability target attainment (PTA) and cumulative fraction of response (CFR) of tigecycline, polymyxin B, and ceftazidime/avibactam against CRE. Results: For the results of PTAs, tigecycline following administration of 50 mg every 12 h, 75 mg every 12 h, and 100 mg every 12 h achieved > 90% PTAs when minimum inhibitory concentration (MIC) was 0.25, 0.5, and 0.5 μg/mL, respectively; polymyxin B following administration of all tested regimens achieved > 90% PTAs when MIC was 1 μg/mL with CRE; ceftazidime/avibactam following administration of 1.25 g every 8 h, 2.5 g every 8 h achieved > 90% PTAs when MIC was 4 μg/mL, 8 μg/mL with CRE, respectively. As for CFR values of three antimicrobials, ceftazidime/avibactam achieved the lowest CFR values. The highest CFR value of ceftazidime/avibactam was 77.42%. For tigecycline and ceftazidime/avibactam, with simulated regimens daily dosing increase, the CFR values were both increased; the highest CFR of tigecycline values was 91.88%. For polymyxin B, the most aggressive dosage of 1.5 mg/kg every 12 h could provide the highest CFR values (82.69%) against CRE. Conclusion: This study suggested that measurement of MICs and individualized therapy should be considered together to achieve the optimal drug exposure. In particular, pharmacokinetic and pharmacodynamic modeling based on local antimicrobial resistance data can provide valuable guidance for clinicians for the administration of empirical antibiotic treatments for BSIs.
Collapse
Affiliation(s)
- Dongna Zou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangyue Yao
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peipei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Cheng Q, Cheung Y, Liu C, Xiao Q, Sun B, Zhou J, Chan EWC, Zhang R, Chen S. Structural and mechanistic basis of the high catalytic activity of monooxygenase Tet(X4) on tigecycline. BMC Biol 2021; 19:262. [PMID: 34895224 PMCID: PMC8666040 DOI: 10.1186/s12915-021-01199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background Tigecycline is a tetracycline derivative that constitutes one of the last-resort antibiotics used clinically to treat infections caused by both multiple drug-resistant (MDR) Gram-negative and Gram-positive bacteria. Resistance to this drug is often caused by chromosome-encoding mechanisms including over-expression of efflux pumps and ribosome protection. However, a number of variants of the flavin adenine dinucleotide (FAD)-dependent monooxygenase TetX, such as Tet(X4), emerged in recent years as conferring resistance to tigecycline in strains of Enterobacteriaceae, Acinetobacter sp., Pseudomonas sp., and Empedobacter sp. To date, mechanistic details underlying the improvement of catalytic activities of new TetX enzymes are not available. Results In this study, we found that Tet(X4) exhibited higher affinity and catalytic efficiency toward tigecycline when compared to Tet(X2), resulting in the expression of phenotypic tigecycline resistance in E. coli strains bearing the tet(X4) gene. Comparison between the structures of Tet(X4) and Tet(X4)-tigecycline complex and those of Tet(X2) showed that they shared an identical FAD-binding site and that the FAD and tigecycline adopted similar conformation in the catalytic pocket. Although the amino acid changes in Tet(X4) are not pivotal residues for FAD binding and substrate recognition, such substitutions caused the refolding of several alpha helixes and beta sheets in the secondary structure of the substrate-binding domain of Tet(X4), resulting in the formation of a larger number of loops in the structure. These changes in turn render the substrate-binding domain of Tet(X4) more flexible and efficient in capturing substrate molecules, thereby improving catalytic efficiency. Conclusions Our works provide a better understanding of the molecular recognition of tigecycline by the TetX enzymes; these findings can help guide the rational design of the next-generation tetracycline antibiotics that can resist inactivation of the TetX variants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01199-7.
Collapse
Affiliation(s)
- Qipeng Cheng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yanchu Cheung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chenyu Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai, 201204, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai, 201204, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
42
|
The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Pharmaceutics 2021; 13:pharmaceutics13122085. [PMID: 34959366 PMCID: PMC8707899 DOI: 10.3390/pharmaceutics13122085] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023] Open
Abstract
The tetracycline antibiotic class has acquired new valuable members due to the optimisation of the chemical structure. The first modern tetracycline introduced into therapy was tigecycline, followed by omadacycline, eravacycline, and sarecycline (the third generation). Structural and physicochemical key elements which led to the discovery of modern tetracyclines are approached. Thus, several chemical subgroups are distinguished, such as glycylcyclines, aminomethylcyclines, and fluorocyclines, which have excellent development potential. The antibacterial spectrum comprises several resistant bacteria, including those resistant to old tetracyclines. Sarecycline, a narrow-spectrum tetracycline, is notable for being very effective against Cutinebacterium acnes. The mechanism of antibacterial action from the perspective of the new compound is approached. Several severe bacterial infections are treated with tigecycline, omadacycline, and eravacycline (with parenteral or oral formulations). In addition, sarecycline is very useful in treating acne vulgaris. Tetracyclines also have other non-antibiotic properties that require in-depth studies, such as the anti-inflammatory effect effect of sarecycline. The main side effects of modern tetracyclines are described in accordance with published clinical studies. Undoubtedly, this class of antibiotics continues to arouse the interest of researchers. As a result, new derivatives are developed and studied primarily for the antibiotic effect and other biological effects.
Collapse
|
43
|
Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics. Antimicrob Agents Chemother 2021; 66:e0087821. [PMID: 34748386 DOI: 10.1128/aac.00878-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is among the highest priority pathogens for drug development, because of its resistance to antibiotics, extraordinary adaptability, and persistence. Anti-pseudomonal research is strongly encouraged to address the acute scarcity of innovative antimicrobial lead structures. In an effort to understand the physiological response of P. aeruginosa to clinically relevant antibiotics, we investigated the proteome after exposure to ciprofloxacin, levofloxacin, rifampicin, gentamicin, tobramycin, azithromycin, tigecycline, polymyxin B, colistin, ceftazidime, meropenem, and piperacillin/tazobactam. We further investigated the response to CHIR-90, which represents a promising class of lipopolysaccharide biosynthesis inhibitors currently under evaluation. Radioactive pulse-labeling of newly synthesized proteins followed by 2D-PAGE was used to monitor the acute response of P. aeruginosa to antibiotic treatment. The proteomic profiles provide insights into the cellular defense strategies for each antibiotic. A mathematical comparison of these response profiles based on upregulated marker proteins revealed similarities of responses to antibiotics acting on the same target area. This study provides insights into the effects of commonly used antibiotics on P. aeruginosa and lays the foundation for the comparative analysis of the impact of novel compounds with precedented and unprecedented modes of action.
Collapse
|
44
|
Rapid and Accurate Antibiotic Susceptibility Determination of tet(X)-Positive E. coli Using RNA Biomarkers. Microbiol Spectr 2021; 9:e0064821. [PMID: 34704829 PMCID: PMC8549723 DOI: 10.1128/spectrum.00648-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The emergence and prevalence of novel plasmid-mediated tigecycline resistance genes, namely, tet(X) and their variants, pose a serious threat to public health worldwide. Rapid and accurate antibiotic susceptibility testing (AST) that can simultaneously detect the genotype and phenotype of tet(X)-positive bacteria may contribute to the deployment of an effective antibiotic arsenal, mortality reduction, and a decrease in the use of broad-spectrum antimicrobial agents. However, current bacterial growth-based AST methods, such as broth microdilution, are time consuming and delay the prompt treatment of infectious diseases. Here, we developed a rapid RNA-based AST (RBAST) assay to effectively distinguish tet(X)-positive and -negative strains. RBAST works by detecting specific mRNA expression signatures in bacteria after short-term tigecycline exposure. As a proof of concept, a panel of clinical isolates was characterized successfully by using the RBAST method, with a 3-h assay time and 87.9% accuracy (95% confidence interval [CI], 71.8% to 96.6%). Altogether, our findings suggest that RNA signatures upon antibiotic exposure are promising biomarkers for the development of rapid AST, which could inform early antibiotic choices. IMPORTANCE Infections caused by multidrug-resistant (MDR) Gram-negative pathogens are an increasing threat to global health. Tigecycline is one of the last-resort antibiotics for the treatment of these complicated infections; however, the emergence of plasmid-encoded tigecycline resistance genes, namely, tet(X), severely diminishes its clinical efficacy. Currently, there is a lack of rapid and accurate antibiotic susceptibility testing (AST) for the detection of tet(X)-positive bacteria. In this study, we developed a rapid and robust RNA-based antibiotic susceptibility determination (RBAST) assay to effectively distinguish tet(X)-negative and -positive strains using specific RNA biomarkers in bacteria after tigecycline exposure. Using this RBAST method, we successfully characterized a set of clinical strains in 3 h. Our data indicate that the RBAST assay is useful for identifying tet(X)-positive Escherichia coli.
Collapse
|
45
|
Legaria MC, Nastro M, Camporro J, Heger F, Barberis C, Stecher D, Rodriguez CH, Vay CA. Peptostreptococcus anaerobius: Pathogenicity, identification, and antimicrobial susceptibility. Review of monobacterial infections and addition of a case of urinary tract infection directly identified from a urine sample by MALDI-TOF MS. Anaerobe 2021; 72:102461. [PMID: 34626800 DOI: 10.1016/j.anaerobe.2021.102461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Peptostreptococcus anaerobius is a gram-positive anaerobic coccus (GPAC) found in the gastrointestinal and vaginal microbiota. The organism is mainly found in polymicrobial and scarcely in monobacterial infections such as prosthetic and native endocarditis. Anaerobic bacteria have rarely been reported as the cause of urinary tract infection (UTI). Although GPAC are susceptible to most antimicrobials used against anaerobic infections, P. anaerobius has shown to be more resistant. Herein, we report a case of UTI caused by P. anaerobius from a 62-year-old man with a history of urological disease. Surprisingly, the microorganism was directly identified by Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) from the urine sample. The isolate was successfully identified by phenotypic methods, MALDI-TOF MS, and 16S rRNA gene sequencing. P. anaerobius showed no β-lactamase-producing activity, was resistant to penicillin, ampicillin, ciprofloxacin and levofloxacin, and displayed intermediate susceptibility to ampicillin-sulbactam and amoxicillin-clavulanic acid. Successful treatment was achieved with oral amoxicillin-clavulanic acid. Antimicrobial susceptibility testing (AST) should be performed on P. anaerobius isolates due to their unpredictable AST patterns and because empirically administered antimicrobial agents may not be active. This report shows that MALDI-TOF MS, directly used in urine specimens, may be a quick option to diagnose UTI caused by P. anaerobius or other anaerobic bacteria. This review is a compilation of monobacterial infections caused by P. anaerobius published in the literature, their pathogenicity, identification, and data about the antimicrobial susceptibility of P. anaerobius.
Collapse
Affiliation(s)
- M C Legaria
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Buenos Aires, Argentina.
| | - M Nastro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, INFIBIOC, Buenos Aires, Argentina
| | - J Camporro
- Universidad de Buenos Aires. Facultad de Medicina, Hospital de Clínicas José de San Martín, Servicio de Infectología, Buenos Aires, Argentina
| | - F Heger
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Buenos Aires, Argentina
| | - C Barberis
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, INFIBIOC, Buenos Aires, Argentina
| | - D Stecher
- Universidad de Buenos Aires. Facultad de Medicina, Hospital de Clínicas José de San Martín, Servicio de Infectología, Buenos Aires, Argentina
| | - C H Rodriguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, INFIBIOC, Buenos Aires, Argentina
| | - C A Vay
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, INFIBIOC, Buenos Aires, Argentina
| |
Collapse
|
46
|
Han H, Qin W, Zheng Y, Cao D, Lu H, Zhang L, Cui Y, Hu Y, Li W, Guo H, Wu D, Li C, Wang H, Chen Y. High-Dose versus Standard-Dose Tigecycline Treatment of Secondary Bloodstream Infections Caused by Extensively Drug-Resistant Acinetobacter baumannii: An Observational Cohort Study. Infect Drug Resist 2021; 14:3837-3848. [PMID: 34566417 PMCID: PMC8457649 DOI: 10.2147/idr.s322803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Extensively drug-resistant Acinetobacter baumannii (XDR-AB) infections have become difficult to treat and are associated with a high mortality rate. Tigecycline is one of the most effective agents used to treat XDR-AB infections, but data from treating bloodstream infection (BSI) in standard dose do not look promising, because of its low plasma concentration. Secondary BSI with primary infection source may indicate tigecycline treatment with a higher dose. Currently, little is known about the application of high-dose tigecycline among patients with secondary BSI caused by XDR-AB. We aimed to investigate the outcomes for high-dose (HD) tigecycline treatment versus standard-dose (SD) treatment of these patients. Methods An observational cohort study was conducted at four university affiliated hospitals in mainland China. Adult inpatients who were confirmed as having secondary BSI caused by XDR-AB and received definitive tigecycline treatment were consecutively included. Patients who were treated with 50 mg every 12 h were defined as the SD group, and a twice dose was defined as the HD group. Results Of the enrolled patients, 63 received SD and 88 received HD tigecycline treatment. Patients in the two groups had similar with regard to baseline clinical conditions. The 30-day survival was affected by the source of the primary infection. Survival was significantly better in patients with non-pulmonary-infection-related BSI than in patients with pulmonary-infection-related BSI. Multivariate Cox regression confirmed that HD had a protective effect only observed in patients with non-pneumonia-related BSI. Conclusion A tigecycline dose that is twice its standard dose is better for the treatment of XDR-AB infection only in BSI associated with non-pulmonary infection.
Collapse
Affiliation(s)
- Hui Han
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Weidong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yue Zheng
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dongming Cao
- Department of Critical Care Medicine, Liaocheng People's Hospital Affiliated with Shandong First Medical University, Liaocheng, People's Republic of China
| | - Haining Lu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, People's Republic of China
| | - Lu Zhang
- Department of Critical Care Medicine, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Yi Cui
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yuanyuan Hu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, People's Republic of China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, People's Republic of China
| | - Yuguo Chen
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
47
|
Benzydamine Reverses TMexCD-TOprJ-Mediated High-Level Tigecycline Resistance in Gram-Negative Bacteria. Pharmaceuticals (Basel) 2021; 14:ph14090907. [PMID: 34577607 PMCID: PMC8470189 DOI: 10.3390/ph14090907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, a novel efflux pump gene cluster called tmexCD1-toprJ1 and its variants have been identified, which undermine the antibacterial activity of tigecycline, one of the last remaining options effective against multidrug-resistant (MDR) Gram-negative bacteria. Herein, we report the potent synergistic effect of the non-steroidal anti-inflammatory drug benzydamine in combination with tigecycline at sub-inhibitory concentrations against various temxCD-toprJ-positive Gram-negative pathogens. The combination of benzydamine and tigecycline killed all drug-resistant pathogens during 24 h of incubation. In addition, the evolution of tigecycline resistance was significantly suppressed in the presence of benzydamine. Studies on the mechanisms of synergism showed that benzydamine disrupted the bacterial proton motive force and the functionality of this kind of novel plasmid-encoded resistance-nodulation-division efflux pump, thereby promoting the intracellular accumulation of tigecycline. Most importantly, the combination therapy of benzydamine and tigecycline effectively improved the survival of Galleria mellonella larvae compared to tigecycline monotherapy. Our findings provide a promising drug combination therapeutic strategy for combating superbugs carrying the tmexCD-toprJ gene.
Collapse
|
48
|
Identification and antimicrobial susceptibility profiles of Nocardia species clinically isolated in Japan. Sci Rep 2021; 11:16742. [PMID: 34408177 PMCID: PMC8373947 DOI: 10.1038/s41598-021-95870-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/02/2021] [Indexed: 01/31/2023] Open
Abstract
The aims of the present study were to profile the antimicrobial susceptibility patterns of a diverse range of Nocardia species isolated in Japan, and to determine the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for species/complex identification. Identification of 153 clinical isolates was performed by full-length 16S rRNA gene sequencing as a reference method to evaluate the usefulness of MALDI-TOF MS identification. Antimicrobial susceptibility testing (AST) for 14 antibiotics was performed using the broth microdilution method against 146 of the isolates. Among the total 153 clinical isolates, Nocardia farcinica complex (25%) was the most common species, followed by Nocardia cyriacigeorgica (18%), Nocardia brasiliensis (9%), Nocardia nova (8%), and Nocardia otitidiscaviarum (7%). Among 150 isolates identified to the species/complex level by 16S rRNA gene sequencing, MALDI-TOF MS with the use of a supplemental Nocardia library (JMLD library ver.ML01) correctly identified 97.3% (n = 146) to the species/complex level and 1.3% (n = 2) to the genus level. Among the 146 Nocardia isolates that underwent AST, the susceptibilities were 100% to linezolid, 96% to amikacin, 94% to trimethoprim-sulfamethoxazole, and 76% to imipenem. None of the trimethoprim-sulfamethoxazole-resistant isolates carried either plasmid-mediated sulfonamide-resistant genes (sul1, sul2) or trimethoprim-resistant genes (dfrA).
Collapse
|
49
|
In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain. Antibiotics (Basel) 2021; 10:antibiotics10080938. [PMID: 34438988 PMCID: PMC8389022 DOI: 10.3390/antibiotics10080938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
A collection of 177 Francisella tularensis subsp. holarctica clinical isolates (29 from humans and 148 from animals, mainly hares and voles) was gathered from diverse tularemia outbreaks in the Castilla y León region (northwestern Spain) that occurred from the end of the 20th century to the 2020s. Along with four F. tularensis subsp. holarctica reference strains, all of these clinical isolates were tested using a broth microdilution method to determine their susceptibility to 22 antimicrobial agents, including β-lactams, aminoglycosides and one member each of the tetracycline, glycylcycline, quinolone and sulphonamide classes. Many multi-resistance profiles were found among the tested isolates, but especially among those of human origin (all but two isolates showed resistance to at least 13 of 18 antimicrobial agents). Even so, all human isolates were susceptible to gentamicin and tobramycin, while more than 96% of animal isolates were susceptible to these two aminoglycosides. Ciprofloxacin showed activity against more than 92% of animal and human isolates. However, almost 21% of human isolates were resistant to tetracycline, and more than 65% were resistant to tigecycline. Finally, a quite similar activity to other F. tularensis subsp. holarctica isolates collected 20 years earlier in Spain was observed.
Collapse
|
50
|
Yang Q, Xie J, Wang H, Zhang Y, Zhao Y, Li S, Zhang K, Dong Y. Determination of tigecycline in human lung epithelial cells and polymorphonuclear neutrophils by liquid chromatography/tandem mass spectrometry and its application in a cellular pharmacokinetics study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9112. [PMID: 33913212 DOI: 10.1002/rcm.9112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE In order to characterize the intracellular pharmacokinetic properties of tigecycline, we developed and fully validated a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for quantification of tigecycline in human lung epithelial (BEAS-2B) cells and polymorphonuclear neutrophils (PMNs). METHODS Tetracycline was used as an internal standard and chromatographic separation was achieved on a C18 Hypersil Gold aQ column using two mobile phases, a solution of water (containing 0.1% formic acid) and acetonitrile. The flow rate was 0.4 mL/min for 5.0 min. Tigecycline drug uptake was evaluated by incubating the BEAS-2B cells and the PMNs for up to 3 h at tigecycline concentrations of 1 mg/L. RESULTS The assay was linear over the tested concentration range of 0.01-2 mg/L for tigecycline in BEAS-2B cells and PMNs (r2 >0.99). The inter- and inter-day precisions (RSD, %) were <10.02% and the accuracies (%) were within the range of 85-115%. The uptake study showed that after incubation with tigecycline (1 mg/L) for 3 h at 37°C, the intracellular peak concentration of BEAS-2B cells was 14.44 ± 7.12 mg/L at 1 h, and 41.43 ± 25.66 mg/L in PMNs at 20 min. The mean intracellular concentrations fluctuated in the range of 0.8-14.44 mg/L in BEAS-2B cells and 10.14-41.43 mg/L in PMNs for 1 mg/L tigecycline exposure. CONCLUSIONS Validated LC/MS/MS is a simple, rapid, and sensitive method for determining the intracellular concentration of tigecycline, and tigecycline has good penetrations both in human BEAS-2B cells and PMNs. The method can be efficiently used for future studies of the intracellular pharmacokinetics of tigecycline.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haitao Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yang Zhao
- Department of Drug Clinical Research Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sha Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kanghuai Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|