1
|
Jheng JR, Hsieh CF, Chang YH, Ho JY, Tang WF, Chen ZY, Liu CJ, Lin TJ, Huang LY, Chern JH, Horng JT. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:598-610. [PMID: 35650006 DOI: 10.1016/j.jmii.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The purpose of this study was to examine the in vivo activity of rosmarinic acid (RA) - a phytochemical with antioxidant, anti-inflammatory, and antiviral properties - against influenza virus (IAV). An antibody-based kinase array and different in vitro functional assays were also applied to identify the mechanistic underpinnings by which RA may exert its anti-IAV activity. METHODS We initially examined the potential efficacy of RA using an in vivo mouse model. A time-of-addition assay and an antibody-based kinase array were subsequently applied to investigate mechanism-of-action targets for RA. The hemagglutination inhibition assay, neuraminidase inhibition assay, and cellular entry assay were also performed. RESULTS RA increased survival and prevented body weight loss in IAV-infected mice. In vitro experiments revealed that RA inhibited different IAV viruses - including oseltamivir-resistant strains. From a mechanistic point of view, RA downregulated the GSK3β and Akt signaling pathways - which are known to facilitate IAV entry and replication into host cells. CONCLUSIONS RA has promising preclinical efficacy against IAV, primarily by interfering with the GSK3β and Akt signaling pathways.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Hsiu Chang
- National Defense Medical Center, Institute of Preventive Medicine, Taipei 104, Taiwan
| | - Jin-Yuan Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Wen-Fang Tang
- Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Zi-Yi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Chien-Jou Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Ta-Jen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Li-Yu Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Jyh-Haur Chern
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
2
|
Zhang Z, Morris‐Natschke SL, Cheng Y, Lee K, Li R. Development of anti‐influenza agents from natural products. Med Res Rev 2020; 40:2290-2338. [DOI: 10.1002/med.21707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi‐Jun Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Susan L. Morris‐Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Yung‐Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kuo‐Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Chinese Medicine Research and Development Center China Medical University and Hospital Taichung Taiwan
| | - Rong‐Tao Li
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
3
|
Boltz D, Peng X, Muzzio M, Dash P, Thomas PG, Margitich V. Activity of enisamium, an isonicotinic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells. Antivir Chem Chemother 2019; 26:2040206618811416. [PMID: 30466301 PMCID: PMC6961345 DOI: 10.1177/2040206618811416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aims New therapeutics for the control of influenza virus infections are needed to alleviate the burden caused by seasonal epidemics and occasional pandemics, and to overcome the potential risk of drug-resistance emergence. Enisamium iodide (Amizon®, Farmak) is currently approved for clinical use for the treatment of influenza in 11 countries which includes Ukraine, Russia, Belarus, Kazakhstan, and Uzbekistan. However, experimental evidence of the antiviral activity of enisamium has not been reported. Methods Antiviral activity of enisamium was assessed by virus yield reduction assays using differentiated normal human bronchial epithelial cells. Permeability of enisamium into differentiated normal human bronchial epithelial cells and its cytotoxicity were also assessed, and comparisons with other cell lines were made. Results Enisamium inhibited replication of multiple subtypes of influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1, seasonal H3N2, the zoonotic H5N1 and H7N9, neuraminidase inhibitor-resistant variant carrying the H275Y NA substitution (N1 numbering), and influenza B virus at doses 23- to 64-fold lower than cytotoxic concentrations. The permeability of enisamium in Madin–Darby canine kidney cells (where no antiviral activity was found) was less than 0.08%, while higher permeability was observed in differentiated normal human bronchial epithelial cells (1.9%). The kinetics of enisamium intracellular uptake in differentiated normal human bronchial epithelial cells was concentration dependent. In time-of-addition experiments in differentiated normal human bronchial epithelial cells, enisamium treatment within 4 h after A(H1N1) virus inoculation resulted in 100-fold or greater reductions in virus titers, suggesting that it affects an early stage of the virus life cycle. Conclusions Enisamium exhibits antiviral activity against influenza viruses in vitro, supporting the reported clinical efficacy against influenza virus infections.
Collapse
Affiliation(s)
- David Boltz
- 1 Illinois Institute of Technology Research Institute, Chicago, USA
| | - Xinjian Peng
- 1 Illinois Institute of Technology Research Institute, Chicago, USA
| | - Miguel Muzzio
- 1 Illinois Institute of Technology Research Institute, Chicago, USA
| | - Pradyot Dash
- 2 St Jude Children's Research Hospital, Memphis, USA
| | - Paul G Thomas
- 2 St Jude Children's Research Hospital, Memphis, USA
| | | |
Collapse
|
4
|
Nannetti G, Massari S, Mercorelli B, Bertagnin C, Desantis J, Palù G, Tabarrini O, Loregian A. Potent and broad-spectrum cycloheptathiophene-3-carboxamide compounds that target the PA-PB1 interaction of influenza virus RNA polymerase and possess a high barrier to drug resistance. Antiviral Res 2019; 165:55-64. [PMID: 30885750 DOI: 10.1016/j.antiviral.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Influenza viruses are major respiratory pathogens responsible for both seasonal epidemics and occasional pandemics worldwide. The current available treatment options have limited efficacy and thus the development of new antivirals is highly needed. We previously reported the identification of a series of cycloheptathiophene-3-carboxamide compounds as influenza A virus inhibitors that act by targeting the protein-protein interactions between the PA-PB1 subunits of the viral polymerase. In this study, we characterized the antiviral properties of the most promising compounds as well as investigated their propensity to induce drug resistance. Our results show that some of the selected compounds possess potent, broad-spectrum anti-influenza activity as they efficiently inhibited the replication of several strains of influenza A and B viruses, including an oseltamivir-resistant clinical isolate, with nanomolar or low-micromolar potency. The most promising compounds specifically inhibited the PA-PB1 binding in vitro and interfered with the influenza A virus polymerase activity in a cellular context, without showing cytotoxicity. The most active PA-PB1 inhibitors showed to possess a drug resistance barrier higher than that of oseltamivir. Indeed, no viral variants with reduced susceptibility to the selected compounds emerged after serial passages of influenza A virus under drug selective pressure. Overall, our studies identified potent PA-PB1 inhibitors as promising candidates for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Giulio Nannetti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
5
|
Zhang J, Hu Y, Foley C, Wang Y, Musharrafieh R, Xu S, Zhang Y, Ma C, Hulme C, Wang J. Exploring Ugi-Azide Four-Component Reaction Products for Broad-Spectrum Influenza Antivirals with a High Genetic Barrier to Drug Resistance. Sci Rep 2018; 8:4653. [PMID: 29545578 PMCID: PMC5854701 DOI: 10.1038/s41598-018-22875-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/02/2018] [Indexed: 01/02/2023] Open
Abstract
Influenza viruses are respiratory pathogens that are responsible for seasonal influenza and sporadic influenza pandemic. The therapeutic efficacy of current influenza vaccines and small molecule antiviral drugs is limited due to the emergence of multidrug-resistant influenza viruses. In response to the urgent need for the next generation of influenza antivirals, we utilized a fast-track drug discovery platform by exploring multi-component reaction products for antiviral drug candidates. Specifically, molecular docking was applied to screen a small molecule library derived from the Ugi-azide four-component reaction methodology for inhibitors that target the influenza polymerase PAC-PB1N interactions. One hit compound 5 was confirmed to inhibit PAC-PB1N interactions in an ELISA assay and had potent antiviral activity in an antiviral plaque assay. Subsequent structure-activity relationship studies led to the discovery of compound 12a, which had broad-spectrum antiviral activity and a higher in vitro genetic barrier to drug resistance than oseltamivir. Overall, the discovery of compound 12a as a broad-spectrum influenza antiviral with a high in vitro genetic barrier to drug resistance is significant, as it offers a second line of defense to combat the next influenza epidemics and pandemics if vaccines and oseltamivir fail to confine the disease outbreak.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Christopher Foley
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Yuanxiang Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Shuting Xu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Yongtao Zhang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Chunlong Ma
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States.
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States.
| |
Collapse
|
6
|
Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses. Antiviral Res 2017; 145:103-113. [PMID: 28778830 DOI: 10.1016/j.antiviral.2017.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023]
Abstract
The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals.
Collapse
|
7
|
Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorg Med Chem Lett 2017; 27:2920-2925. [PMID: 28501512 DOI: 10.1016/j.bmcl.2017.04.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/24/2022]
Abstract
Compounds simultaneously carrying the monoterpene and coumarin moieties have been tested for cytotoxicity and inhibition of activity against influenza virus A/California/07/09 (H1N1)pdm09. The structure of substituents in the coumarin framework, as well as the structure and the absolute configuration of the monoterpenoid moiety, are shown to significantly influence the anti-influenza activity and cytotoxicity of the compounds under study. The compounds with a bicyclic pinane framework exhibit the highest selectivity indices (the ratios between the cytotoxicity and the active dose). The derivative of (-)-myrtenol 15c, which is characterized by promising activity, low cytotoxicity, and synthetic accessibility, has the greatest potential among this group of compounds. It exhibited the highest activity when added to the infected cell culture at early stages of viral reproduction.
Collapse
|
8
|
Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 2016; 123:236-255. [PMID: 27484512 PMCID: PMC7115672 DOI: 10.1016/j.ejmech.2016.07.056] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
Collapse
Affiliation(s)
- Mohd Zaheen Hassan
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia; Department of Pharmaceutical Chemistry, Alwar Pharmacy College, M.I.A., Alwar, Rajasthan 301030, India.
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia.
| | - Mohamed Ashraf Ali
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | |
Collapse
|
9
|
Ma C, Li F, Musharrafieh RG, Wang J. Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance. Antiviral Res 2016; 133:62-72. [PMID: 27478032 DOI: 10.1016/j.antiviral.2016.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
As the number of drug-resistant influenza viruses continues to increase, antivirals with novel mechanisms of action are urgently needed. Among the two classes of FDA-approved antiviral drugs, neuraminidase (NA) inhibitors, oseltamivir, zanamivir, and peramivir, are currently the only choice for the prevention and treatment of influenza virus infection. Due to the antigenic drift and antigenic shift, it will only be a matter of time before influenza viruses become completely resistant to these NA inhibitors. In pursuing the next generation of antiviral drugs with complementary mechanisms of action to those of the NA inhibitors, we have identified a natural product, cyclosporine A (CsA) (1), as a desired drug candidate. In this study, we discovered that CsA (1) and its analogs have broad-spectrum antiviral activity against multiple influenza A and B strains, including strains that are resistant to either NA or M2 inhibitors or both. Moreover, CsA (1) displays a high in vitro genetic barrier of drug resistance than oseltamivir carboxylate Mechanistic studies revealed that CsA (1) acts at the intermediate step of viral replication post viral fusion. Its antiviral mechanism is independent of inhibiting the isomerase activity of cyclophilin A (CypA), and CsA (1) has no effect on the viral polymerase activity The potent antiviral efficacy of CsA (1), coupled with the high in vitro genetic barrier of drug resistance and novel mechanism of action, renders CsA (1) a promising anti-influenza drug candidate for further development.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Fang Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Rami Ghassan Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
10
|
Abstract
The mosquito-borne Chikungunya virus (CHIKV) is a profound global threat due to its high rate of contagion and the lack of vaccine or effective treatment. Suramin is a symmetric polyanionic naphthylurea that is widely used in the clinical treatment of parasite infections. Numerous studies have reported the broad antiviral activities of suramin; however, inhibition effects against CHIKV have not yet been demonstrated. The aim of this study was thus to investigate the antiviral effect of suramin on CHIKV infection and to elucidate the molecular mechanism underlying inhibition using plaque reduction assay, RT-qPCR, western blot analysis, and plaque assay. Microneutralization assay was used to determine the EC50 of suramin in the CHIKV-S27 strain as well as in three other clinical strains (0611aTw, 0810bTw and 0706aTw). Time-of-addition was used to reveal the anti-CHIKV mechanism of suramin. We also evaluated anti-CHIKV activity with regard to viral entry, virus release, and cell-to-cell transmission. Cytopathic effect, viral RNA, viral protein, and the virus yield of CHIKV infection were shown to diminish in the presence of suramin in a dose-dependent manner. Suramin was also shown the inhibitory activities of the three clinical isolates. Suramin inhibited the early progression of CHIKV infection, due perhaps to interference with virus fusion and binding, which subsequently prevented viral entry. Results of a molecular docking simulation indicate that suramin may embed within the cavity of the E1/E2 heterodimer to interfere with their function. Suramin was also shown to reduce viral release and cell-to-cell transmission of CHIKV. In conclusion, Suramin shows considerable potential as a novel anti-CHIKV agent targeting viral entry, extracellular transmission, and cell-to-cell transmission.
Collapse
Affiliation(s)
- Yi-Jung Ho
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ming Wang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jeng-wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, and Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (SCK); (CCL)
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (SCK); (CCL)
| |
Collapse
|
11
|
Tarus B, Bertrand H, Zedda G, Di Primo C, Quideau S, Slama-Schwok A. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus. J Biomol Struct Dyn 2014; 33:1899-912. [PMID: 25333630 PMCID: PMC4548311 DOI: 10.1080/07391102.2014.979230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function.
Collapse
Affiliation(s)
- Bogdan Tarus
- a Virologie et Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique , Domaine de Vilvert, 78350 Jouy en Josas , France
| | | | | | | | | | | |
Collapse
|
12
|
Hsu KC, Hung HC, Horng JT, Fang MY, Chang CY, Li LT, Chen IJ, Chen YC, Chou DL, Chang CW, Hsieh HP, Yang JM, Hsu JTA. Parallel screening of wild-type and drug-resistant targets for anti-resistance neuraminidase inhibitors. PLoS One 2013; 8:e56704. [PMID: 23437217 PMCID: PMC3577712 DOI: 10.1371/journal.pone.0056704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA) drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR) influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT) and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye), which inhibited WT NA and MDR NA with IC(50) values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high mutation rates, such as cancer and human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ling-Ting Li
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - I-Jung Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Chu Chen
- Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | - Ding-Li Chou
- Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
| | - John T.-A. Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Hsieh CF, Yen HR, Liu CH, Lin S, Horng JT. Ching-fang-pai-tu-san inhibits the release of influenza virus. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:533-544. [PMID: 23041224 DOI: 10.1016/j.jep.2012.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/15/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ching-fang-pai-tu-san (CFPTS) is a Chinese herbal decoction that is used as a cure for the common cold, fever, headache, and poor circulation. However, no previous studies have investigated the mode of action of CFPTS against influenza virus infections. To investigate the antiviral mechanism of CFPTS, we examined viral entry, transcription, translation, viral glycoprotein hemagglutinin (HA) transport, and budding of the influenza virus. MATERIALS AND METHODS The antiviral activity of nontoxic concentrations of CFPTS against influenza virus A/WSN/33 was examined by assaying (neutralization assay) its inhibition of the virus-induced cytopathic effects. The mode of CFPTS action was first examined with a time-of-addition assay of synchronized infections, followed by monitoring HA transport by immunofluorescence microscopy. Viral endocytosis was evaluated with attachment and penetration assays. The inhibition of viral replication was measured by quantitative real-time PCR, immunoblotting, and immunofluorescence microscopy. We also performed assays related to the inhibition of viral entry, such as neuraminidase activity and hemagglutinin activity assays. RESULTS Based on the inhibition of the virus-induced cytopathic effect in Madin-Darby canine kidney cells, the EC(50) of CFPTS was about 1.44 ± 0.22 mg/mL against influenza virus A/WSN/33. CFPTS displayed a broad spectrum of inhibitory activities against different strains of influenza A virus, as well as some enteroviruses. However, this extract proved less effective against clinical oseltamivir-resistant strains and influenza B viruses. CFPTS did not suppress viral RNA or protein synthesis. According to a time-of-addition assay, the antiviral mechanism of CFPTS may involve viral budding or intracellular viral glycoprotein transport. A plaque reduction assay showed that CFPTS reduced both the plaque size and plaque quantity. The intracellular transport of viral glycoprotein hemagglutinin was blocked by CFPTS by immunofluorescence microscopic analysis. Thus, it is possible that the antiviral mechanism of CFPTS might inhibit the assembly of progeny virions and/or their subsequent release. CONCLUSIONS Our results give scientific support to the use of CFPTS in the treatment of influenza virus infections. CFPTS has potential utility in the management of seasonal pandemics of influenza virus infections, like other clinically available drugs.
Collapse
Affiliation(s)
- Chung-Fan Hsieh
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Hsieh CF, Lo CW, Liu CH, Lin S, Yen HR, Lin TY, Horng JT. Mechanism by which ma-xing-shi-gan-tang inhibits the entry of influenza virus. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:57-67. [PMID: 22710290 DOI: 10.1016/j.jep.2012.05.061] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/30/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ma-xing-shi-gan-tang (MXSGT, aka maxing shigan powder), a Chinese herbal decoction, has been used for the treatment of the common cold, fever, and influenza virus infections. However, the underlying mechanisms of its activity against the influenza virus are not fully understood. In this study, we examined the antiviral effects of MXSGT in influenza-virus-infected MDCK cells and their underlying mechanisms, including the damage of the viral surface ultrastructure and the consequent inhibition of viral entry. MATERIALS AND METHODS The antiviral activity of nontoxic concentrations of MXSGT against influenza virus A/WSN/33 was examined by assaying (neutralization assay) its inhibition of the virus-induced cytopathic effects. The mode of MXSGT action was first examined with a time-of-addition assay of synchronized infections, followed by viral attachment and penetration assays. Viral endocytosis was evaluated with attachment and penetration assays. We also performed assays related to the inhibition of viral entry, such as neuraminidase activity, hemagglutinin activity, and phosphoinositide-3-kinase (PI3K)/AKT phosphorylation assays. The inhibition of viral replication was demonstrated by quantitative real-time PCR, immunoblotting, and immunofluorescence microscopy. The surface ultrastructure of the MXSGT-treated virus was revealed by atomic force microscopy. RESULTS MXSGT exhibited an EC(50) of 0.83±0.41mg/ml against influenza virus A/WSN/33 (H1N1), with broad-spectrum inhibitory activity against different strains of human influenza A viruses, including clinical oseltamivir-resistant isolates and an H1N1pdm strain. The synthesis of both viral RNA and protein was profoundly inhibited when the cells were treated with MXSGT. The time-of-addition assay demonstrated that MXSGT blocks the virus entry phase. This was confirmed with attachment and penetration assays, in which MXSGT showed similar inhibitory potencies (IC(50) of 0.58±0.07 and 0.47±0.08mg/ml). High-resolution images and quantitative measurements made with atomic force microscopy confirmed that the viral surface structure was disrupted by MXSGT. We also established that viral entry, regulated by the PI3K/AKT signaling pathway, was abolished by MXSGT. CONCLUSIONS Our results give scientific support to the use of MXSGT in the treatment of influenza virus infections. MXSGT has potential utility in the management of seasonal pandemics of influenza virus infections, like other clinically available drugs.
Collapse
Affiliation(s)
- Chung-Fan Hsieh
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Hui-Yi S, Ching-Chuan K, Jim-Tong H, Shin-Ru S, Sui-Yuan C, Chun-Chen L, John T.-A. H, Prashanth Kumar A, Yu-Sheng C, Hsing-Pang H. An Efficient, Mild and Scalable Synthesis of Bioactive Compounds Containing the Angelicin Scaffold. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Yeh JY, Coumar MS, Shiao HY, Lin TJ, Lee YC, Hung HC, Ko S, Kuo FM, Fang MY, Huang YL, Hsu JTA, Yeh TK, Shih SR, Chao YS, Horng JT, Hsieh HP. Anti-influenza drug discovery: identification of an orally bioavailable quinoline derivative through activity- and property-guided lead optimization. ChemMedChem 2012; 7:1546-50. [PMID: 22821876 DOI: 10.1002/cmdc.201200259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Indexed: 12/16/2022]
Abstract
From a high-throughput screening (HTS) hit with inhibitory activity against virus-induced cytophathic in the low micromolar range, we have developed a potent anti-influenza lead through careful optimization without compromising the drug-like properties of the compound. An orally bioavailable compound was identified as a lead agent with nanomolar activity against influenza, representing a 140-fold improvement over the initial hit.
Collapse
Affiliation(s)
- Jiann-Yih Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County 350, Taiwan, RoC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of BPR3P0128 as an inhibitor of cap-snatching activities of influenza virus. Antimicrob Agents Chemother 2011; 56:647-57. [PMID: 21930871 DOI: 10.1128/aac.00125-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to identify the antiviral mechanism of a novel compound, BPR3P0128. From a large-scale screening of a library of small compounds, BPR3P compounds were found to be potent inhibitors of influenza viral replication in Madin-Darby canine kidney (MDCK) cells. BPR3P0128 exhibited inhibitory activity against both influenza A and B viruses. The 50% inhibitory concentrations were in the range of 51 to 190 nM in MDCK cells, as measured by inhibition-of-cytopathic-effect assays. BPR3P0128 appeared to target the viral replication cycle but had no effect on viral adsorption. The inhibition of cap-dependent mRNA transcription by BPR3P0128 was more prominent with a concurrent increase in cap-independent cRNA replication in a primer extension assay, suggesting a role of BPR3P0128 in switching transcription to replication. This reduction in mRNA expression resulted from the BPR3P-mediated inhibition of the cap-dependent endoribonuclease (cap-snatching) activities of nuclear extracts containing the influenza virus polymerase complex. No inhibition of binding of 5' viral RNA to the viral polymerase complex by this compound was detected. BPR3P0128 also effectively inhibited other RNA viruses, such as enterovirus 71 and human rhinovirus, but not DNA viruses, suggesting that BPR3P0128 targets a cellular factor(s) associated with viral PB2 cap-snatching activity. The identification of this factor(s) could help redefine the regulation of viral transcription and replication and thereby provide a potential target for antiviral chemotherapeutics.
Collapse
|
18
|
Inhibition of HIV-1 Tat-mediated transcription by a coumarin derivative, BPRHIV001, through the Akt pathway. J Virol 2011; 85:9114-26. [PMID: 21697490 DOI: 10.1128/jvi.00175-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-encoded RNA-binding protein Tat is known to play an essential role in viral gene expression. In the search for novel compounds to inhibit Tat transactivity, one coumarin derivative, BPRHIV001, was identified, with a 50% effective concentration (EC(50)) against HIV-1 at 1.3 nM. BPRHIV001 is likely to exert its effects at the stage after initiation of RNAPII elongation since Tat protein expression and the assembly of the Tat/P-TEFb complex remained unchanged. Next, a reduction of the p300 protein level, known to modulate Tat function through acetylation, was observed upon BPRHIV001 treatment, while the p300 mRNA level was unaffected. A concordant reduction of phosphorylated Akt, which was shown to be closely related to p300 stability, was observed in the presence of BPRHIV001 and was accompanied by a decrease of phosphorylated PDPK1, a well-known Akt activator. Furthermore, the docking analysis revealed that the reduced PDPK1 phosphorylation likely resulted from the allosteric effect of interaction between BPRHIV001 and PDPK1. With strong synergistic effects with current reverse transcriptase inhibitors, BPRHIV001 has the potential to become a promising lead compound for the development of a novel therapeutic agent against HIV-1 infection.
Collapse
|
19
|
Wu MS, Yen HR, Chang CW, Peng TY, Hsieh CF, Chen CJ, Lin TY, Horng JT. Mechanism of action of the suppression of influenza virus replication by Ko-Ken Tang through inhibition of the phosphatidylinositol 3-kinase/Akt signaling pathway and viral RNP nuclear export. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:614-623. [PMID: 21232589 DOI: 10.1016/j.jep.2011.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/19/2010] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
AIMS OF THE STUDY Ko-Ken Tang (KKT, aka kakkon-to), a conventional Chinese herbal medicine, has been used for the treatment of the common cold, fever and influenza virus infection. However, the underlying mechanism of its activity against influenza virus infection remains elusive. In this study, the antiviral effect and its underlying mechanism was evaluated, including the investigation of anti-influenza virus activity of KKT on MDCK cells and corresponding mechanism related to phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and its consecutive viral RNP nuclear export. MATERIALS AND METHODS The antiviral activity of non-toxic concentration of KKT was examined against various strains of influenza virus and enterovirus 71 by neutralization assay. PI3K/Akt signaling activated by influenza virus was inspected in A549 cells by western blot. Inhibition of influenza polymerase activity by KKT was measured with plasmid-based reverse genetics using primer extension assay and luciferase reporter assay. Inhibition of viral vRNP nuclear export was demonstrated by laser confocal microscopy and interspecies heterokaryon assay. RESULTS KKT inhibits influenza virus replication but not entry, and it exhibits a broad spectrum inhibitory activity against human influenza A viruses and enterovirus 71. KKT does not inhibit viral polymerase activity but directly blocks the virus-induced phosphatidylinositol 3-kinase/Akt signaling pathway, which in turns causes retention of viral nucleoprotein in the nucleus, thereby interfering with virus propagation. The inhibition by KKT of the nuclear export of viral protein was further confirmed by heterokaryon assay. CONCLUSIONS The results obtained in this study give scientific support to KKT for the treatment of influenza virus infection. KKT could be of potential use in the management of seasonal pandemic influenza virus infection in addition to other clinically available drugs.
Collapse
Affiliation(s)
- Ming-Sian Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shih SR, Chu TY, Reddy GR, Tseng SN, Chen HL, Tang WF, Wu MS, Yeh JY, Chao YS, Hsu JT, Hsieh HP, Horng JT. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J Biomed Sci 2010; 17:13. [PMID: 20178582 PMCID: PMC2838761 DOI: 10.1186/1423-0127-17-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 02/23/2010] [Indexed: 12/30/2022] Open
Abstract
Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus. Conclusions To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.
Collapse
Affiliation(s)
- Shin-Ru Shih
- Department of Biochemistry, Chang Gung University, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yeh JY, Coumar MS, Horng JT, Shiao HY, Kuo FM, Lee HL, Chen IC, Chang CW, Tang WF, Tseng SN, Chen CJ, Shih SR, Hsu JTA, Liao CC, Chao YS, Hsieh HP. Anti-Influenza Drug Discovery: Structure−Activity Relationship and Mechanistic Insight into Novel Angelicin Derivatives. J Med Chem 2010; 53:1519-33. [DOI: 10.1021/jm901570x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiann-Yih Yeh
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | - Hui-Yi Shiao
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 300, Taiwan, ROC
| | - Fu-Ming Kuo
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Hui-Ling Lee
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - In-Chun Chen
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chun-Wei Chang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | - Sung-Nain Tseng
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections
| | | | - Shin-Ru Shih
- Department of Medical Biotechnology and Laboratory Science
| | - John T.-A. Hsu
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, ROC
| | - Chun-Chen Liao
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 300, Taiwan, ROC
- Department of Chemistry, Chung Yuan Christian University, 200 Chung-Pei Road, Chungli 320, Taiwan, ROC
| | - Yu-Sheng Chao
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|