1
|
Lei Z, Liu Q, Ma Y, Yang X, Zu H, Li Z, Zhang F, Pu D, Zhang Y, Lu B. In-vitro antimicrobial activity of new antimicrobial agents against Streptococcus pneumoniae and potential resistance mechanisms: a multicenter study. BMC Microbiol 2025; 25:255. [PMID: 40295931 PMCID: PMC12036140 DOI: 10.1186/s12866-025-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of invasive and non-invasive diseases, particularly in children and immunocompromised individuals, with an annual mortality of approximately 800,000 children worldwide. The rise of antibiotic-resistant strains complicates treatment, especially with increasing resistance to penicillin, macrolides, and fluoroquinolones. The study on the resistance of newly developed antimicrobial agents against S. pneumoniae was rarely reported. Furthermore, understanding the relationship between serotypes, resistance mechanisms, and virulence in S. pneumoniae is essential for disease management and vaccine development. METHODS A total of 208 S. pneumoniae isolates were collected across nine hospitals in seven Chinese cities/provinces from January 2023 to June 2024. Molecular characteristics were analyzed using whole-genome sequencing to identify serotypes, sequence types, virulence genes, and potential resistance mechanisms. Antibiotic susceptibility test (AST) was performed against 14 agents, involving new antibiotics (eravacycline, omadacycline, nemonoxacin, and contezolid). RESULTS Serotypes 19 F (24.6%) and 23 F (11.1%) predominated, with vaccine coverage rates of PCV13 at 66.8%. High resistance rates in S. pneumoniae were observed for erythromycin (208/208, 100%), clindamycin (197/208, 94.7%), and tetracycline (192/208, 92.3%). 13.5% (28/208) and 2.9% (6/208) strains were intermediate and resistant to penicillin, respectively. The new antibiotics showed low resistance, namely, 1.9% (4/208), 0.5% (1/208), 1.9% (4/208), and 7.2% (15/208) resistant to eravacycline, omadacycline, contezolid, and nemonoxacin, respectively. Resistance mechanisms included mutations in 23S rRNA for oxazolidinones, tet genes for tetracyclines, and gyrA/parC for fluoroquinolones. CONCLUSIONS S. pneumoniae in China exhibits high genetic diversity and significant antibiotic resistance, underscoring the need for continuous surveillance and updated vaccines. New antibiotics remain effective against multidrug-resistant strains, offering potential treatment options in clinical settings.
Collapse
Affiliation(s)
- Zichen Lei
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Liu
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiqun Ma
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Zu
- Capital Medical University-YanJing Medical School, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feilong Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongya Pu
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Binghuai Lu
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
2
|
Huang C, Lin L, Kuo S. Comparing the Outcomes of Cefoperazone/Sulbactam-Based and Non-Cefoperazone/Sulbactam-Based Therapeutic Regimens in Patients with Multiresistant Acinetobacter baumannii Infections-A Meta-Analysis. Antibiotics (Basel) 2024; 13:907. [PMID: 39335080 PMCID: PMC11428705 DOI: 10.3390/antibiotics13090907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The addition of sulbactam restores the complete range of cefoperazone activity against bacteria and extends its spectrum of action to include the Acinetobacter species. The effectiveness of cefoperazone/sulbactam against multiresistant Acinetobacter baumannii has not been investigated. The purpose of the current meta-analysis was to compare the efficacy of cefoperazone/sulbactam-based therapeutic regimens and non-cefoperazone/sulbactam-based therapeutic regimens in the treatment of multiresistant Acinetobacter baumannii infections. The current meta-analysis of 10 retrospective studies provides evidence that cefoperazone/sulbactam-based therapeutic regimens are superior to non-cefoperazone/sulbactam-based therapeutic regimens in terms of 30-day mortality and clinical improvement in patients with multiresistant Acinetobacter baumannii infections. The risk of mortality was reduced by 38% among multiresistant Acinetobacter baumannii infections in patients who received cefoperazone/sulbactam-based therapeutic regimens. The cefoperazone/sulbactam-based combination therapy was superior to the cefoperazone/sulbactam monotherapy in terms of 30-day mortality when both therapeutic regimens were compared to the tigecycline monotherapy in patients with multiresistant Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Lichen Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Sufang Kuo
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
3
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
4
|
Park G, Yun H, Min HJ, Lee CW. A Novel Dimeric Short Peptide Derived from α-Defensin-Related Rattusin with Improved Antimicrobial and DNA-Binding Activities. Biomolecules 2024; 14:659. [PMID: 38927062 PMCID: PMC11201828 DOI: 10.3390/biom14060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rattusin, an α-defensin-related antimicrobial peptide isolated from the small intestine of rats, has been previously characterized through NMR spectroscopy to elucidate its three-dimensional structure, revealing a C2 homodimeric scaffold stabilized by five disulfide bonds. This study aimed to identify the functional region of rattusin by designing and synthesizing various short analogs, subsequently leading to the development of novel peptide-based antibiotics. The analogs, designated as F1, F2, F3, and F4, were constructed based on the three-dimensional configuration of rattusin, among which F2 is the shortest peptide and exhibited superior antimicrobial efficacy compared to the wild-type peptide. The central cysteine residue of F2 prompted an investigation into its potential to form a dimer at neutral pH, which is critical for its antimicrobial function. This activity was abolished upon the substitution of the cysteine residue with serine, indicating the necessity of dimerization for antimicrobial action. Further, we synthesized β-hairpin-like analogs, both parallel and antiparallel, based on the dimeric structure of F2, which maintained comparable antimicrobial potency. In contrast to rattusin, which acts by disrupting bacterial membranes, the F2 dimer binds directly to DNA, as evidenced by fluorescence assays and DNA retardation experiments. Importantly, F2 exhibited negligible cytotoxicity up to 515 μg/mL, assessed via hemolysis and MTT assays, underscoring its potential as a lead compound for novel peptide-based antibiotic development.
Collapse
Affiliation(s)
- Gwansik Park
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (G.P.); (H.Y.)
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (G.P.); (H.Y.)
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women’s University, Gwangju 62396, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (G.P.); (H.Y.)
| |
Collapse
|
5
|
Shi S, Xu M, Zhao Y, Feng L, Liu Q, Yao Z, Sun Y, Zhou T, Ye J. Tigecycline-Rifampicin Restrains Resistance Development in Carbapenem-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:1858-1866. [PMID: 37669401 DOI: 10.1021/acsinfecdis.3c00186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The goal of this study was to clarify the synergistic antibacterial activity of the combination of tigecycline (TGC) and rifampicin (RIF). Additionally, the study sought to investigate the impact of this combination on the development of mutational resistance and to assess its efficacy in an in vivo model using Galleria mellonella. Through a checkerboard test, we found that the combination of TGC and RIF showed synergistic antibacterial activity against carbapenem-resistant Klebsiella pneumoniae (CRKP). The fractional inhibition concentration index (FICI) was found to be ≤0.5, confirming the potency of the combination. Additionally, this synergistic effect was further validated in vivo using the G. mellonella infection model. TGC-RIF treatment had a lower mutant prevention concentration (MPC) than that of monotherapy, indicating its potential to reduce the development of mutational resistance. We observed a substantial variation in the MPCs of TGC and RIF when they were measured at different proportions in the combinations. Furthermore, during the resistant mutant selection window (MSW) test, we noticed a correlation between strains with low FICI and low MSW. The expression of efflux-pump-related genes, namely rarA and acrB, is significantly decreased in the combination therapy group. This indicates that altered expression levels of certain efflux pump regulator genes are associated with a combined decrease in bacterial mutation resistance. In conclusion, the combination of TGC and RIF effectively suppresses antibiotic resistance selection in CRKP. This study establishes a paradigm for evaluating drug-resistant mutant suppression in antimicrobial combination therapy.
Collapse
Affiliation(s)
- Shiyi Shi
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| |
Collapse
|
6
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Sodeifian F, Zangiabadian M, Arabpour E, Kian N, Yazarlou F, Goudarzi M, Centis R, Seghatoleslami ZS, Kameh MC, Danaei B, Goudarzi H, Nasiri MJ, Sotgiu G, Migliori GB. Tigecycline-Containing Regimens and Multi Drug-Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Microb Drug Resist 2023. [PMID: 37192494 DOI: 10.1089/mdr.2022.0248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Introduction: The use of tigecycline (TG) for the treatment of Acinetobacter baumannii is controversial. In this systematic review and meta-analysis, we aimed to better explore the safety and efficacy of TG for the treatment of multi drug-resistant (MDR) Acinetobacter. Methods: We searched PubMed/MEDLINE, Scopus, Cochrane Central, and Web of Science to identify studies reporting the clinical and microbiological efficacy and safety of regimens containing TG in patients with drug susceptibility testing (DST)-confirmed MDR A. baumannii, published until December 30, 2022. Observational studies were included if they reported clinical and microbiological efficacy of TG-based regimens. The Newcastle-Ottawa Scale (NOS) and Joana Briggs Institute (JBI) critical appraisal tool were used to assess the quality of included studies. Results: There were 30 observational studies, of which 19 studies were cohort and 11 studies were single group studies. Pooled clinical response and failure rates in the TG-containing regimens group were 58.1 (95% confidence interval [CI] 49.2-66.6) and 40.2 (95% CI 31.1-50.0), respectively. The pooled microbiological response rate was 32.1 (95% CI 19.8-47.5), and the pooled all-cause mortality rate was 41.1 (95% CI 34.1-48.4). Pooled clinical response and failure rates in the colistin-based regimens group were 52.7 (42.7-62.5) and 43.1 (33.1-53.8), respectively. The pooled microbiological response rate was 42.9 (16.2-74.5), and the pooled all-cause mortality rate was 34.3 (26.1-43.5). Conclusions: According to our results, the efficacy of the TG-based regimen is the same as other antibiotics. However, our study showed a high mortality rate and a lower rate of microbiological eradication for TG compared with colistin-based regimen. Therefore, our study does not recommend it for the treatment of MDR A. baumannii. However, this was a prevalence meta-analysis of observational studies, and for better conclusion experimental studies are required.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Zangiabadian
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Erfan Arabpour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Kian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fartous Yazarlou
- Department of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | | | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
8
|
Yu Y, Shao C, Gong X, Quan H, Liu D, Chen Q, Chu Y. Antimicrobial Resistance Surveillance of Tigecycline-Resistant Strains Isolated from Herbivores in Northwest China. Microorganisms 2022; 10:microorganisms10122432. [PMID: 36557685 PMCID: PMC9784582 DOI: 10.3390/microorganisms10122432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
There is no doubt that antimicrobial resistance (AMR) is a global threat to public health and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates from herbivores in northwest China. In this study, a total of 300 samples were collected from various provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained. In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then sequences were blasted against the AMR gene database and virulence factor database. Several resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone resistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A, and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E) in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention strategies, as well as multifaceted intervention strategies.
Collapse
Affiliation(s)
- Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Changchun Shao
- Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Heng Quan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghui Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (Q.C.); (Y.C.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (Q.C.); (Y.C.)
| |
Collapse
|
9
|
Serendipitous identification of phenylhydrazine derivatives as potent inhibitors of carbapenem-resistant Acinetobacter baumannii. Future Med Chem 2022; 14:1621-1634. [PMID: 36326019 DOI: 10.4155/fmc-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: In the authors' previous study, 4-(2-((3-methyl-4-oxo-2-thioxo/dioxothiazolidin-5-ylidene) methyl) hydrazineyl) benzonitriles were found to demonstrate potent antibacterial activity against Acinetobacter baumannii. Interestingly, the aforementioned compounds contain a 4-cyanophenylhydrazine motif. Materials & methods: Intrigued by this observation, the authors focused on preparing a library of 4-cyanophenylhydrazine derivatives and studied their detailed antibacterial potential. Results: This study led to the identification of a 4-cyanophenylhydrazine with potent inhibitory activity against carbapenem-resistant A. baumannii BAA-1605, with minimum inhibitory concentration (MIC) of 0.25 μg/ml and highest selectivity index of 640. The compound also demonstrated potent inhibition against multidrug-resistant A. baumannii isolates (MIC: 0.25-1 μg/ml). Conclusion: The identified 4-cyanophenylhydrazine compound exhibited synergistic activity with amikacin, tobramycin and polymyxin B against carbapenem-resistant A. baumannii BAA-1605.
Collapse
|
10
|
Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg Microbes Infect 2021; 10:1404-1417. [PMID: 34170209 PMCID: PMC8274536 DOI: 10.1080/22221751.2021.1948804] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Seok H, Choi WS, Lee S, Moon C, Park DW, Song JY, Cheong HJ, Kim J, Kim JY, Park MN, Kim YR, Lee HJ, Kim B, Pai H, Jo YM, Kim JH, Sohn JW. What is the optimal antibiotic treatment strategy for carbapenem-resistant Acinetobacter baumannii (CRAB)? A multicentre study in Korea. J Glob Antimicrob Resist 2021; 24:429-439. [PMID: 33571708 DOI: 10.1016/j.jgar.2021.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES The optimal treatment option for carbapenem-resistant Acinetobacter baumannii (CRAB) is still limited. This study investigated the efficacy of three or more antibiotic types and regimens for treatment of CRAB infection in high CRAB endemic areas. METHODS A multicentre retrospective study was conducted to evaluate the efficacy of treatment types and regimens of CRAB infections in 10 tertiary hospitals in the Republic of Korea. The outcomes comprised 7-day and 28-day mortality, and clinical and microbiological responses at 7 days, 28 days, and the end of treatment. Nephrotoxicity and hepatotoxicity were evaluated as drug adverse reactions. RESULTS A total of 282 patients were included in the study. Among the CRAB strains, the two most susceptible antibiotics were colistin (99.6%) and minocycline (80.4%). A combination of colistin and carbapenem significantly reduced 7-day mortality, and a sulbactam-containing regimen significantly reduced 28-day mortality. Colistin monotherapy was significantly associated with increased 7-day and 28-day mortality. A minocycline-containing regimen showed the best microbiological responses at 7 days, 28 days, and the end of treatment. Colistin and tigecycline were associated with increased nephrotoxicity and hepatotoxicity, respectively. Subgroup analysis of patients with pneumonia showed similar results to the overall CRAB infection. CONCLUSIONS A combination of colistin and carbapenem and sulbactam-containing regimen may contribute improved mortality in CRAB infections. Colistin monotherapy should be considered cautiously in severe CRAB infections or CRAB pneumonia. A minocycline-containing regimen showed the best microbiological responses, and further studies may be needed to evaluate improved mortality.
Collapse
Affiliation(s)
- Hyeri Seok
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Shinwon Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chisook Moon
- Division of Infectious Diseases, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Dae Won Park
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jieun Kim
- Division of Infectious Diseases, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jin Yong Kim
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Mi Na Park
- Infection Control Office, Incheon Medical Center, Incheon, Republic of Korea
| | - Yang Ree Kim
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo-Jin Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bongyoung Kim
- Division of Infectious Diseases, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyunjoo Pai
- Division of Infectious Diseases, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yu Mi Jo
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong Hun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jang Wook Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Susceptibility Testing of Colistin for Acinetobacter baumannii: How Far Are We from the Truth? Antibiotics (Basel) 2021; 10:antibiotics10010048. [PMID: 33466515 PMCID: PMC7824894 DOI: 10.3390/antibiotics10010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is involved in life-threatening nosocomial infections, mainly in the intensive care units (ICUs), and often colistin may represent the last therapeutic opportunity. The susceptibility to colistin of 51 epidemiologically typed A. baumannii strains isolated in 2017 from clinical samples of patients hospitalized in the ICU of a tertiary care academic hospital was investigated. All isolates were carbapenem-resistant due to the presence of the blaOXA-23 gene in sequence group 1 (international clonal lineage II) and sequence group 4 (related to international clonal lineage II) isolates, and to the blaOXA-24/40 gene in sequence group 2 (international clonal lineage I) isolates. Vitek®2, agar diffusion, and broth microdilution tests showed major discordancy (≥2 dilution factors) in the minimum inhibitory concentration (MIC) values for colistin in 24 out of 51 isolates, resulting in erroneous reporting of qualitative susceptibility data for eight isolates. In growth kinetics experiments in the presence of colistin, five isolates grew with drug concentrations above the susceptibility breakpoint when incubated for >12 h, and three isolates showed the presence of heteroresistant subpopulations. This study highlights that the high frequency of isolation of carbapenem-resistant A. baumannii strains in high-risk infectious wards requires an accurate application of methods for detecting susceptibility to antibiotics, in particular to colistin, so as to ensure a correct therapeutic approach.
Collapse
|
13
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 2021; 41:1003-1022. [PMID: 33403565 PMCID: PMC7785128 DOI: 10.1007/s10096-020-04121-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russian Federation, Trubetskaya st., 8-2, 119991, Moscow, Russia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran. .,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran.
| |
Collapse
|
14
|
Salmani A, Shakerimoghaddam A, Pirouzi A, Delkhosh Y, Eshraghi M. Correlation between biofilm formation and antibiotic susceptibility pattern in Acinetobacter baumannii MDR isolates retrieved from burn patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Ruiz J, Ramirez P, Villarreal E, Gordon M, Sánchez MÁ, Martín M, Castellanos-Ortega Á. Effect of pharmacokinetic/pharmacodynamic ratio on tigecycline clinical response and toxicity in critically ill patients with multidrug-resistant Gram-negative infections. SAGE Open Med 2020; 8:2050312120958897. [PMID: 32999720 PMCID: PMC7506777 DOI: 10.1177/2050312120958897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/25/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: The information about the pharmacokinetics and optimal dose of tigecycline in
critically ill patients with severe underlying diseases is limited and
controversial. In this study, we evaluate the pharmacokinetic parameters of
tigecycline in critically ill patients with multidrug-resistant
Gram-negative infection and explore the association between the
pharmacokinetic/pharmacodynamic ratio and treatment response. Methods: A prospective study was designed including critically ill patients treated
with tigecycline for multidrug-resistant Gram-negative infections. Blood
samples were collected at day 3–5 of treatment, and pharmacokinetics
parameters were evaluated using NONMEM® software. Relationship
between area under the free concentration–time curve and minimum inhibitory
concentration ratio (fAUC/MIC) and treatment failure was evaluated.
Association between tigecycline fAUC and hepatobiliary toxicity was also
investigated. Results: Twenty-five critically ill patients were included in the study. In the
pharmacokinetic model, weight and total bilirubin level were found to be
significant predictors of tigecycline clearance. Fifteen (60.0%) patients
achieved an fAUC/MIC ratio >4.5, seven (28.0%) an fAUC/MIC > 6.96 and
only three (12.0%) an fAUC/MIC > 17.9. No differences in fAUC/MIC ratio
were obtained between those patients with and without clinical failure (5.28
(IC95%: 2.57–7.94) vs 8.71 (3.57–13.84)). fAUC values were higher in those
patients who suffered hepatobiliary disorders (7.63 (3.93–11.34) vs 17.63
(7.85–26.28) mg/L/h). Conclusion: An important percentage of critically ill patients with multidrug-resistant
Gram-negative infection treated with tigecycline do not achieve an
appropriate pharmacokinetic/pharmacodynamic value. Tigecycline fAUC seems to
be associated with hepatobiliary disorders in this study population. The
effect of fAUC/MIC ratio on clinical response remains unclear.
Collapse
Affiliation(s)
- Jesus Ruiz
- Intensive Care Unit, IIS La Fe, Hospital Universitario y Politecnico de La Fe, Valencia, Spain
| | - Paula Ramirez
- Intensive Care Unit, Hospital Universitario y Politecnico de La Fe, Valencia, Spain
| | - Esther Villarreal
- Intensive Care Unit, Hospital Universitario y Politecnico de La Fe, Valencia, Spain
| | - Mónica Gordon
- Intensive Care Unit, Hospital Universitario y Politecnico de La Fe, Valencia, Spain
| | | | - María Martín
- Pharmacy Department, IIS La Fe, Hospital Universitario y Politecnico de La Fe, Valencia, Spain
| | | |
Collapse
|
16
|
Synergistic antibacterial effect of inhaled aztreonam and tobramycin fixed dose combination to combat multidrug-resistant Gram-negative bacteria. Int J Pharm 2020; 590:119877. [PMID: 32927003 DOI: 10.1016/j.ijpharm.2020.119877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022]
Abstract
The limited therapeutic option for respiratory infections caused by multi-drug resistant microbial pathogens is a major global health threat. Topical delivery of antibacterial combinations to the lung could dramatically enhance antibacterial activities and provide a means to overcome bacterial resistance development. The aim of the study was to investigate the potential of new inhalable dry powder combinations consisting of a fixed dose of aztreonam (Azt) and tobramycin (Tob) using a spray drying process, against antibiotic resistant Gram-negative respiratory pathogens. The interactions of Azt with Tob on resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were determined by calculating factional inhibitory concentration indices (FICI). A fixed concentration ratio of Azt and Tob that exhibited a synergistic antimicrobial effect was selected and formulated into inhalable dry powders by co-spray drying with and without L-leucine. The obtained dry powders were characterized with respect to the morphology, particle size distribution, solid state, moisture sorption behaviour, and in vitro dissolution. Storage stability, aerosol performance, and in vitro antibacterial activity were also evaluated. Inhalable dry powders consisting of Azt, Tob and L-leucine could be readily obtained via the spray drying process with a fine particle fraction of above 40% as determined using a next generation impactor. The co-spray drying process resulted in amorphous Azt/Tob dry powders with or without the addition of L-leucine as indicated by X-ray powder diffraction. The dissolution rates of the co-spray dried Azt/Tob dry powders were decreased, and the storage stability was improved with an increase in the proportion of L-leucine in the formulations. The inclusion of L-leucine did not affect the minimum inhibitory concentration and the co-spray dried powders reserved the synergistic antibacterial effects and exhibited enhanced antibacterial activities as compared to the individual antibiotic used alone on multidrug-resistant (Azt and Tob resistant) P. aeruginosa 25756 and A. baumannii K31. This study demonstrates that inhalable Azt/Tob dry powders using L-leucine as a moisture protector as well as a dispersing agent can be readily prepared by the spray drying process. This new inhalable fixed dose combinational dry powders may represent an alternative treatment against multidrug-resistant Gram-negative respiratory pathogens.
Collapse
|
17
|
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 2019. [PMID: 29514274 DOI: 10.1093/jac/dky027] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Working Party makes more than 100 tabulated recommendations in antimicrobial prescribing for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) and suggest further research, and algorithms for hospital and community antimicrobial usage in urinary infection. The international definition of MDR is complex, unsatisfactory and hinders the setting and monitoring of improvement programmes. We give a new definition of multiresistance. The background information on the mechanisms, global spread and UK prevalence of antibiotic prescribing and resistance has been systematically reviewed. The treatment options available in hospitals using intravenous antibiotics and in primary care using oral agents have been reviewed, ending with a consideration of antibiotic stewardship and recommendations. The guidance has been derived from current peer-reviewed publications and expert opinion with open consultation. Methods for systematic review were NICE compliant and in accordance with the SIGN 50 Handbook; critical appraisal was applied using AGREE II. Published guidelines were used as part of the evidence base and to support expert consensus. The guidance includes recommendations for stakeholders (including prescribers) and antibiotic-specific recommendations. The clinical efficacy of different agents is critically reviewed. We found there are very few good-quality comparative randomized clinical trials to support treatment regimens, particularly for licensed older agents. Susceptibility testing of MDR GNB causing infection to guide treatment needs critical enhancements. Meropenem- or imipenem-resistant Enterobacteriaceae should have their carbapenem MICs tested urgently, and any carbapenemase class should be identified: mandatory reporting of these isolates from all anatomical sites and specimens would improve risk assessments. Broth microdilution methods should be adopted for colistin susceptibility testing. Antimicrobial stewardship programmes should be instituted in all care settings, based on resistance rates and audit of compliance with guidelines, but should be augmented by improved surveillance of outcome in Gram-negative bacteraemia, and feedback to prescribers. Local and national surveillance of antibiotic use, resistance and outcomes should be supported and antibiotic prescribing guidelines should be informed by these data. The diagnosis and treatment of both presumptive and confirmed cases of infection by GNB should be improved. This guidance, with infection control to arrest increases in MDR, should be used to improve the outcome of infections with such strains. Anticipated users include medical, scientific, nursing, antimicrobial pharmacy and paramedical staff where they can be adapted for local use.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Cliodna A M McNulty
- Microbiology Department, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK
| | - David A Enoch
- Public Health England, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - A Peter R Wilson
- Department of Microbiology and Virology, University College London Hospitals, London, UK
| |
Collapse
|
18
|
Nishida S, Ono Y. Comparative analysis of the pathogenicity between multidrug-resistant Acinetobacter baumannii clinical isolates: isolation of highly pathogenic multidrug-resistant A. baumannii and experimental therapeutics with fourth-generation cephalosporin cefozopran. Infect Drug Resist 2018; 11:1715-1722. [PMID: 30349328 PMCID: PMC6188165 DOI: 10.2147/idr.s166154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction The pathogenicity of fatal-outbreak Acinetobacter baumannii isolates has not been fully investigated. This study aimed to compare the pathogenicity between A. baumannii clinical isolates, including multidrug-resistant A. baumannii (MDRA). Materials and methods Antibiotic susceptibility was determined by the broth microdilution method, and drug-resistant genes were characterized by PCR and sequencing. The pathogenicity of A. baumannii and antibiotic responses were evaluated using the Galleria mellonella infection model. Clinical isolates from an A. baumannii outbreak at our hospital were categorized using the pulse-field gel electrophoresis. Of the 16 isolated A. baumannii clones, 12 clones were resistant to carbapenems (meropenem and imipenem), of which 10 clones were also resistant to amikacin and ciprofloxacin (MDRAs). MDRAs had OXA-51-like β-lactamase gene harboring an insertion sequence in the promoter region and armA gene encoding 16S rRNA methyltransferase. Results Carbapenem- and/or amikacin-resistant A. baumannii were more pathogenic than carbapenem- and/or amikacin-sensitive A. baumannii in G. mellonella. MDRA isolate TK1033 was more virulent than other A. baumannii isolates. However, TK1033 was sensitive to the fourth-generation cephalosporin cefozopran in addition to minocycline, tigecycline, and polymyxins (colistin and polymyxins B) in vitro and in vivo in the MDRA-G. mellonella infection model. Conclusion Differences in pathogenicity among carbapenem-resistant A. baumannii clones are consistent with heterogeneous clinical outcomes. Strain TK1033, isolated frequently during the outbreak, was the most virulent, whereas preoutbreak isolate TK1032 was less virulent than other A. baumannii isolates. Infection by high-virulence isolates may be more prevalent during outbreaks. These strains may prove valuable for investigating MDRA virulence and novel therapeutics.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan,
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan,
| |
Collapse
|
19
|
Uppuluri P, Lin L, Alqarihi A, Luo G, Youssef EG, Alkhazraji S, Yount NY, Ibrahim BA, Bolaris MA, Edwards JE, Swidergall M, Filler SG, Yeaman MR, Ibrahim AS. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog 2018; 14:e1007056. [PMID: 29746596 PMCID: PMC5963808 DOI: 10.1371/journal.ppat.1007056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022] Open
Abstract
Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N) protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB) and outer membrane protein A (OmpA). The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5) confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lin Lin
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Abdullah Alqarihi
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Guanpingsheng Luo
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Eman G. Youssef
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Sondus Alkhazraji
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Nannette Y. Yount
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Belal A. Ibrahim
- Portola High School, Irvine, California, United States of America
| | - Michael Anthony Bolaris
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - John E. Edwards
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Marc Swidergall
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Scott G. Filler
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Michael R. Yeaman
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ashraf S. Ibrahim
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Lin YW, Chen K, Wang J, Velkov T, Zhou QT, Li J. A Proof-of-Concept Study of the Efficacy of Systemically Administered Polymyxins in Mouse Burn Wound Infection Caused by Multidrug-Resistant Gram-Negative Pathogens. Antimicrob Agents Chemother 2018; 62:e02527-17. [PMID: 29439974 PMCID: PMC5923121 DOI: 10.1128/aac.02527-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/08/2018] [Indexed: 01/14/2023] Open
Abstract
The efficacy of subcutaneously administered polymyxins against burn wound infections caused by Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae was examined in a murine infection model. Subcutaneously administered colistin and polymyxin B (30 mg/kg thrice daily) achieved a ≥2-log10 reduction in the bacterial load for P. aeruginosa and A. baumannii infections, whereas wound infections by K. pneumoniae were less responsive (<1-log10 reduction). This study highlights the potential therapeutic benefits of parenteral polymyxins for treating burn wound infections.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ke Chen
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Tucker H, Wible M, Gandhi A, Quintana A. Efficacy of intravenous tigecycline in patients with Acinetobacter complex infections: results from 14 Phase III and Phase IV clinical trials. Infect Drug Resist 2017; 10:401-417. [PMID: 29138583 PMCID: PMC5679678 DOI: 10.2147/idr.s143306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Acinetobacter infections, especially multidrug-resistant (MDR) Acinetobacter infections, are a global health problem. This study aimed to describe clinical outcomes in patients with confirmed Acinetobacter spp. isolates who were treated with tigecycline in randomized clinical trials. Materials and methods Data from 14 multinational, randomized (open-label or double-blind), and active-controlled (except one) Phase III and IV studies were analyzed using descriptive statistics. Results A total of 174 microbiologically evaluable patients with Acinetobacter spp. infections (including MDR infections) were identified, and 95 received tigecycline to treat community-acquired pneumonia (CAP), diabetic foot infections (DFIs), hospital-acquired pneumonia (HAP), complicated intra-abdominal infections (cIAIs), infections with resistant pathogens (RPs), or complicated skin and skin-structure infections. The rate of cure of tigecycline for most indications was 70%–80%, with the highest (88.2%) in cIAIs. The rate of cure of the comparators was generally higher than tigecycline, but within each indication the 95% CIs for clinical cure for each treatment group overlapped. For most Acinetobacter isolates, the minimum inhibitory concentration of tigecycline was 0.12–2 μg/mL, with seven at 4 μg/mL and one at 8 μg/mL. The cure rate by tigecycline was 50% (95% CI 12.5%–87.5% in CAP) to 88.2% (95% CI 66.2%–97.1% in cIAIs) for all Acinetobacter, and 72.7% (95% CI 54.5%–93.2% in HAP) to 100% (95% CI 25%–100.0% in cIAIs) for MDR Acinetobacter. For the comparators, it was 83.8% (95% CI 62.8%–95.9% in HAP) to 100% (95% CI 75%–100% in cIAIs and 25%–100.0% in RPs) and 88% (95% CI 66%–97% in HAP) to 100% (95% CI 25%–100% in cIAIs and 75%–100% in DFIs), respectively. Conclusion These findings suggest that with appropriate monitoring, tigecycline may be a useful consideration for Acinetobacter infections alone or in combination with other anti-infective agents when other therapies are not suitable.
Collapse
|
22
|
Nielsen TB, Pantapalangkoor P, Luna BM, Bruhn KW, Yan J, Dekitani K, Hsieh S, Yeshoua B, Pascual B, Vinogradov E, Hujer KM, Domitrovic TN, Bonomo RA, Russo TA, Lesczcyniecka M, Schneider T, Spellberg B. Monoclonal Antibody Protects Against Acinetobacter baumannii Infection by Enhancing Bacterial Clearance and Evading Sepsis. J Infect Dis 2017; 216:489-501. [PMID: 28931235 DOI: 10.1093/infdis/jix315] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
Background Extremely drug-resistant (XDR) Acinetobacter baumannii is one of the most commonly encountered, highly resistant pathogens requiring novel therapeutic interventions. Methods We developed C8, a monoclonal antibody (mAb), by immunizing mice with sublethal inocula of a hypervirulent XDR clinical isolate. Results C8 targets capsular carbohydrate on the bacterial surface, enhancing opsonophagocytosis. Treating with a single dose of C8 as low as 0.5 μg/mouse (0.0167 mg/kg) markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia models of XDR A. baumannii infection. C8 was also synergistic with colistin, substantially improving survival compared to monotherapy. Treatment with C8 significantly reduced blood bacterial density, cytokine production (tumor necrosis factor α, interleukin [IL] 6, IL-1β, and IL-10), and sepsis biomarkers. Serial in vitro passaging of A. baumannii in the presence of C8 did not cause loss of mAb binding to the bacteria, but did result in emergence of less-virulent mutants that were more susceptible to macrophage uptake. Finally, we developed a highly humanized variant of C8 that retains opsonophagocytic activity in murine and human macrophages and rescued mice from lethal infection. Conclusions We describe a promising and novel mAb as therapy for lethal, XDR A. baumannii infections, and demonstrate that it synergistically improves outcomes in combination with antibiotics.
Collapse
Affiliation(s)
- Travis B Nielsen
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Paul Pantapalangkoor
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Brian M Luna
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Kevin W Bruhn
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Jun Yan
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Ken Dekitani
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Sarah Hsieh
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Brandon Yeshoua
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Bryan Pascual
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| | | | - Kristine M Hujer
- Louis Stokes Cleveland Veterans Affairs Medical Center.,Department of Medicine
| | | | - Robert A Bonomo
- Louis Stokes Cleveland Veterans Affairs Medical Center.,Department of Medicine.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio
| | - Thomas A Russo
- Veterans Administration Western New York Healthcare System, and the Departments of Medicine and Microbiology and Immunology, and Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York
| | | | | | - Brad Spellberg
- Department of Medicine and Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
23
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 724] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|
24
|
Razavi Nikoo H, Ardebili A, Mardaneh J. Systematic Review of Antimicrobial Resistance of Clinical Acinetobacter baumannii Isolates in Iran: An Update. Microb Drug Resist 2017; 23:744-756. [PMID: 28085571 DOI: 10.1089/mdr.2016.0118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of Acinetobacter baumannii has become a medical challenge because of the increasing incidence of multiresistant strains and a lack of viable treatment alternatives. This systematic review attempts to investigate the changes in resistance of A. baumannii to different classes of antibiotics in Iran, with emphasis on the antimicrobial activity of polymyxin B (PMB) and colistin (COL). Biomedical databases were searched for English-published articles evaluating microbiological activity of various antimicrobial agents, including PMB and COL. Then, the available data were extracted and analyzed. Thirty-one studies, published from 2009 to 2015, were identified which contain data for 3,018 A. baumannii clinical isolates. With the exception of polymyxins and tigecycline (TIG), there was a high rate of resistance to various groups of antibiotics, including carbapenems. The minimum inhibitory concentration (MIC) ranges for PMB and COL on A. baumannii isolates tested were 0.12-64 μg/ml and 0.001-128 μg/ml, respectively. Polymyxins showed adequate activity with no significant trends in the resistance rate during most of the study period. The incidence of resistance to TIG was estimated low from 2% to 38.4% among the majority of A. baumannii. The present systematic review of the published literatures revealed that multidrug-resistant (including carbapenem-resistant) strains of A. baumannii have increased in Iran. In these circumstances, the older antibiotics, such as COL or PMB, preferably in combination with other antimicrobials (rifampicin, meropenem), could be considered as the therapeutic solution against the healthcare-associated infections. Designing rational dosage regimens for patients to maximize the antimicrobial activity and minimize the emergence and prevalence of resistance is recommended.
Collapse
Affiliation(s)
- Hadi Razavi Nikoo
- 1 Laboratory Sciences Research Center, Golestan University of Medical Sciences , Gorgan, Iran
- 2 Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences , Gorgan, Iran
| | - Abdollah Ardebili
- 1 Laboratory Sciences Research Center, Golestan University of Medical Sciences , Gorgan, Iran
- 2 Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences , Gorgan, Iran
| | - Jalal Mardaneh
- 3 Department of Microbiology, Faculty of Medicine, Gonabad University of Medical Sciences , Gonabad, Iran
| |
Collapse
|
25
|
Bloodstream infections caused by Acinetobacter species with reduced susceptibility to tigecycline: clinical features and risk factors. Int J Infect Dis 2017; 62:26-31. [PMID: 28676346 DOI: 10.1016/j.ijid.2017.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/02/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION During recent decades, the rates of multidrug resistance, including resistance to carbapenems, have increased dramatically among Acinetobacter species. Tigecycline has activity against multidrug-resistant Acinetobacter spp, including carbapenem-resistant isolates. However, reports of tigecycline-resistant Acinetobacter spp are emerging from different parts of the world. The purpose of this study was to evaluate potential risk factors associated with tigecycline non-susceptible Acinetobacter bacteremia. METHODS The medical records of 152 patients with Acinetobacter bacteremia attending Samsung Medical Center between January 2010 and December 2014 were reviewed. Non-susceptibility to tigecycline was defined as a minimum inhibitory concentration (MIC) of tigecycline ≥4μg/ml. Cases were patients with tigecycline non-susceptible Acinetobacter bacteremia and controls were those with tigecycline-susceptible Acinetobacter bacteremia. RESULTS Of the 152 patients included in the study, 61 (40.1%) had tigecycline non-susceptible Acinetobacter bacteremia (case group). These patients were compared to 91 patients with tigecycline-susceptible Acinetobacter bacteremia (control group). The case group showed high resistance to other antibiotics (>90%) except colistin (6.6%) and minocycline (9.8%) when compared to the control group, which exhibited relatively low resistance to other antibiotics (<50%). Multivariate analysis showed that recent exposure to corticosteroids (minimum 20mg per day for more than 5 days within 2 weeks) (adjusted odds ratio (OR) 2.887, 95% confidence interval (CI) 1.170-7.126) and carbapenems (within 2 weeks) (adjusted OR 4.437, 95% CI 1.970-9.991) were significantly associated with tigecycline non-susceptible Acinetobacter bacteremia. Although prior exposure to tigecycline was more common in the case group than in the control group (9.8%, 6/61 vs. 2.2%, 2/91; p=0.046), this variable was found not to be a significant factor associated with tigecycline non-susceptibility after adjustment for other variables (adjusted OR 1.884, 95% CI 0.298-11.920; p=0.501). CONCLUSIONS These data suggest that tigecycline non-susceptible Acinetobacter spp have emerged and disseminated in the hospital in association with a recent exposure to carbapenems and an immunosuppressed state. This indicates that the rational use of antibiotics through a comprehensive antimicrobial stewardship program, especially in immunosuppressed patients, may be essential in limiting the emergence and spread of multidrug-resistant organisms such as tigecycline-resistant Acinetobacter spp, which are difficult to treat.
Collapse
|
26
|
Wang J, Pan Y, Shen J, Xu Y. The efficacy and safety of tigecycline for the treatment of bloodstream infections: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2017; 16:24. [PMID: 28381268 PMCID: PMC5382384 DOI: 10.1186/s12941-017-0199-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/29/2017] [Indexed: 11/26/2022] Open
Abstract
Patients with bloodstream infections (BSI) are associated with high mortality rates. Due to tigecycline has shown excellent in vitro activity against most pathogens, tigecycline is selected as one of the candidate drugs for the treatment of multidrug-resistant organisms infections. The purpose of this study was to evaluate the effectiveness and safety of the use of tigecycline for the treatment of patients with BSI. The PubMed and Embase databases were systematically searched, to identify published studies, and we searched clinical trial registries to identify completed unpublished studies, the results of which were obtained through the manufacturer. The primary outcome was mortality, and the secondary outcomes were the rate of clinical cure and microbiological success. 24 controlled studies were included in this systematic review. All-cause mortality was lower with tigecycline than with control antibiotic agents, but the difference was not significant (OR 0.85, [95% confidence interval (CI) 0.31-2.33; P = 0.745]). Clinical cure was significantly higher with tigecycline groups (OR 1.76, [95% CI 1.26-2.45; P = 0.001]). Eradication efficiency did not differ between tigecycline and control regimens, but the sample size for these comparisons was small. Subgroup analyses showed good clinical cure result in bacteremia patients with CAP. Tigecycline monotherapy was associated with a OR of 2.73 (95% CI 1.53-4.87) for mortality compared with tigecycline combination therapy (6 studies; 250 patients), without heterogeneity. Five studies reporting on 398 patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae BSI showed significantly lower mortality in the tigecycline arm than in the control arm. The combined treatment with tigecycline may be considered the optimal option for severely ill patients with BSI.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| | - Yaping Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| |
Collapse
|
27
|
Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017; 7:55. [PMID: 28348979 PMCID: PMC5346588 DOI: 10.3389/fcimb.2017.00055] [Citation(s) in RCA: 578] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Moonhee Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji UniversityYongin, South Korea; DNA Analysis Division, Seoul Institute, National Forensic ServiceSeoul, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Health and Welfare, Silla University Busan, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College Danvers, MA, USA
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
28
|
Wenzler E, Goff DA, Humphries R, Goldstein EJC. Anticipating the Unpredictable: A Review of Antimicrobial Stewardship and Acinetobacter Infections. Infect Dis Ther 2017; 6:149-172. [PMID: 28260148 PMCID: PMC5446362 DOI: 10.1007/s40121-017-0149-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter remains one of the most challenging pathogens in the field of infectious diseases owing primarily to the uniqueness and multiplicity of its resistance mechanisms. This resistance often leads to devastatingly long delays in time to appropriate therapy and increased mortality for patients afflicted with Acinetobacter infections. Selecting appropriate empiric and definitive antibacterial therapy for Acinetobacter is further complicated by the lack of reliability in commercial antimicrobial susceptibility testing devices and limited breakpoint interpretations for available agents. Existing treatment options for infections due to Acinetobacter are limited by a lack of robust efficacy and safety data along with concerns regarding appropriate dosing, pharmacokinetic/pharmacodynamic targets, and toxicity. Antimicrobial stewardship programs are essential to combat this unpredictable pathogen through use of infection prevention, rapid diagnostics, antibiogram-optimized treatment regimens, and avoidance of overuse of antimicrobials. The drug development pipeline includes several agents with encouraging in vitro activity against Acinetobacter, but their place in therapy and contribution to the armamentarium against this pathogen remain to be defined. The objective of this review is to highlight the unique challenge of treating infections due to Acinetobacter and summarize recent literature regarding optimal antimicrobial treatment for this pathogen. The drug development pipeline is also explored for future potentially effective treatment options.
Collapse
Affiliation(s)
- Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| | - Debra A Goff
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Romney Humphries
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Ellie J C Goldstein
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,R M Alden Research Laboratory, Santa Monica, CA, USA
| |
Collapse
|
29
|
He H, Zheng Y, Sun B, Tang X, Wang R, Tong Z. Tigecycline combination for ventilator-associated pneumonia caused by extensive drug-resistant Acinetobacter baumannii. J Thorac Dis 2016; 8:2784-2792. [PMID: 27867554 DOI: 10.21037/jtd.2016.10.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Extensive drug-resistant Acinetobacter baumannii (XDR A. baumannii) has emerged as an important pathogen in patients with ventilator-associated pneumonia (VAP) worldwide. This study determined whether or not combination tigecycline (TGC) treatment improved the short-term outcome of patients with XDR A. baumannii-induced VAP. Methods: Fifty-eight patients admitted to our intensive care unit (ICU) with confirmed XDR A. baumannii VAP between January 2011 and June 2013 were retrospectively studied. Fourteen patients were excluded. The included subjects were classified into two groups depending on treatment regimens with or without TGC (TGC group, n=20; non-TGC group, n=24). Thirty-day mortality rates, and clinical and microbiologic responses were reviewed and compared in detail. RESULTS Microbiological eradication was observed in 3 patients (15.0%) in the TGC group and 7 patients (29.2%) in the non-TGC group (P=0.264). The mean time-to-eradication of XDR A. baumannii was 5.3±2.1 versus 7.6±4.0 days (P=0.395). Ten of 20 (50%) patients developed resistance to TGC after initiation of TGC therapy in the TGC group. Clinical cure were achieved in 50.0% of the patients (10/20) in the TGC group and 45.8% of the patients (7/24) in the non-TGC group (P=1.000). No differences existed in the 30-day mortality, length of ICU stay, length of hospital stay (LOS), and length of invasive mechanical ventilation (MV) between the two groups. The occurrence of septic shock was significantly lower in the TGC group (20.0% vs. 54.2%; P=0.030). CONCLUSIONS TGC combination therapy did not improve the clinical cure and microbiologic eradication in patients with XDR A. baumannii VAP. TGC combination therapy did not decrease all-cause mortality in patients with XDR A. baumannii VAP. TGC combination therapy reduced the incidence of septic shock in patients with XDR A. baumannii VAP, and might decrease the incidence of poly-microbial VAP. TGC combination therapy can only be recommended as an option when other optimized therapeutics, such as colistin, are unavailable.
Collapse
Affiliation(s)
- Hangyong He
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing 102206, China
| | - Bing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao Tang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
30
|
Rao GG, Ly NS, Bulitta JB, Soon RL, San Roman MD, Holden PN, Landersdorfer CB, Nation RL, Li J, Forrest A, Tsuji BT. Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies. J Antimicrob Chemother 2016; 71:3148-3156. [PMID: 27494922 DOI: 10.1093/jac/dkw293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Polymyxin B is being increasingly utilized as a last resort against resistant Gram-negative bacteria. We examined the pharmacodynamics of novel dosing strategies for polymyxin B combinations to maximize efficacy and minimize the emergence of resistance and drug exposure against Acinetobacter baumannii. METHODS The pharmacodynamics of polymyxin B together with doripenem were evaluated in time-kill experiments over 48 h against 108 cfu/mL of two polymyxin-heteroresistant A. baumannii isolates (ATCC 19606 and N16870). Pharmacokinetic/pharmacodynamic relationships were mathematically modelled using S-ADAPT. A hollow-fibre infection model (HFIM) was also used to simulate clinically relevant polymyxin B dosing strategies (traditional, augmented 'front-loaded' and 'burst' regimens), together with doripenem, against an initial inoculum of 109 cfu/mL of ATCC 19606. RESULTS In static time-kill studies, polymyxin B concentrations >4 mg/L in combination with doripenem 25 mg/L resulted in rapid bactericidal activity against both strains with undetectable bacterial counts by 24 h. The mathematical model described the rapid, concentration-dependent killing as subpopulation and mechanistic synergy. In the HFIM, the traditional polymyxin B combination regimen was synergistic, with a >7.5 log10 reduction by 48 h. The polymyxin B 'front-loaded' combination resulted in more rapid and extensive initial killing (>8 log10) within 24 h, which was sustained over 10 days. With only 25% of the cumulative drug exposure, the polymyxin B 'burst' combination demonstrated antibacterial activity similar to traditional and 'front-loaded' combination strategies. The polymyxin B 'front-loaded' and 'burst' combination regimens suppressed the emergence of resistance. CONCLUSIONS Early aggressive dosing regimens for polymyxin combinations demonstrate promise for treatment of heteroresistant A. baumannii infections.
Collapse
Affiliation(s)
- Gauri G Rao
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Neang S Ly
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jürgen B Bulitta
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rachel L Soon
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Marie D San Roman
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Patricia N Holden
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alan Forrest
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA .,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
31
|
Hsieh TC, Chen FL, Ou TY, Jean SS, Lee WS. Role of aerosolized colistin methanesulfonate therapy for extensively-drug-resistant Acinetobacter baumannii complex pneumonia and airway colonization. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:523-30. [DOI: 10.1016/j.jmii.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022]
|
32
|
Shrestha GS, Tamang S, Paneru HR, Shrestha PS, Keyal N, Acharya SP, Marhatta MN, Shilpakar S. Colistin and tigecycline for management of external ventricular device-related ventriculitis due to multidrug-resistant Acinetobacter baumannii. J Neurosci Rural Pract 2016; 7:450-2. [PMID: 27365967 PMCID: PMC4898118 DOI: 10.4103/0976-3147.176194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acinetobacter baumannii is an important cause of nosocomial ventriculitis associated with external ventricular device (EVD). It is frequently multidrug resistant (MDR), carries a poor outcome, and is difficult to treat. We report a case of MDR Acinetobacter ventriculitis treated with intravenous and intraventricular colistin together with intravenous tigecycline. The patient developed nephrotoxicity and poor neurological outcome despite microbiological cure. Careful implementation of bundle of measures to minimize EVD-associated ventriculitis is valuable.
Collapse
Affiliation(s)
- Gentle Sunder Shrestha
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Sushil Tamang
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Hem Raj Paneru
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Pramesh Sunder Shrestha
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Niraj Keyal
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Subhash Prasad Acharya
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Moda Nath Marhatta
- Department of Anaesthesiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Sushil Shilpakar
- Department of Surgery, Neurosurgery Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
33
|
Zhang X, Yang T, Cao J, Sun J, Dai W, Zhang L. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant Acinetobacter baumannii. Microb Pathog 2016; 96:20-5. [PMID: 27133268 DOI: 10.1016/j.micpath.2016.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Multidrug-resistant Acinetobacter baumannii (A. baumannii) is a rapidly emerging pathogen causing infections with high mortality rates due to inadequate medical treatment. New ways to prevent and treat such infections are of a critical medical need. In this study, intranasal vaccination with A. baumannii outer membrane protein A (OmpA) induced both systemic and mucosal antibodies. After challenge intraperitoneally by clinical strains of multidrug-resistant A. baumannii, mice immunized with OmpA had a significantly higher survival rate than control mice. The OmpA protein level tested positive by western blot in clinical strains of A. baumannii. Furthermore, characterization of human sera for anti-OmpA immunoglobulin G (IgG) antibody levels demonstrated that OmpA protein was immunogenic in healthy individuals and patients with A. baumannii invasive infections. In conclusion, to the best of our knowledge, this is the first study protective efficacy of mucosal immunization with OmpA as a protein antigen against multidrug-resistant A. Baumannii.
Collapse
Affiliation(s)
- Xiaojiao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tianxiang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jide Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Wright MS, Iovleva A, Jacobs MR, Bonomo RA, Adams MD. Genome dynamics of multidrug-resistant Acinetobacter baumannii during infection and treatment. Genome Med 2016; 8:26. [PMID: 26939581 PMCID: PMC4776386 DOI: 10.1186/s13073-016-0279-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/10/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Limited treatment options are available for patients infected with multidrug (MDR)- or pan-drug (PDR)-resistant bacterial pathogens, resulting in infections that can persist for weeks or months. In order to better understand transmission and evolutionary dynamics of MDR Acinetobacter baumannii (Ab) during long-term infection, we analyzed genomes from a series of isolates from individual patients at isolate-specific, patient-specific, and population levels. METHODS Whole genome analysis of longitudinal isolates (range 2-10 isolates per patient spanning 0-829 days) from 40 patients included detection of single-nucleotide variants (SNVs), insertion sequence (IS) mapping, and gene content changes. RESULTS Phylogenetic analysis revealed that a significant fraction of apparently persistent infections are in fact due to re-infection with new strains. SNVs primarily resulted in protein coding changes, and IS events primarily interrupted genes or were in an orientation such that the adjacent gene would be over-expressed. Mutations acquired during infection were over-represented in transcriptional regulators, notably pmrAB and adeRS, which can mediate resistance to the last line therapies colistin and tigecycline, respectively, as well as transporters, surface structures, and iron acquisition genes. CONCLUSIONS Most SNVs and IS events were isolate-specific indicating these mutations did not become fixed on the time scale investigated, yet over-representation of independent mutations in some genes or functional categories suggests that they are under selective pressure. Genome analysis at the population-level suggests that gene transfer including recombination also contributes to Ab evolutionary dynamics. These findings provide important insight into the transmission dynamics of Ab and the identification of patients with repeat infections has implications for infection control programs targeted to this pathogen.
Collapse
Affiliation(s)
| | - Alina Iovleva
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Michael R Jacobs
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A Bonomo
- Departments of Pharmacology, Molecular Biology and Microbiology, and the Center for Proteomics, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Mark D Adams
- The J. Craig Venter Institute, La Jolla, CA, USA.
| |
Collapse
|
35
|
Tigecycline treatment experience against multidrug-resistant Acinetobacter baumannii infections: a systematic review and meta-analysis. Int J Antimicrob Agents 2016; 47:107-16. [DOI: 10.1016/j.ijantimicag.2015.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 11/23/2022]
|
36
|
Li H, Wang X, Zhang Y, Zhao C, Chen H, Jiang S, Zhang F, Wang H. The role of RND efflux pump and global regulators in tigecycline resistance in clinical Acinetobacter baumannii isolates. Future Microbiol 2016; 10:337-46. [PMID: 25812457 DOI: 10.2217/fmb.15.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To analyze the expression and regulation of resistance-nodulation-division (RND) efflux systems in clinical tigecycline-nonsusceptible (TNS) Acinetobacter baumannii. MATERIALS & METHODS Comparisons of molecular and clinical characteristics were performed between 52 TNS and 53 tigecycline-susceptible isolates. Expression of RND efflux pumps and global regulators were analyzed by real-time RT-PCR. A complementation experiment was performed to evaluate the contribution of the adeRS mutations. RESULTS Mechanical ventilation and prior use of carbapenems were more common among patients with TNS strains. The relative expression of adeB and adeJ was increased significantly in TNS isolates. Complementarity to the adeR or adeS mutations decreased tigecycline susceptibility by ≤2-fold. Decreased expression of marR and soxR was detected in TNS isolates. CONCLUSION A correlation between tigecycline MIC and expression level of adeB and adeJ was identified. The influence of adeRS mutation on adeB expression was limited. Global regulators marR and soxR may be involved in tigecycline resistance.
Collapse
Affiliation(s)
- Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Immunoprotective potential of in silico predicted Acinetobacter baumannii outer membrane nuclease, NucAb. Int J Med Microbiol 2016; 306:1-9. [DOI: 10.1016/j.ijmm.2015.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
|
38
|
Balkan II, Batirel A, Karabay O, Agalar C, Akalin S, Alici O, Alp E, Altay FA, Altin N, Arslan F, Aslan T, Bekiroglu N, Cesur S, Celik AD, Dogan M, Durdu B, Duygu F, Engin A, Engin DO, Gonen I, Guclu E, Guven T, Hatipoglu CA, Hosoglu S, Karahocagil MK, Kilic AU, Ormen B, Ozdemir D, Ozer S, Oztoprak N, Sezak N, Turhan V, Turker N, Yilmaz H. Comparison of colistin monotherapy and non-colistin combinations in the treatment of multi-drug resistant Acinetobacter spp. bloodstream infections: a multicenter retrospective analysis. Indian J Pharmacol 2015; 47:95-100. [PMID: 25821319 PMCID: PMC4375827 DOI: 10.4103/0253-7613.150383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/17/2014] [Accepted: 12/19/2014] [Indexed: 12/05/2022] Open
Abstract
Objectives: To compare the efficacy of colistin (COL) monotherapy versus non-COL based combinations in the treatment of bloodstream infections (BSIs) due to multidrug resistant Acinetobacter spp.(MDR-A). Materials and Methods: Retrospective data of 107 MDR-A BSI cases from 27 tertiary centers in Turkey were included. Primary End-Point: 14-day mortality. Secondary End-Points: Microbial eradication and clinical improvement. Results: Thirty-six patients in the COL monotherapy (CM) group and 71 in the non-COL based combinations (NCC) group were included in the study. Mean age was 59.98 ± 20 years (range: 18–89) and 50.5% were male. Median duration of follow-up was 40 days (range: 9–297). The 14-day survival rates were 52.8% in CM and 47.23% in NCC group (P = 0.36). Microbiological eradication was achieved in 69% of CM and 83% of NCC group (P = 0.13). Treatment failure was detected in 22.9% of cases in both CM and NCC groups. Univariate analysis revealed that mean age (P = 0.001), Charlson comorbidity index (P = 0.03), duration of hospital stay before MDR-A BSI (P = 0.04), Pitt bacteremia score (P = 0.043) and Acute Physiology and Chronic Health Evaluation II score (P = 0.05) were significant in terms of 14-day mortality. Advanced age (P = 0.01) and duration of hospital stay before MDR-A BSI (P = 0.04) were independently associated with 14-day mortality in multivariate analysis. Conclusion: No significant difference was detected between CM and non-COL based combinations in the treatment of MDR-A BSIs in terms of efficacy and 14-day mortality.
Collapse
Affiliation(s)
- Ilker Inanc Balkan
- Istanbul University, Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ayse Batirel
- Kartal Dr. Lutfi Kirdar Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Oguz Karabay
- Sakarya University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Sakarya, Turkey
| | - Canan Agalar
- Fatih Sultan Mehmet Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Serife Akalin
- Pamukkale University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Denizli, Turkey
| | - Ozlem Alici
- Fatih Sultan Mehmet Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Emine Alp
- Erciyes University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Kayseri, Turkey
| | - Fatma Aybala Altay
- Diskapi Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Nilgun Altin
- Ankara Etlik Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Ferhat Arslan
- Istanbul Medipol University, Medical Faculty, Infectious Diseases, Istanbul, Turkey
| | - Turan Aslan
- Bezmi Alem University, Medical Faculty, Infectious Diseases, Istanbul, Turkey
| | - Nural Bekiroglu
- Marmara University, Medical Faculty, Biostatistics, Istanbul, Turkey
| | - Salih Cesur
- Ankara Etlik Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Aygul Dogan Celik
- Trakya University, Medical Faculty, Infectious Diseases, Edirne, Turkey
| | - Mustafa Dogan
- Namik Kemal University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Tekirdag, Turkey
| | - Bulent Durdu
- Bakirkoy Sadi Konuk Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Fazilet Duygu
- Gaziosmanpasa University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Tokat, Turkey
| | - Aynur Engin
- Cumhuriyet University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Sivas, Turkey
| | - Derya Ozturk Engin
- Haydarpasa Numune Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ibak Gonen
- Suleyman Demirel University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Isparta, Turkey
| | - Ertugrul Guclu
- Sakarya University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Sakarya, Turkey
| | - Tumer Guven
- Ankara Ataturk Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Cigdem Ataman Hatipoglu
- Ankara Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Salih Hosoglu
- Dicle University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Diyarbakır, Turkey
| | | | - Aysegul Ulu Kilic
- Erciyes University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Kayseri, Turkey
| | - Bahar Ormen
- Izmir Ataturk Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Davut Ozdemir
- Duzce University, Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Düzce, Turkey
| | - Serdar Ozer
- Kartal Dr. Lutfi Kirdar Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Nefise Oztoprak
- Antalya Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Antalya, Turkey
| | - Nurbanu Sezak
- Duzce University, Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Düzce, Turkey
| | - Vedat Turhan
- GATA Haydarpasa Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Nesrin Turker
- Duzce University, Education and Research Hospital, Infectious Diseases and Clinical Microbiology, Düzce, Turkey
| | - Hava Yilmaz
- Ondokuz Mayıs University, Medical Faculty, Infectious Diseases and Clinical Microbiology, Samsun, Turkey
| |
Collapse
|
39
|
Garnacho-Montero J, Dimopoulos G, Poulakou G, Akova M, Cisneros JM, De Waele J, Petrosillo N, Seifert H, Timsit JF, Vila J, Zahar JR, Bassetti M. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med 2015; 41:2057-75. [PMID: 26438224 DOI: 10.1007/s00134-015-4079-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acinetobacter baumannii constitutes a dreadful problem in many ICUs worldwide. The very limited therapeutic options available for these organisms are a matter of great concern. No specific guidelines exist addressing the prevention and management of A. baumannii infections in the critical care setting. METHODS Clinical microbiologists, infectious disease specialists and intensive care physicians were invited by the Chair of the Infection Section of the ESICM to participate in a multidisciplinary expert panel. After the selection of clinically relevant questions, this document provides recommendations about the use of microbiological techniques for identification of A. baumannii in clinical laboratories, antibiotic therapy for severe infections and recommendations to control this pathogen in outbreaks and endemic situations. Evidence supporting each statement was graded according to the European Society of Clinical Microbiology and Infection Diseases (ESCMID) grading system. RESULTS Empirical coverage of A. baumannii is recommended in severe infections (severe sepsis or septic shock) occurring during an A. baumannii outbreak, in an endemic setting, or in a previously colonized patient. For these cases, a polymyxin is suggested as part of the empirical treatment in cases of a high suspicion of a carbapenem-resistant (CR) A. baumannii strain. An institutional program including staff education, promotion of hand hygiene, strict contact and isolation precautions, environmental cleaning, targeted active surveillance, and antimicrobial stewardship should be instituted and maintained to combat outbreaks and endemic situations. CONCLUSIONS Specific recommendations about prevention and management of A. baumannii infections in the ICU were elaborated by this multidisciplinary panel. The paucity of randomized controlled trials is noteworthy, so these recommendations are mainly based on observational studies and pharmacodynamics modeling.
Collapse
Affiliation(s)
- José Garnacho-Montero
- Unidad Clínica de Cuidados Intensivos, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Seville, Spain.
| | - George Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, Medical School, University of Athens, Athens, Greece
| | - Garyphallia Poulakou
- 4th Department of Internal Medicine, Athens University School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - José Miguel Cisneros
- Unidad Clínicia de Enfermedades Infecciosas, Microbiología y Preventiva, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Jan De Waele
- Department of Critical Care Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Nicola Petrosillo
- 2nd Infectious Disease Division, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Jean François Timsit
- Medical and Infectious Diseases ICU, Bichat Hospital, 75018, Paris, France
- University Paris-Diderot - Inserm U1137 - IAME, 75018, Paris, France
| | - Jordi Vila
- Department of Clinical Microbiology, CDB, Hospital Clínic, School of Medicine, University of Barcelona, Centre for International Health Research, (CRESIB-Hospital Clínic), Barcelona, Spain
| | - Jean-Ralph Zahar
- Unité de Prévention et de Lutte Contre les Infections Nosocomiales, Université d'Angers, Centre Hospitalo-universitaire d'Angers, Angers, France
| | - Matteo Bassetti
- Infectious Diseases Clinic, Santa Maria Misericordia University Hospital, Udine, Italy
| |
Collapse
|
40
|
AdeR protein regulates adeABC expression by binding to a direct-repeat motif in the intercistronic spacer. Microbiol Res 2015; 183:60-7. [PMID: 26805619 DOI: 10.1016/j.micres.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022]
Abstract
Overexpression of the efflux pump AdeABC is associated with tigecycline resistance of multi-drug resistant Acinetobacter baumannii (MDRAB). A two-component regulatory system, sensor AdeS and regulator AdeR proteins regulate the pump. However, the detailed mechanism of the AdeR protein to enhance the expression of adeABC operon is not well defined. We illustrated the biological characteristics of AdeR proteins by comparing a mutant AdeR protein of a tigecycline resistant MDRAB to the wild AdeR protein. By analyzing a series of deletion constructs, a minimal gene cassette of the intercistronic spacer DNA fragment specifically bound with the adeR protein and resulted in band shifting in electrophoresis mobility shifting assays (EMSA). A conserve direct repeat motif was observed in the intercistronic spacer DNA. We demonstrated the AdeR protein was a direct-repeat-binding protein. Two common residue mutations on the AdeR proteins of tigecycline resistant MDRAB isolates could reduce their binding affinity with the intercistronic spacer. The free intercistronic spacer may then more efficiently support the read-through of the adeABC operon during the co-transcriptional translation in tigecycline resistant MDRAB isolates.
Collapse
|
41
|
In Vitro Activity of Tigecycline Against Acinetobacter baumannii: Global Epidemiology and Resistance Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 897:1-14. [DOI: 10.1007/5584_2015_5001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
El-Shazly S, Dashti A, Vali L, Bolaris M, Ibrahim AS. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. Int J Infect Dis 2015; 41:42-9. [PMID: 26518066 DOI: 10.1016/j.ijid.2015.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The aim of this study was to identify the genetic relatedness of multiple drug-resistant (MDR) Acinetobacter baumannii clinical isolates recovered from a hospital in Los Angeles. METHODS Twenty-one MDR A. baumannii isolates were collected and their antibiotic susceptibilities determined according to Clinical and Laboratory Standards Institute guidelines. Genes coding for antibiotic resistance were identified by PCR, and their identities were confirmed by DNA sequencing. Clonal relationships were studied by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS MDR consistently correlated with the presence of oxacillinases, mostly in the form of the plasmid-mediated OXA-23 enzyme, which was detected in 12 (57.1%) isolates. GES-type carbapenemases were found in 20 (95.2%) strains, AAC in all 21 (100%) strains, and PER in seven (33.3%) strains, and ISAba1 was detected in 16 (76.2%) isolates. The association between ISAba1 and resistance genes confirms insertion elements as a source of β-lactamase production. Of the 21 clinical isolates, five were found to be related to sequence type 1 (ST1) and 16 to ST2, as analyzed by MLST. PFGE demonstrated that the majority of clinical isolates were highly related (>85%). CONCLUSIONS This study supports a more complete understanding of genotyping of antibiotic resistance for better assessment of MDR strain transmission.
Collapse
Affiliation(s)
- Sherief El-Shazly
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait; Division of Adult Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, 1124 West Carson St., St. John's Cardiovascular Research Center, Torrance, CA 90502, USA
| | - Ali Dashti
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait
| | - Leila Vali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait
| | - Michael Bolaris
- Division of Pediatric Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Ashraf S Ibrahim
- Division of Adult Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, 1124 West Carson St., St. John's Cardiovascular Research Center, Torrance, CA 90502, USA; David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
43
|
Combination Therapy for Extreme Drug-Resistant Acinetobacter baumannii: Ready for Prime Time? Crit Care Med 2015; 43:1332-4. [PMID: 25978159 DOI: 10.1097/ccm.0000000000001029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Lee HY, Lee HY, Shin SB, Shin KS, Lee BW, Kim HW, Lee S, Kim SC. Lung Transplantation in a Patient with Pre-transplant Colonization of Extensively Drug-resistant Acinetobacter baumannii. Korean J Crit Care Med 2015. [DOI: 10.4266/kjccm.2015.30.2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Garnacho-Montero J, Amaya-Villar R, Ferrándiz-Millón C, Díaz-Martín A, López-Sánchez JM, Gutiérrez-Pizarraya A. Optimum treatment strategies for carbapenem-resistant Acinetobacter baumannii bacteremia. Expert Rev Anti Infect Ther 2015; 13:769-77. [PMID: 25865094 DOI: 10.1586/14787210.2015.1032254] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) constitutes an increasing problem worldwide. CRAB bacteremia is associated with a high fatality rate and its optimal treatment has not been established. Early institution of appropriate therapy is shown to improve survival of patients with CRAB bloodstream infection. Regrettably, treatment options are limited. Little information exists about the efficacy of sulbactam for the treatment of CRAB bacteremia. Colistin and tigecycline possess good in vitro activity and represent in many cases the only therapeutic options although clinical data are scarce. The need for a loading dose of colistin has been recently demonstrated to rapidly achieve therapeutic levels. The use of combination therapy is also a matter of debate but current evidence do not support its routine use.
Collapse
Affiliation(s)
- José Garnacho-Montero
- Unidad Clínica de Cuidados Críticos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Alternative clinical indications for novel antibiotics licensed for skin and soft tissue infection? Curr Opin Infect Dis 2015; 28:117-24. [DOI: 10.1097/qco.0000000000000142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline Evaluation and Surveillance Trial. J Clin Microbiol 2015; 53:1286-93. [PMID: 25653413 DOI: 10.1128/jcm.03184-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Tigecycline Evaluation and Surveillance Trial (TEST) was designed to monitor susceptibility to commonly used antimicrobial agents among important pathogens. We report here on susceptibility among Gram-negative pathogens collected globally from pediatric patients between 2004 and 2012. Antimicrobial susceptibility was determined using guidelines published by the Clinical and Laboratory Standards Institute (CLSI). Most Enterobacteriaceae showed high rates of susceptibility (>95%) to amikacin, tigecycline, and the carbapenems (imipenem and meropenem); 90.8% of Acinetobacter baumannii isolates were susceptible to minocycline, and susceptibility rates were highest in North America, Europe, and Asia/Pacific Rim. Amikacin was the most active agent against Pseudomonas aeruginosa (90.4% susceptibility), with susceptibility rates being highest in North America. Extended-spectrum β-lactamases (ESBLs) were reported for 11.0% of Escherichia coli isolates and 24.2% of Klebsiella pneumoniae isolates globally, with rates reaching as high as 25.7% in the Middle East and >43% in Africa and Latin America, respectively. Statistically significant (P<0.01) differences in susceptibility rates were noted between pediatric age groups (1 to 5 years, 6 to 12 years, or 13 to 17 years of age), globally and in some regions, for all pathogens except Haemophilus influenzae. Significant (P<0.01) differences were reported for all pathogens globally and in most regions, considerably more frequently, when pediatric and adult susceptibility results were compared. Amikacin, tigecycline, and the carbapenems were active in vitro against most Gram-negative pathogens collected from pediatric patients; A. baumannii and P. aeruginosa were susceptible to fewer antimicrobial agents. Susceptibility rates among isolates from pediatric patients were frequently different from those among isolates collected from adults.
Collapse
|
48
|
Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787-814. [PMID: 25516853 PMCID: PMC4266826 DOI: 10.12998/wjcc.v2.i12.787] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections.
Collapse
|
49
|
Bruhn KW, Pantapalangkoor P, Nielsen T, Tan B, Junus J, Hujer KM, Wright MS, Bonomo RA, Adams MD, Chen W, Spellberg B. Host fate is rapidly determined by innate effector-microbial interactions during Acinetobacter baumannii bacteremia. J Infect Dis 2014; 211:1296-305. [PMID: 25378635 DOI: 10.1093/infdis/jiu593] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is one of the most antibiotic-resistant pathogens. Defining mechanisms driving pathogenesis is critical to enable new therapeutic approaches. METHODS We studied virulence differences across a diverse panel of A. baumannii clinical isolates during murine bacteremia to elucidate host-microbe interactions that drive outcome. RESULTS We identified hypervirulent strains that were lethal at low intravenous inocula and achieved very high early, and persistent, blood bacterial densities. Virulent strains were nonlethal at low inocula but lethal at 2.5-fold higher inocula. Finally, relatively avirulent (hypovirulent) strains were nonlethal at 20-fold higher inocula and were efficiently cleared by early time points. In vivo virulence correlated with in vitro resistance to complement and macrophage uptake. Depletion of complement, macrophages, and neutrophils each independently increased bacterial density of the hypovirulent strain but insufficiently to change lethality. However, disruption of all 3 effector mechanisms enabled early bacterial densities similar to hypervirulent strains, rendering infection 100% fatal. CONCLUSIONS The lethality of A. baumannii strains depends on distinct stages. Strains resistant to early innate effectors are able to establish very high early bacterial blood density, and subsequent sustained bacteremia leads to Toll-like receptor 4-mediated hyperinflammation and lethality. These results have important implications for translational efforts to develop therapies that modulate host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Brandon Tan
- Department of Molecular Microbiology and Immunology
| | - Justin Junus
- Department of Molecular Microbiology and Immunology
| | - Kristine M Hujer
- Department of Medicine Department of Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | | | - Robert A Bonomo
- Department of Medicine Department of Pharmacology Department of Molecular Biology and Microbiology, Case Western Reserve University Department of Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | - Mark D Adams
- Department of J. Craig Venter Institute, La Jolla, California
| | - Wangxue Chen
- Department of Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario
| | - Brad Spellberg
- Department of Medicine, Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
50
|
Comparative assessment of antimicrobial susceptibility testing for tigecycline and colistin against Acinetobacter baumannii clinical isolates, including multidrug-resistant isolates. Int J Antimicrob Agents 2014; 44:396-401. [DOI: 10.1016/j.ijantimicag.2014.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/14/2014] [Accepted: 06/18/2014] [Indexed: 11/13/2022]
|