1
|
Bagchi S, Sharma AK, Ghosh A, Saha S, Basu J, Kundu M. RegX3-dependent transcriptional activation of kdpDE and repression of rv0500A are linked to potassium homeostasis in Mycobacterium tuberculosis. FEBS J 2024; 291:2242-2259. [PMID: 38414198 DOI: 10.1111/febs.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.
Collapse
Affiliation(s)
- Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Abhirupa Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | |
Collapse
|
2
|
Rapsinski GJ, Michaels LA, Hill M, Yarrington KD, Haas AL, D’Amico EJ, Armbruster CR, Zemke A, Limoli D, Bomberger JM. Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm. PLoS Pathog 2024; 20:e1011453. [PMID: 38820569 PMCID: PMC11168685 DOI: 10.1371/journal.ppat.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.
Collapse
Affiliation(s)
- Glenn J. Rapsinski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
- Division of Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lia A. Michaels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Madison Hill
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison L. Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Emily J. D’Amico
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Anna Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dominique Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| |
Collapse
|
3
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid metabolism regulator. PLoS Genet 2024; 20:e1011143. [PMID: 38266039 PMCID: PMC10843139 DOI: 10.1371/journal.pgen.1011143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Current affiliation: Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Zhang L, Zhang Y, Li Y, Huo F, Chen X, Zhu H, Guo S, Fu L, Wang B, Lu Y. Rv1453 is associated with clofazimine resistance in Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0000223. [PMID: 37615440 PMCID: PMC10580819 DOI: 10.1128/spectrum.00002-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Clofazimine (CFZ) has been repurposed for treating tuberculosis (TB), especially multidrug-resistant tuberculosis (MDR-TB). However, the mechanisms of resistance to clofazimine are poorly understood. We previously reported a mutation located in the intergenic region of Rv1453 that was linked to resistance to CFZ and demonstrated that an Rv1453 knockout resulted in an increased minimum inhibitory concentration (MIC) of CFZ. The current study aims to go back and describe in detail how the mutation was identified and further explore its association with CFZ resistance by testing additional 30 isolates. We investigated MICs of clofazimine against 100 clinical strains isolated from MDR-TB patients by microplate alamarBlue assay. Whole-genome sequencing (WGS) was performed on 11 clofazimine-resistant and 7 clofazimine-susceptible strains, including H37Rv. Among the 11 clofazimine-resistant mutants subjected to WGS, the rate of mutation in the intergenic region of the Rv1453 gene was 55% (6/11) in clofazimine-resistant strains. Among another 30 clofazimine-resistant clinical isolates, 27 had mutations in the intergenic region of the Rv1453 gene. A mutation in the Rv1453 gene associated with clofazimine resistance was identified, which shed light on the mechanisms of action and resistance of clofazimine. IMPORTANCE Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis, especially the emergence of multidrug-resistant tuberculosis (MDR-TB) brings great distress to humans. Clofazimine (CFZ) plays an important role in the treatment of MDR-TB. To understand the underlying mechanism of clofazimine resistance better, in this study, we review and detail the findings of the mutation of intergenic region of Rv1453 and find additional evidence that this mutation is related to clofazimine resistance in 30 additional isolates. The significance of our research is to contribute to a comprehensive understanding of clofazimine-resistant mechanisms, which is critical for reducing the emergence of resistance and for anti-TB drug discovery.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ye Zhang
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xi Chen
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hui Zhu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaochen Guo
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lei Fu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bin Wang
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
5
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid utilization regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554309. [PMID: 37662244 PMCID: PMC10473576 DOI: 10.1101/2023.08.22.554309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
6
|
Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS OMEGA 2023; 8:17362-17380. [PMID: 37251185 PMCID: PMC10210030 DOI: 10.1021/acsomega.2c05511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
The devastating impact of Tuberculosis (TB) has been a menace to mankind for decades. The World Health Organization (WHO) End TB Strategy aims to reduce TB mortality up to 95% and 90% of overall TB cases worldwide, by 2035. This incessant urge will be achieved with a breakthrough in either a new TB vaccine or novel drugs with higher efficacy. However, the development of novel drugs is a laborious process involving a timeline of almost 20-30 years with huge expenditure; on the other hand, repurposing previously approved drugs is a viable technique for overcoming current bottlenecks in the identification of new anti-TB agents. The present comprehensive review discusses the progress of almost all the repurposed drugs that have been identified to the present day (∼100) and are in the development or clinical testing phase against TB. We have also emphasized the efficacy of repurposed drugs in combination with already available frontline anti-TB medications along with the scope of future investigations. This study would provide the researchers a detailed overview of nearly all identified anti-TB repurposed drugs and may assist them in selecting the lead compounds for further in vivo/clinical research.
Collapse
Affiliation(s)
- Khushbu Sharma
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Ahmed
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
7
|
Mashele SA, Steel HC, Matjokotja MT, Rasehlo SSM, Anderson R, Cholo MC. Assessment of the efficacy of clofazimine alone and in combination with primary agents against Mycobacterium tuberculosis in vitro. J Glob Antimicrob Resist 2022; 29:343-352. [PMID: 35339735 DOI: 10.1016/j.jgar.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The chemotherapeutic regimens of drug-susceptible (DS)-tuberculosis (TB) patients comprise four primary anti-TB drugs; rifampicin (RMP), isoniazid (INH), ethambutol (EMB) and pyrazinamide (PZA), administered for six-to-nine months. These drug regimens target the various microbial populations that include actively-replicating (AR), slow-replicating (SR) and non-replicating (NR) organisms. Clofazimine (CFZ) has showed benefit in shortening DS-TB treatment in vivo from six to four months when used in combination with this regimen in murine models of experimental infection. However, its antimicrobial efficacy when used in combination with the primary drugs against the various microbial populations of Mycobacterium tuberculosis has not been demonstrated. METHODS In the current in vitro study, the inhibitory and bactericidal activities of CFZ in combination with the primary anti-TB drugs, RMP, INH and EMB against the AR and SR organisms in planktonic and biofilm-forming cultures, respectively, were evaluated by fractional inhibitory concentration index (FICI) and fractional bactericidal concentration index (FBCI) determinations, using the Loewe Additivity Model. RESULTS In planktonic cultures, CFZ demonstrated synergistic growth inhibitory activity in combination with RMP and INH individually and collectively. With respect to bactericidal activity, CFZ exhibited synergistic activity only in a two-drug combination with RMP. However, in biofilm-forming cultures, all CFZ-containing anti-TB drug combinations exhibited synergistic inhibitory and bactericidal effects, particularly in combination with RIF and INH. CONCLUSION Clofazimine exhibited synergistic effects in combination with primary anti-TB drugs against both planktonic and biofilm-forming cultures, showing potential benefit in augmenting treatment outcome when used during standard TB chemotherapy.
Collapse
Affiliation(s)
- S A Mashele
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - H C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M T Matjokotja
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - S S M Rasehlo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - R Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
8
|
Cholo MC, Matjokotja MT, Osman AG, Anderson R. Role of the kdpDE Regulatory Operon of Mycobacterium tuberculosis in Modulating Bacterial Growth in vitro. Front Genet 2021; 12:698875. [PMID: 34394188 PMCID: PMC8358298 DOI: 10.3389/fgene.2021.698875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteria use K+-uptake transporters differentially for adaptation in varying growth conditions. In Mycobacterium tuberculosis, two K+-uptake systems, the Trk comprising the CeoB and CeoC proteins and the Kdp consisting of the two-component system (TCS), KdpDE and KdpFABC, have been characterized, but their selective utilization during bacterial growth has not been completely explored. In the current study, the roles of the M. tuberculosis KdpDE regulatory system alone and in association with the Trk transporters in bacterial growth were investigated by evaluating the growth of M. tuberculosis KdpDE-deletion and KdpDE/Trk (KT)-double knockout mutant strains in planktonic culture under standard growth conditions. The KT-double knockout mutant strain was first constructed using homologous recombination procedures and was evaluated together with the KdpDE-deletion mutant and the wild-type (WT) strains with respect to their rates of growth, K+-uptake efficiencies, and K+-transporter gene expression during planktonic growth. During growth at optimal K+ concentrations and pH levels, selective deletion of the TCS KdpDE (KdpDE-deletion mutant) led to attenuation of bacterial growth and an increase in bacterial K+-uptake efficiency, as well as dysregulated expression of the kdpFABC and trk genes. Deletion of both the KdpDE and the Trk systems (KT-double knockout) also led to severely attenuated bacterial growth, as well as an increase in bacterial K+-uptake efficiency. These results demonstrate that the KdpDE regulatory system plays a key role during bacterial growth by regulating K+ uptake via modulation of the expression and activities of both the KdpFABC and Trk systems and is important for bacterial growth possibly by preventing cytoplasmic K+ overload.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Maborwa T Matjokotja
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ayman G Osman
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Abstract
Potassium is an essential mineral nutrient required by all living cells for normal physiological function. Therefore, maintaining intracellular potassium homeostasis during bacterial infection is a requirement for the survival of both host and pathogen. However, pathogenic bacteria require potassium transport to fulfill nutritional and chemiosmotic requirements, and potassium has been shown to directly modulate virulence gene expression, antimicrobial resistance, and biofilm formation. Host cells also require potassium to maintain fundamental biological processes, such as renal function, muscle contraction, and neuronal transmission; however, potassium flux also contributes to critical immunological and antimicrobial processes, such as cytokine production and inflammasome activation. Here, we review the role and regulation of potassium transport and signaling during infection in both mammalian and bacterial cells and highlight the importance of potassium to the success and survival of each organism.
Collapse
|
10
|
Fatima S, Bhaskar A, Dwivedi VP. Repurposing Immunomodulatory Drugs to Combat Tuberculosis. Front Immunol 2021; 12:645485. [PMID: 33927718 PMCID: PMC8076598 DOI: 10.3389/fimmu.2021.645485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by an obligate intracellular pathogen, Mycobacterium tuberculosis (M.tb) and is responsible for the maximum number of deaths due to a single infectious agent. Current therapy for TB, Directly Observed Treatment Short-course (DOTS) comprises multiple antibiotics administered in combination for 6 months, which eliminates the bacteria and prevents the emergence of drug-resistance in patients if followed as prescribed. However, due to various limitations viz., severe toxicity, low efficacy and long duration; patients struggle to comply with the prescribed therapy, which leads to the development of drug resistance (DR). The emergence of resistance to various front-line anti-TB drugs urgently require the introduction of new TB drugs, to cure DR patients and to shorten the treatment course for both drug-susceptible and resistant populations of bacteria. However, the development of a novel drug regimen involving 2-3 new and effective drugs will require approximately 20-30 years and huge expenditure, as seen during the discovery of bedaquiline and delamanid. These limitations make the field of drug-repurposing indispensable and repurposing of pre-existing drugs licensed for other diseases has tremendous scope in anti-DR-TB therapy. These repurposed drugs target multiple pathways, thus reducing the risk of development of drug resistance. In this review, we have discussed some of the repurposed drugs that have shown very promising results against TB. The list includes sulfonamides, sulfanilamide, sulfadiazine, clofazimine, linezolid, amoxicillin/clavulanic acid, carbapenems, metformin, verapamil, fluoroquinolones, statins and NSAIDs and their mechanism of action with special emphasis on their immunomodulatory effects on the host to attain both host-directed and pathogen-targeted therapy. We have also focused on the studies involving the synergistic effect of these drugs with existing TB drugs in order to translate their potential as adjunct therapies against TB.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashima Bhaskar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
11
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
12
|
Liu X, Wang C, Yan B, Lyu L, Takiff HE, Gao Q. The potassium transporter KdpA affects persister formation by regulating ATP levels in Mycobacterium marinum. Emerg Microbes Infect 2020; 9:129-139. [PMID: 31913766 PMCID: PMC6968386 DOI: 10.1080/22221751.2019.1710090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycobacterial persistence mechanisms remain to be fully characterized. Screening a transposon insertion library of Mycobacterium marinum identified kdpA, whose inactivation reduced the fraction of persisters after exposure to rifampicin. kdpA encodes a transmembrane protein that is part of the Kdp-ATPase, an ATP-dependent high-affinity potassium (K+) transport system. We found that kdpA is induced under low K+ conditions and is required for pH homeostasis and growth in media with low concentrations of K+. The inactivation of the Kdp system in a kdpA insertion mutant caused hyperpolarization of the cross-membrane potential, increased proton motive force (PMF) and elevated levels of intracellular ATP. The KdpA mutant phenotype could be complemented with a functional kdpA gene or supplementation with high K+ concentrations. Taken together, our results suggest that the Kdp system is required for ATP homeostasis and persister formation. The results also confirm that ATP-mediated regulation of persister formation is a general mechanism in bacteria, and suggest that K+ transporters could play a role in the regulation of ATP levels and persistence. These findings could have implications for the development of new drugs that could either target persisters or reduce their presence.
Collapse
Affiliation(s)
- Xiaofan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Liangdong Lyu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Howard E Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
MacGilvary NJ, Kevorkian YL, Tan S. Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization. PLoS Pathog 2019; 15:e1007591. [PMID: 30716121 PMCID: PMC6375644 DOI: 10.1371/journal.ppat.1007591] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.
Collapse
Affiliation(s)
- Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo L. Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kulkarni A, Sharma AK, Chakrapani H. Redox-guided small molecule antimycobacterials. IUBMB Life 2018; 70:826-835. [DOI: 10.1002/iub.1867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Amogh Kulkarni
- Department of Chemistry; Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road; Pune Maharashtra India
| | - Ajay Kumar Sharma
- Department of Chemistry; Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road; Pune Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry; Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road; Pune Maharashtra India
| |
Collapse
|
15
|
Sharma D, Dhuriya YK, Deo N, Bisht D. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis. Front Microbiol 2017; 8:2452. [PMID: 29321768 PMCID: PMC5732208 DOI: 10.3389/fmicb.2017.02452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and totally drug resistant tuberculosis (TDR-TB) has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yogesh K. Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
16
|
Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, Adcock IM, Garssen J. Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. Front Microbiol 2017; 8:2008. [PMID: 29085351 PMCID: PMC5649180 DOI: 10.3389/fmicb.2017.02008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is globally known as one of the most important human pathogens. Mtb is estimated to infect nearly one third of the world's population with many subjects having a latent infection. Thus, from an estimated 2 billion people infected with Mtb, less than 10% may develop symptomatic TB. This indicates that the host immune system may constrain pathogen replication in most infected individuals. On entering the lungs of the host, Mtb initially encounters resident alveolar macrophages which can engulf and subsequently eliminate intracellular microbes via a plethora of bactericidal mechanisms including the generation of free radicals such as reactive oxygen and nitrogen species. Nitric oxide (NO), a key anti-mycobacterial molecule, is detected in the exhaled breath of patients infected with Mtb. Recent knowledge regarding the regulatory role of NO in airway function and Mtb proliferation paves the way of exploiting the beneficial effects of this molecule for the treatment of airway diseases. Here, we discuss the importance of NO in the pathogenesis of TB, the diagnostic use of exhaled and urinary NO in Mtb infection and the potential of NO-based treatments.
Collapse
Affiliation(s)
- Hamidreza Jamaati
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Zeinab Pajouhi
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Mehrnaz Movassaghi
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| |
Collapse
|
17
|
Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 2016; 72:338-353. [PMID: 27798208 DOI: 10.1093/jac/dkw426] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant (DR)-TB is the major challenge confronting the global TB control programme, necessitating treatment with second-line anti-TB drugs, often with limited therapeutic efficacy. This scenario has resulted in the inclusion of Group 5 antibiotics in various therapeutic regimens, two of which promise to impact significantly on the outcome of the therapy of DR-TB. These are the 're-purposed' riminophenazine, clofazimine, and the recently approved diarylquinoline, bedaquiline. Although they differ structurally, both of these lipophilic agents possess cationic amphiphilic properties that enable them to target and inactivate essential ion transporters in the outer membrane of Mycobacterium tuberculosis. In the case of bedaquiline, the primary target is the key respiratory chain enzyme F1/F0-ATPase, whereas clofazimine is less selective, apparently inhibiting several targets, which may underpin the extremely low level of resistance to this agent. This review is focused on similarities and differences between clofazimine and bedaquiline, specifically in respect of molecular mechanisms of antimycobacterial action, targeting of quiescent and metabolically active organisms, therapeutic efficacy in the clinical setting of DR-TB, resistance mechanisms, pharmacodynamics, pharmacokinetics and adverse events.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Maborwa T Mothiba
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
18
|
Ignatov DV, Salina EG, Fursov MV, Skvortsov TA, Azhikina TL, Kaprelyants AS. Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA. BMC Genomics 2015; 16:954. [PMID: 26573524 PMCID: PMC4647672 DOI: 10.1186/s12864-015-2197-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Background Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K+-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K+ reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. Results RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30–50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This ‘dormant transcriptome’ demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. Conclusions Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2197-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitriy V Ignatov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Elena G Salina
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Mikhail V Fursov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Timofey A Skvortsov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation. .,Current address: The Queen's University of Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Arseny S Kaprelyants
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| |
Collapse
|
19
|
Expression of the Genes Encoding the Trk and Kdp Potassium Transport Systems of Mycobacterium tuberculosis during Growth In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:608682. [PMID: 26351637 PMCID: PMC4553272 DOI: 10.1155/2015/608682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/18/2022]
Abstract
Two potassium (K(+))-uptake systems, Trk and Kdp, are operative in Mycobacterium tuberculosis (Mtb), but the environmental factors triggering their expression have not been determined. The current study has evaluated the expression of these genes in the Mtb wild-type and a trk-gene knockout strain at various stages of logarithmic growth in relation to extracellular K(+) concentrations and pH. In both strains, mRNA levels of the K(+)-uptake encoding genes were relatively low compared to those of the housekeeping gene, sigA, at the early- and mid-log phases, increasing during late-log. Increased gene expression coincided with decreased K(+) uptake in the context of a drop in extracellular pH and sustained high extracellular K(+) concentrations. In an additional series of experiments, the pH of the growth medium was manipulated by the addition of 1N HCl/NaOH. Decreasing the pH resulted in reductions in both membrane potential and K(+) uptake in the setting of significant induction of genes encoding both K(+) transporters. These observations are consistent with induction of the genes encoding the active K(+) transporters of Mtb as a strategy to compensate for loss of membrane potential-driven uptake of K(+) at low extracellular pH. Induction of these genes may promote survival in the acidic environments of the intracellular vacuole and granuloma.
Collapse
|
20
|
Crystal structure of a two-subunit TrkA octameric gating ring assembly. PLoS One 2015; 10:e0122512. [PMID: 25826626 PMCID: PMC4380455 DOI: 10.1371/journal.pone.0122512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022] Open
Abstract
The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K+ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K+ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K+ ions across the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K+ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K+ gating ring assemblies.
Collapse
|
21
|
Xu S, Pan X, Luo J, Wu J, Zhou Z, Liang X, He Y, Zhou M. Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 117:39-46. [PMID: 25619910 DOI: 10.1016/j.pestbp.2014.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 05/21/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the casual agent of bacterial blight, which is one of the most serious diseases of rice. The antibiotic phenazine-1-carboxylic acid (PCA), which is primarily produced by Pseudomonas spp., was found and previously reported very effective against Xoo. However, the biological effects of PCA on Xoo remain unclear. In this study, we found that PCA increased the accumulation of reactive oxygen species (ROS) and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) in Xoo. Xoo was more sensitive to H2O2 than Xanthomonas oryzae pv. oryzicola (Xoc), and had a much lower expression of CAT genes. In addition, proteomic analysis indicated that PCA inhibited carbohydrate metabolism and nutrient uptake in Xoo, and analysis of carbon source utilization further confirmed that carbohydrate metabolism in Xoo was repressed by PCA. In conclusion, PCA acted as a redox-cycling agent that disturbed the redox balance in Xoo and reduced CAT and SOD activities, resulting in higher accumulation of ROS, altered carbohydrate metabolism, and lower energy production and nutrient uptake. Moreover, a deficient antioxidant system in Xoo made it very sensitive to PCA.
Collapse
Affiliation(s)
- Shu Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China
| | - Jianying Luo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China
| | - Zehua Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China
| | - Xiaoyu Liang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China
| | - Yawen He
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Pesticide, Nanjing Agricultural University, Jiangsu Province, China.
| |
Collapse
|
22
|
Effects of clofazimine on planktonic and biofilm growth of Mycobacterium tuberculosis and Mycobacterium smegmatis. J Glob Antimicrob Resist 2014; 3:13-18. [PMID: 27873644 DOI: 10.1016/j.jgar.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria form lipid-rich biofilms that restrict the efficacy of antimicrobial chemotherapy, possibly necessitating the use of lipophilic antibiotics. In the current study, the activity of one such agent, clofazimine, against Mycobacterium tuberculosis and Mycobacterium smegmatis planktonic cells and biofilms was investigated. Minimum inhibitory concentrations (MICs) of clofazimine were determined for planktonic cultures, whilst minimum bactericidal concentrations (MBCs) were determined for planktonic, biofilm-producing and biofilm-encased organisms using standard bacteriological procedures. The effects of clofazimine on biofilm formation and the stability of pre-formed biofilm were measured using a crystal violet-based spectrophotometric procedure. In the case of M. smegmatis, clofazimine was found to be active against planktonic phase (MICs and MBCs of 2.5mg/L and >20mg/L, respectively) and biofilm-producing organisms (MBC of 2.5mg/L); clofazimine demonstrated greater activity against M. tuberculosis, corresponding values of 0.06, 5 and 0.3mg/L. Although clofazimine inhibited biofilm production both by M. tuberculosis and M. smegmatis (P<0.05 at ≥0.07mg/L and ≥0.3mg/L, respectively) and appeared to reduce the pre-formed M. tuberculosis biofilm, addition of antimicrobial agent to pre-existing biofilm matrices failed to kill biofilm-encased organisms. In conclusion, clofazimine is more effective against M. tuberculosis than against M. smegmatis, exhibiting bactericidal activity both for actively growing and slowly replicating bacilli but not for non-replicating organisms of both species.
Collapse
|
23
|
Salina EG, Waddell SJ, Hoffmann N, Rosenkrands I, Butcher PD, Kaprelyants AS. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biol 2014; 4:140106. [PMID: 25320096 PMCID: PMC4221891 DOI: 10.1098/rsob.140106] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection.
Collapse
Affiliation(s)
- Elena G Salina
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadine Hoffmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Philip D Butcher
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Arseny S Kaprelyants
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| |
Collapse
|
24
|
Kerns PW, Ackhart DF, Basaraba RJ, Leid JG, Shirtliff ME. Mycobacterium tuberculosis pellicles express unique proteins recognized by the host humoral response. Pathog Dis 2014; 70:347-58. [PMID: 24453174 DOI: 10.1111/2049-632x.12142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) causes both acute and chronic infections in humans characterized by tolerance to antibiotics and reactivation to cause secondary tuberculosis. These characteristics have led to renewed interest in the in vitro pellicle, or biofilm mode of growth, where bacteria grow to produce a thick aggregate at the air-liquid interface and exhibit increased phenotypic resistance to antibiotics. We infected guinea pigs with the virulent H37Rv strain of MTB for 60 days at which point we collected blood. To identify antigenic proteins, membrane protein extracts of MTB H37Ra pellicles and shaken cultures grown for 3, 5, or 7 weeks were probed with the infected animals' sera after the proteins were separated by two-dimensional gel electrophoresis (2DGE). Antigenic proteins were then identified using MALDI-TOF/TOF mass spectrometry peptide mass fingerprinting. Antigenic pellicle proteins were compared across the three timepoints to identify those that were produced consistently during pellicle growth. They were also compared to those membrane proteins identified from harvested shaken cultures to determine pellicle-specific vs. universally expressed proteins. Using this technique, we identified 44 distinct antigenic proteins, nine of which were pellicle-specific. The sequence of antigenic pellicle-specific proteins was checked for sequence conservation across 15 sequenced MTB clinical isolates, three other members of the MTB complex, as well as M. avium and M. smegmatis. The antigenic pellicle-specific protein Rv0097 was found to have very high sequence conservation within the MTB complex but not with related mycobacteria, while FabG4 was highly conserved in all mycobacteria analyzed. These conserved pellicle-specific proteins represent targets for the development of future diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Patrick W Kerns
- Graduate Program in Molecular Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
25
|
Alvin A, Miller KI, Neilan BA. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 2014; 169:483-95. [PMID: 24582778 PMCID: PMC7126926 DOI: 10.1016/j.micres.2013.12.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/03/2022]
Abstract
Natural product drug discovery has regained interest due to low production costs, structural diversity, and multiple uses of active compounds to treat various diseases. Attention has been directed towards medicinal plants as these plants have been traditionally used for generations to treat symptoms of numerous diseases. It is established that plants harbour microorganisms, collectively known as endophytes. Exploring the as-yet untapped natural products from the endophytes increases the chances of finding novel compounds. The concept of natural products targeting microbial pathogens has been applied to isolate novel antimycobacterial compounds, and the rapid development of drug-resistant Mycobacterium tuberculosis has significantly increased the need for new treatments against this pathogen. It remains important to continuously screen for novel compounds from natural sources, particularly from rarely encountered microorganisms, such as the endophytes. This review focuses on bioprospecting for polyketides and small peptides exhibiting antituberculosis activity, although current treatments against tuberculosis are described. It is established that natural products from these structure classes are often biosynthesised by microorganisms. Therefore it is hypothesised that some bioactive polyketides and peptides originally isolated from plants are in fact produced by their endophytes. This is of interest for further endophyte natural product investigations.
Collapse
Affiliation(s)
- Alfonsus Alvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristin I Miller
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Grosset JH, Tyagi S, Almeida DV, Converse PJ, Li SY, Ammerman NC, Bishai WR, Enarson D, Trébucq A. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 2013; 188:608-12. [PMID: 23822735 PMCID: PMC3827279 DOI: 10.1164/rccm.201304-0753oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/29/2013] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although observational studies suggest that clofazimine-containing regimens are highly active against drug-resistant tuberculosis, the contribution of clofazimine for the treatment of this disease has never been systematically evaluated. OBJECTIVES Our goal was to directly compare the activity of a standard second-line drug regimen with or without the addition of clofazimine in a mouse model of multidrug-resistant tuberculosis. Our comparative outcomes included time to culture conversion in the mouse lungs and the percentage of relapses after treatment cessation. METHODS Mice were aerosol-infected with an isoniazid-resistant (as a surrogate of multidrug-resistant) strain of Mycobacterium tuberculosis. Treatment, which was administered for 5 to 9 months, was initiated 2 weeks after infection and comprised the following second-line regimen: daily (5 d/wk) moxifloxacin, ethambutol, and pyrazinamide, supplemented with amikacin during the first 2 months. One-half of the mice also received daily clofazimine. The decline in lung bacterial load was assessed monthly using charcoal-containing agar to reduce clofazimine carryover. Relapse was assessed 6 months after treatment cessation. MEASUREMENTS AND MAIN RESULTS After 2 months, the bacillary load in lungs was reduced from 9.74 log10 at baseline to 3.61 and 4.68 in mice treated with or without clofazimine, respectively (P < 0.001). Mice treated with clofazimine were culture-negative after 5 months, whereas all mice treated without clofazimine remained heavily culture-positive for the entire 9 months of the study. The relapse rate was 7% among mice treated with clofazimine for 8 to 9 months. CONCLUSIONS The clofazimine contribution was substantial in these experimental conditions.
Collapse
Affiliation(s)
- Jacques H Grosset
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Considerations on clinical trials of leprosy treatment: need of novel drug combinations. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/cli.13.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Liu Y, Ho KK, Su J, Gong H, Chang AC, Lu S. Potassium transport of Salmonella is important for type III secretion and pathogenesis. MICROBIOLOGY-SGM 2013; 159:1705-1719. [PMID: 23728623 DOI: 10.1099/mic.0.068700-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K(+)), sodium ion (Na(+)) and proton (H(+)) are involved in nearly all aspects of bacterial growth and survival. K(+) is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K(+) transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk. Previous studies have demonstrated the roles of cations and cation transport in the physiology of Escherichia coli; their roles in the virulence and physiology of pathogenic bacteria are not well characterized. We have previously reported that the Salmonella K(+) transporter Trk is important for the secretion of effector proteins of the type III secretion system (TTSS) of Salmonella pathogenicity island 1 (SPI-1). Here we further explore the role of Salmonella cation transport in virulence in vitro and pathogenesis in animal models. Impairment of K(+) transport through deletion of K(+) transporters or exposure to the chemical modulators of cation transport, gramicidin and valinomycin, results in a severe defect in the TTSS of SPI-1, and this defect in the TTSS was not due to a failure to regulate intrabacterial pH or ATP. Our results also show that K(+) transporters are critical to the pathogenesis of Salmonella in mice and chicks and are involved in multiple growth and virulence characteristics in vitro, including protein secretion, motility and invasion of epithelial cells. These results suggest that cation transport of the pathogenic bacterium Salmonella, especially K(+) transport, contributes to its virulence in addition to previously characterized roles in maintaining homeostasis of bacteria.
Collapse
Affiliation(s)
- Yehao Liu
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katharina Kim Ho
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jing Su
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Alexander C Chang
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother 2012; 56:6324-7. [PMID: 23027189 DOI: 10.1128/aac.01505-12] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disease caused by nontuberculous mycobacteria (NTM) is increasing in frequency. The outcome of treatment for NTM lung disease is poor, particularly lung disease caused by Mycobacterium simiae and M. abscessus. Exploring synergy between active available drugs is a sensible way forward given the lack of new active drugs. We tested for synergy between amikacin and clofazimine, using standardized methods, in 564 consecutive clinical isolates identified as 21 species of rapidly growing mycobacteria, 16 clinical M. avium complex isolates, and 10 M. simiae isolates. Clofazimine and amikacin are each active in vitro against NTM; 97% (n = 548) of the rapid growers revealed MICs of clofazimine of ≤1 μg/ml, and 93% (n = 524) proved susceptible to amikacin. The combination showed significant synergistic activity in 56 of 68 (82%) eligible M. abscessus isolates, 4 of 5 M. chelonae isolates, and 1 M. fortuitum and 1 M. cosmeticum isolate, with 4- to 8-fold decreases in MICs to both drugs. Significant synergy could also be demonstrated against all M. avium complex and M. simiae isolates, with fractional inhibitory concentrations of <0.5. Clofazimine and amikacin show significant synergistic activity against both rapidly and slowly growing nontuberculous mycobacteria. The safety and tolerability of adding clofazimine to amikacin-containing regimens should be tested in clinical trials, and the results of susceptibility tests for these two compounds and their combination merit clinical validation. Synergy between clofazimine and other antibiotics with intracellular targets should be explored.
Collapse
|
30
|
Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. J Antimicrob Chemother 2011; 67:290-8. [PMID: 22020137 DOI: 10.1093/jac/dkr444] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clofazimine, a lipophilic riminophenazine antibiotic, possesses both antimycobacterial and anti-inflammatory activities. However, its efficacy has been demonstrated only in the treatment of leprosy, not in human tuberculosis, despite the fact that this agent is impressively active in vitro against multidrug-resistant strains of Mycobacterium tuberculosis. Recent insights into novel targets and mechanisms of antimicrobial and anti-inflammatory activity coupled with the acquisition of innovative drug delivery technologies have, however, rekindled interest in clofazimine as a potential therapy for multidrug- and extensively multidrug-resistant tuberculosis in particular, as well as several autoimmune diseases. The primary objective of this review is to critically evaluate these recent developments and to assess their potential impact on improving the therapeutic efficacy and versatility of clofazimine.
Collapse
Affiliation(s)
- Moloko C Cholo
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
31
|
Benito B, Garciadeblás B, Fraile-Escanciano A, Rodríguez-Navarro A. Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genet Biol 2011; 48:812-22. [DOI: 10.1016/j.fgb.2011.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
32
|
Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 2011; 286:10276-87. [PMID: 21193400 PMCID: PMC3060482 DOI: 10.1074/jbc.m110.200501] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/23/2010] [Indexed: 11/06/2022] Open
Abstract
The mechanism of action of clofazimine (CFZ), an antimycobacterial drug with a long history, is not well understood. The present study describes a redox cycling pathway that involves the enzymatic reduction of CFZ by NDH-2, the primary respiratory chain NADH:quinone oxidoreductase of mycobacteria and nonenzymatic oxidation of reduced CFZ by O(2) yielding CFZ and reactive oxygen species (ROS). This pathway was demonstrated using isolated membranes and purified recombinant NDH-2. The reduction and oxidation of CFZ was measured spectrally, and the production of ROS was measured using a coupled assay system with Amplex Red. Supporting the ROS-based killing mechanism, bacteria grown in the presence of antioxidants are more resistant to CFZ. CFZ-mediated increase in NADH oxidation and ROS production were not observed in membranes from three different Gram-negative bacteria but was observed in Staphylococcus aureus and Saccharomyces cerevisiae, which is consistent with the known antimicrobial specificity of CFZ. A more soluble analog of CFZ, KS6, was synthesized and was shown to have the same activities as CFZ. These studies describe a pathway for a continuous and high rate of reactive oxygen species production in Mycobacterium smegmatis treated with CFZ and a CFZ analog as well as evidence that cell death produced by these agents are related to the production of these radical species.
Collapse
Affiliation(s)
| | | | | | - Jeffrey Winkler
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kevin Sullivan
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andre Isaacs
- Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Harvey Rubin
- From the Departments of Medicine
- Biochemistry and Biophysics, and
| |
Collapse
|
33
|
Marriner GA, Nayyar A, Uh E, Wong SY, Mukherjee T, Via LE, Carroll M, Edwards RL, Gruber TD, Choi I, Lee J, Arora K, England KD, Boshoff HIM, Barry CE. The Medicinal Chemistry of Tuberculosis Chemotherapy. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
34
|
Magnet S, Hartkoorn RC, Székely R, Pató J, Triccas JA, Schneider P, Szántai-Kis C, Orfi L, Chambon M, Banfi D, Bueno M, Turcatti G, Kéri G, Cole ST. Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinb) 2010; 90:354-60. [PMID: 20934382 DOI: 10.1016/j.tube.2010.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/27/2022]
Abstract
Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find antimycobacterial scaffolds, we screened a kinase inhibitor library of more than 12,000 compounds using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and a target-based assay with the protein kinase PknA. Seventeen "hits" came from the whole cell-based screening approach, from which three displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10μM and were non-mutagenic and non-cytotoxic. Two of these hits were specific for M. tuberculosis versus C. glutamicum and none of them was found to inhibit the essential serine/threonine protein kinases, PknA and PknB present in both bacteria. One of the most active hits, VI-18469, had a benzoquinoxaline pharmacophore while another, VI-9376, is structurally related to a new class of antimycobacterial agents, the benzothiazinones (BTZ). Like the BTZ, VI-9376 was shown to act on the essential enzyme decaprenylphosphoryl-β-D-ribose 2'-epimerase, DprE1, required for arabinan synthesis.
Collapse
Affiliation(s)
- Sophie Magnet
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The Thermotoga maritima Trk potassium transporter--from frameshift to function. J Bacteriol 2009; 191:2276-84. [PMID: 19168617 DOI: 10.1128/jb.01367-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene for the Thermotoga maritima Trk potassium transporter component TrkA was originally thought to be a frameshift mutation and not to encode a functional protein. However, expression from this gene yielded a complex consisting of two distinct proteins designated TM1088A and -B. Genetic complementation of Escherichia coli mutants unable to transport potassium suggests that TM1088A/B is part of a functional Trk potassium transporter complex with the membrane protein TM1089. The protein structure for TM1088A shows a characteristic Rossmann fold indicating an NAD+ binding site and has structural similarity to potassium channel-related proteins. Ligand binding studies indicated that ATP, ADP, and AMP stabilized TM1088A to a much greater degree than NADH and NAD, consistent with the crystal structure of TM1088A, which contains a bound AMP natural ligand at the characteristic GXGXXG nucleotide binding site. Mutation of single and all glycines at this nucleotide binding site eliminated in vitro protein stabilization by the ligand, yet these mutated proteins could still functionally complement the E. coli potassium uptake mutants. We predict that this new two-subunit class of TrkA proteins is present in a number of organisms. A further subclass of the predicted two-subunit TrkA proteins lack an identifiable membrane-spanning subunit of the Trk K+ transporter. This class, as exemplified by Mycobacterium tuberculosis, did not complement E. coli potassium transport with the native E. coli TrkH; thus, it may require a novel TrkH-like protein for activity or provide an alternate function in vivo.
Collapse
|
36
|
|
37
|
Parker SK, Curtin KM, Vasil ML. Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase. J Bacteriol 2007; 189:4153-60. [PMID: 17416658 PMCID: PMC1913378 DOI: 10.1128/jb.01909-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe mycobacterial phospholipase A activity (MPLA) and, using reverse genetics, have associated this activity with putative mycobacterial cutinase. PLAs, which hydrolyze fatty acids on phospholipids, play a significant role in human inflammatory states and disease pathogenesis. In prokaryotes, the recognition of their role in virulence is more recent. Cutinases are serine esterases whose primary substrate is cutin, the waxy exterior layer of plants. Mycobacterium tuberculosis has maintained seven putative cutinases, though it should not encounter cutin; we demonstrate that known cutinases and MPLA cleave phospholipids in a PLA-type manner and also hydrolyze Tween. We analyzed cutinase motifs in mycobacteria and found the motif very prevalent. All mycobacteria tested had MPLA activity. These studies suggest an alternative use for putative cutinases by the M. tuberculosis group that is likely related to MPLA activity and lipid metabolism.
Collapse
Affiliation(s)
- Sarah K Parker
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| | | | | |
Collapse
|