1
|
Sandu A, Danilova S, Acton L, Cobley A, Gould P. Virucidal and Bactericidal Properties of Biocompatible Copper Textiles. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400346. [PMID: 40071224 PMCID: PMC11891573 DOI: 10.1002/gch2.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/05/2025] [Indexed: 03/14/2025]
Abstract
The COVID-19 pandemic highlights the global threat posed by emerging viruses, emphasizing the critical need for effective strategies to combat pathogen transmission. Moreover, alongside emerging viruses, the increasing threat of antimicrobial resistance further reinforces the need to develop novel methods for infection control. Anti-pathogenic coatings on textiles offer a promising solution; in this study, three electroless copper-plated fabrics are evaluated for their antipathogenic properties following International Standards Organisation (ISO) standards. Prior to electroless plating, materials are activated either by immersion in a Pd catalyst solution (material A) or by ink-jet printing Cu/Ag catalyst along the weft (material B) or warp thread (material C). This study demonstrates that activation method influences the materials antipathogenic performance, with all materials achieving complete bactericidal/fungicidal neutralization within 30 min of incubation. Material B exhibits up to 4-log virucidal effects within 1 h against viruses such as coronavirus (OC43, 229E), Influenza A (H1N1), and Rotavirus A. Furthermore, biocompatibility testing indicates that material B exhibited low in vitro cytotoxicity. Textile B demonstrates strong antibacterial results even after one year of accelerated aging with no significant difference (P = 0.74) in efficiency against MRSA, highlighting promising applications for infection control in clinical settings reducing pathogen transmission, nosocomial infections and the associated economic burden.
Collapse
Affiliation(s)
| | - Sofya Danilova
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| | - Lauren Acton
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| | - Andrew Cobley
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| | - Phillip Gould
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| |
Collapse
|
2
|
Lin H, Gao Z, Shan T, Asilebieke A, Guo R, Kan YC, Li C, Xu Y, Chu JJ. A review on the promising antibacterial agents in bone cement-From past to current insights. J Orthop Surg Res 2024; 19:673. [PMID: 39428491 PMCID: PMC11492595 DOI: 10.1186/s13018-024-05143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Antibacterial bone cements (ABCs), such as antibiotic-loaded bone cements (ALBCs), have been widely utilized in clinical treatments. Currently, bone cements loaded with vancomycin, gentamicin, tobramycin, or clindamycin are approved by the US Food and Drug Administration. However, traditional ALBCs exhibit drawbacks like burst release and bacterial resistance. Therefore, there is a demand for the development of antibacterial bone cements containing novel agents to address these defects. In this review, we provide an overview and prospect of the new antibacterial agents that can be used or have the potential to be applied in bone cement, including metallic antibacterial agents, pH-switchable antibacterial agents, cationic polymers, N-halamines, non-leaching acrylic monomers, antimicrobial peptides and enzymes. Additionally, we have conducted a preliminary assessment of the feasibility of bone cement containing N-halamine, which has demonstrated good antibacterial activities. The conclusion of this review is that the research and utilization of bone cement containing novel antibacterial agents contribute to addressing the limitations of ALBCs. Therefore, it is necessary to continue expanding the research and use of bone cement incorporating novel antibacterial agents. This review offers a novel perspectives for designing ABCs and treating bone infections.
Collapse
Affiliation(s)
- Hao Lin
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, 230013, Anhui, China
| | - Zhe Gao
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Tao Shan
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Ayakuzi Asilebieke
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Rui Guo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Chun Li
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| | - Yang Xu
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China.
| |
Collapse
|
3
|
Yan CJ, Yang SR, Yeh YC. Injectable pH- and Ultrasound-Responsive Dual-Crosslinked Dextran/Chitosan/TiO 2 Nanocomposite Hydrogels for Antibacterial Applications. Chem Asian J 2024; 19:e202301151. [PMID: 38782735 DOI: 10.1002/asia.202301151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Combining exogenous and endogenous antibacterial mechanisms has been demonstrated to enhance therapeutic efficacy significantly. This study constructs an innovative type of exogenous and endogenous antibacterial nanocomposite hydrogels with injectable dual-crosslinked networks and dual-stimuli responsiveness. The primary network establishes imine bonds between the functionalized dextran featuring norbornenes and aldehydes (NorAld-Dex) and the quaternized chitosan (QCS). The imine bonds provide self-healing, injectability, and pH-responsiveness to the hydrogel network. The secondary network is established by integrating thiolated mesoporous silica-coated titanium dioxide nanoparticles (TiO2@MS-SH) into the hydrogel network via an ultrasound-activated thiol-norbornene reaction with NorAld-Dex. The microstructures and properties of NorAld-Dex/QCS/TiO2@MS-SH hydrogels can be fine-tuned by adjusting the sonication time to increase the amount of thiol-norbornene crosslinks in the network. Effective antibacterial performance of NorAld-Dex/QCS/TiO2@MS-SH hydrogels at low pH has been demonstrated with the synergistic effect of the acid-induced dissociation of the hydrogel network, protonated QCS, and the reactive oxygen species (ROS) generated by TiO2@MS-SH nanoparticles under ultrasound irradiation. In summary, NorAld-Dex/QCS/TiO2@MS-SH nanocomposite hydrogel is an advanced dual stimuli-responsive antibacterial platform with customizable microstructures and properties, offering great potential for biomedical applications.
Collapse
Affiliation(s)
- Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| |
Collapse
|
4
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
5
|
Chen Y, Caneli G, Xie D. A PMMA bone cement with improved antibacterial function and flexural strength. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1398-1414. [PMID: 35321628 DOI: 10.1080/09205063.2022.2056943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
A novel non-leaching antibacterial bone cement has been developed and evaluated. An antibacterial furanone derivative was synthesized and covalently coated onto the surface of alumina filler particles, followed by mixing into a conventional poly(methyl methacrylate) bone cement. Flexural strength and bacterial viability were used to evaluate the modified cements. Effects of coated antibacterial moiety content, coated alumina filler particle size and loading were investigated. Results showed that almost all the modified cements showed higher flexural strength (up to 10%), flexural modulus (up to 18%), and antibacterial activity (up to 67% to S. aureus and up to 84% to E. coli), as compared to original poly(methyl methacrylate) cement. Increasing antibacterial moiety and filler loading significantly enhanced antibacterial activity. On the other hand, increasing coated filler particle size decreased antibacterial activity. Increasing antibacterial moiety content and particle size did not significantly affect flexural strength and modulus. Increasing filler loading did not significantly affect flexural modulus but reduced flexural strength. Antibacterial agent leaching tests showed that it seems no leachable antibacterial component from the modified experimental cement to the surrounding environment. Within the limitations of this study, the modified poly(methyl methacrylate) bone cement may potentially be developed into a clinically useful bone cement for reducing in-surgical and post-surgical infection.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
- Jinchu University, Hubei, P.R. China
| | - Gulsah Caneli
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Widakdo J, Chen TM, Lin MC, Wu JH, Lin TL, Yu PJ, Hung WS, Lee KR. Evaluation of the Antibacterial Activity of Eco-Friendly Hybrid Composites on the Base of Oyster Shell Powder Modified by Metal Ions and LLDPE. Polymers (Basel) 2022; 14:polym14153001. [PMID: 35893965 PMCID: PMC9332488 DOI: 10.3390/polym14153001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming biological waste into high-value-added materials is currently attracting extensive research interest in the medical and industrial treatment fields. The design and use of new antibacterial systems are urgently needed. In this study, we used discarded oyster shell powder (OSP) to prepare calcium oxide (CaO). CaO was mixed with silver (Ag), zinc (Zn), and copper (Cu) ions as a controlled release and antibacterial system to test the antibacterial activity. The inhibition zones of various modified metals were between 22 and 29 mm for Escherichia coli (E. coli) and between 21 and 24 mm for Staphylococcus aureus (S. aureus). In addition, linear low-density polyethylene (LLDPE) combined with CaO and metal ion forms can be an excellent alternative to a hybrid composite. The strength modulus at 1% LLDPE to LLDPE/CaO Ag increased from 297 to 320 MPa. In addition, the antimicrobial activity of LLDPE/CaO/metal ions against E. coli had an antibacterial effect of about 99.9%. Therefore, this hybrid composite material has good potential as an antibacterial therapy and biomaterial suitable for many applications.
Collapse
Affiliation(s)
- Januar Widakdo
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
| | - Tsan-Ming Chen
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Meng-Chieh Lin
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Jia-Hao Wu
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Tse-Ling Lin
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Pin-Ju Yu
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Wei-Song Hung
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chungli 32023, Taiwan
- Correspondence: (W.-S.H.); (K.-R.L.); Tel.: +886-2-2733-3141 (K.-R.L.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chungli 32023, Taiwan
- Correspondence: (W.-S.H.); (K.-R.L.); Tel.: +886-2-2733-3141 (K.-R.L.)
| |
Collapse
|
7
|
Antibacterial Performance of Composite Containing Quaternary Ammonium Silica (QASi) Filler - a Preliminary Study. J Dent 2022; 123:104209. [PMID: 35760205 DOI: 10.1016/j.jdent.2022.104209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Antibacterial composite will have a significant clinical advantage in controlling caries. This study tests the antibacterial properties of a novel bulk-fill flowable composite (Infinx™, Nobio™ Ltd.) containing quaternary ammonium silica (QASi) filler particles. METHODS Infinix™ was tested in-vitro by the direct contact test (DCT), using E. faecalis or whole saliva as inoculum. A similar formula composite without QASi served as a control. In addition, composite test samples were polymerized on three volunteers' intact buccal enamel surfaces of mandibular first premolars in a split-mouth design experiment. Traditional composite served as control (Filtekt Bulk Fill™ 3M). Bacterial viability on the composite surfaces weres assessed ex-vivo microscopically six months later, using a fluorescent dead/live stain. Images of each bacterial sample were taken using a fluorescent microscope (Nikon Eclipse 80i), and further live/total cell analysis was performed using ImageJ software. RESULTS Following direct contact with one week of aged Infinix, more than 1 million E. faecalis bacteria were killed. Similarly, when using the saliva as inoculum, no single microorganism survived. Six-month in-vivo experiments supported these results by showing a reduction of 54%, 30% and 28% in live/total number of bacteria ratio retrieved from antibacterial composite vs. the control in volunteers #1, #2, #3 respectively. CONCLUSION Within the limitations of the experimental design, the present study suggest that antibacterial activity of quaternary ammonium silica particles (QASi) is comparable to that of previously described quaternary ammonium polyethyleneimine particles (QPEI). In addition, whole saliva bacteria are effectively killed by QASi-containing composite in-vitro and in-vivo, for a period of six month at least. Long-term full-scale clinical study is needed to confirm the findings of the present study and their implication on maintaining health balance. CLINICAL SIGNIFICANCE Antibacterial composites containing QASi filler is a novel class of restoratives that may contributes to caries lesion control.
Collapse
|
8
|
A novel antibacterial zirconia-containing PMMA bone cement. J Mech Behav Biomed Mater 2022; 129:105135. [DOI: 10.1016/j.jmbbm.2022.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
|
9
|
Zheng TX, Li W, Gu YY, Zhao D, Qi MC. Classification and research progress of implant surface antimicrobial techniques. J Dent Sci 2022; 17:1-7. [PMID: 35028014 PMCID: PMC8739780 DOI: 10.1016/j.jds.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the good biocompatibility and ideal mechanical property, titanium implants have been widely used in dental clinic and orthopedic surgery. However, bacteria induced infection can cause per-implant inflammation and decrease the success rate of implant surgery. Therefore, developing antimicrobial techniques is essential to successful application of titanium implants. Many surface antimicrobial techniques, including antimicrobial coating and surface modifications, have been explored and they always exert antimicrobial effect by reducing bacterial adhesion, inhibiting their metabolism, or destructing cell structure. In this paper, different surface antimicrobial techniques and their recent research progress are reviewed to provide a brief insight on this area.
Collapse
Affiliation(s)
| | | | | | | | - Meng-Chun Qi
- Corresponding author. Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, No.21 Bohai Road, District of Caofeidian, Tangshan City, 063200, Hebei Province, PR China.
| |
Collapse
|
10
|
Chu J, Li C, Guo J, Xu Y, Fu Y. Preparation of new bio-based antibacterial acrylic bone cement via modification with a biofunctional monomer of nitrofurfuryl methacrylate. Polym Chem 2022. [DOI: 10.1039/d2py00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new bio-based antibacterial p(NFMA-co-MMA) bone cement exhibits excellent antibacterial performance in the treatment of osteoporotic vertebral compression fracture.
Collapse
Affiliation(s)
- Jianjun Chu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- The Second People's Hospital of Hefei, Hefei 230011, China
| | - Chuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China
| | - Jing Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang Xu
- The Second People's Hospital of Hefei, Hefei 230011, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Liu X, Cheng Q, Zhu Y, Yu S, Hou Y, Cui Z, Zhu S. Construction and properties of the antibacterial epitaxial transition layer on a zirconia ceramic surface. RSC Adv 2021; 11:34699-34709. [PMID: 35494754 PMCID: PMC9044776 DOI: 10.1039/d1ra06496g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Secondary caries is one of the main causes of dental zirconia restoration failure in the clinic. Therefore, it is urgent to improve the antibacterial performance of zirconia ceramics to reduce the occurrence of secondary caries. In this study, a quaternary ammonium compound antibacterial polymer was innovatively synthesized by solution polymerization with a quaternary ammonium salt monomer as the antibacterial component. The antibacterial epitaxial transition layer was successfully prepared on the surface of zirconia ceramics by the hydroxyl group on HEMA reacting with the siloxane group in the KH570 hydrolysate, which makes the antibacterial polymer indirectly chemically combine with the silicate epitaxial transition layer. The antibacterial epitaxial transition layer exhibited excellent mechanical properties, satisfactory biocompatibility and significant antibacterial effects, and the maximum antibacterial rate is 99%. The antibacterial epitaxial transition layer plays an important role in preventing secondary caries and improving the success rate of clinical zirconia ceramic restorations. Construction of an antibacterial epitaxial transition layer on a zirconia ceramic surface to improve the antibacterial properties.![]()
Collapse
Affiliation(s)
- Xiuju Liu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Qiuli Cheng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Yanlin Zhu
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University Changchun P. R. China
| | - Shiyang Yu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Yanyan Hou
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Zhanchen Cui
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Song Zhu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| |
Collapse
|
12
|
Rechmann P, Le CQ, Chaffee BW, Rechmann BMT. Demineralization prevention with a new antibacterial restorative composite containing QASi nanoparticles: an in situ study. Clin Oral Investig 2021; 25:5293-5305. [PMID: 33608748 PMCID: PMC7895509 DOI: 10.1007/s00784-021-03837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate whether a newly developed dental composite with quaternary ammonium silica dioxide (QASi) nanoparticles incorporated with other fillers into the restorative material demonstrates antibacterial activity by reducing enamel demineralization in an in situ gap model. MATERIALS AND METHODS Twenty subjects wearing a lower removable partial denture (RPD) with acrylic flanges on both sides of the mouth were recruited into the 4-week in situ study. The gap model consisted of an enamel slab placed next to a composite, separated by a 38-μm space. In the split-mouth design on one side of the RPD, the composite was the Nobio Infinix composite (Nobio Ltd., Kadima, Israel), and the contralateral side used a control composite. Each participant received enamel slabs from one tooth. The gap model was recessed into the RPD buccal flange, allowing microbial plaque to accumulate within the gap. After 4 weeks of continuous wearing, decalcification (∆Z mineral loss) of the enamel slabs adjacent to the gap was determined by cross-sectional microhardness testing in the laboratory. RESULTS The ∆Z for the antibacterial composite test side was 235±354 (mean±standard deviation [SD]; data reported from 17 participants) and statistically significantly lower compared to ∆Z of the control side (774±556; mean±SD) (paired t-test, P<0.0001; mean of test minus control -539 (SD=392), 95% confidence interval of difference: -741, -338). CONCLUSIONS This in situ clinical study showed that composites with QASi antibacterial particles significantly reduced demineralization in enamel adjacent to a 38-μm gap over a 4-week period in comparison to a conventional composite. CLINICAL RELEVANCE Composites with QASi nanoparticle technology have the potential to reduce the occurrence of secondary caries. TRIAL REGISTRATION ClinicalTrials.gov #NCT04059250.
Collapse
Affiliation(s)
- Peter Rechmann
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Charles Q Le
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Benjamin W Chaffee
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Beate M T Rechmann
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
13
|
Chrószcz M, Barszczewska-Rybarek I. Nanoparticles of Quaternary Ammonium Polyethylenimine Derivatives for Application in Dental Materials. Polymers (Basel) 2020; 12:E2551. [PMID: 33143324 PMCID: PMC7693368 DOI: 10.3390/polym12112551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Various quaternary ammonium polyethylenimine (QA-PEI) derivatives have been synthesized in order to obtain nanoparticles. Due to their antibacterial activity and non-toxicity towards mammalian cells, the QA-PEI nanoparticles have been tested extensively regarding potential applications as biocidal additives in various dental composite materials. Their impact has been examined mostly for dimethacrylate-based restorative materials; however, dental cements, root canal pastes, and orthodontic adhesives have also been tested. Results of those studies showed that the addition of small quantities of QA-PEI nanoparticles, from 0.5 to 2 wt.%, led to efficient and long-lasting antibacterial effects. However, it was also discovered that the intensity of the biocidal activity strongly depended on several chemical factors, including the degree of crosslinking, length of alkyl telomeric chains, degree of N-alkylation, degree of N-methylation, counterion type, and pH. Importantly, the presence of QA-PEI nanoparticles in the studied dental composites did not negatively impact the degree of conversion in the composite matrix, nor its mechanical properties. In this review, we summarized these features and functions in order to present QA-PEI nanoparticles as modern and promising additives for dental materials that can impart unique antibacterial characteristics without deteriorating the products' structures or mechanical properties.
Collapse
Affiliation(s)
- Marta Chrószcz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | |
Collapse
|
14
|
Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111382. [PMID: 33254989 DOI: 10.1016/j.msec.2020.111382] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/01/2023]
Abstract
In spite of antibiotics, antibacterial agents or specifically known as antiseptics are actively explored for the prevention of infection-associated medical devices. Antibacterial agents are introduced to overcome the complication of bacterial resistance which devoted by antibiotics. It can be classified into inorganic and organic, that prominently have impacted bacterial retardation in their own killing mechanism patterns. Therefore, this review paper aimed to provide information on most common used inorganic and organic antibacterial agents which have potential to be utilized in biomedical applications, thus, classifying the trends of antibacterial mechanism on Gram-negative and Gram-positive bacteria. In the beginning, infectious diseases and associated biomedical infections were stated to expose current infection scenarios on medical devices. The general view, application, susceptible bacteria and activation mechanism of inorganic (silver, copper, gold and zinc) and organic (chlorhexidine, triclosan, polyaniline and polyethylenimine) antibacterial agents that are widely proposed for biomedical area, were then gathered and reviewed. In the latter part of the study, the intact mechanisms of inorganic and organic antibacterial agents in retarding bacterial growth were classified and summarized based on its susceptibility on Gram-negative and Gram-positive bacteria. Most of inorganic antibacterial agents are in the form of metal, which release its ions to retard prominently Gram-negative bacteria. While organic antibacterial agents are susceptible to Gram-positive bacteria through organelle modification and disturbance of bio-chemical pathway. However, the antibacterial effects of each antibacterial agent are also depending on its effective mechanism and the species of bacterial strain. These compilation reviews and classification mechanisms are beneficial to assist the selection of antibacterial agents to be incorporated on/within biomaterials, based on its susceptible bacteria. Besides, the combination of several antibacterial agents with different susceptibilities will cover a wide range of antibacterial spectrum.
Collapse
Affiliation(s)
- Syafiqah Saidin
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; IJN-UTM Cardiovascular Engineering Centre, Institute for Human Centred Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohamad Amin Jumat
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Nur Ain Atiqah Mohd Amin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Abdullah Sharaf Saleh Al-Hammadi
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
15
|
Baras BH, Sun J, Melo MAS, Tay FR, Oates TW, Zhang K, Weir MD, Xu HH. Novel root canal sealer with dimethylaminohexadecyl methacrylate, nano-silver and nano-calcium phosphate to kill bacteria inside root dentin and increase dentin hardness. Dent Mater 2019; 35:1479-1489. [DOI: 10.1016/j.dental.2019.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
|
16
|
Arjmand N, Boruziniat A, Zakeri M, Mohammadipour HS. Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin. J Adv Prosthodont 2018; 10:177-183. [PMID: 29930786 PMCID: PMC6004357 DOI: 10.4047/jap.2018.10.3.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 12/29/2017] [Accepted: 02/27/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at 37℃ for 24 h, the bonded samples were sectioned longitudinally to produce 1.0 × 1.0 mm beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.
Collapse
Affiliation(s)
- Nushin Arjmand
- Department of Restorative and Cosmetic Dentistry, School of Dentistry, Bojnord University of Medical Sciences, Bojnord, Iran
| | - Alireza Boruziniat
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Zakeri
- Postgraduate Student of Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Sadat Mohammadipour
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
ZHANG Y, CHEN Y, HU Y, HUANG F, XIAO Y. Quaternary ammonium compounds in dental restorative materials. Dent Mater J 2018; 37:183-191. [DOI: 10.4012/dmj.2017-096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yu ZHANG
- The Affiliated Stomatological Hospital of Kunming Medical University
| | - Yinyan CHEN
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
- Kunming Municipal Stomatological Hospital
| | - Yuntong HU
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
| | - Fang HUANG
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
| | - Yuhong XIAO
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
- Center for Dental Research, School of Dentistry, Loma Linda University
| |
Collapse
|
18
|
Zaltsman N, Ionescu AC, Weiss EI, Brambilla E, Beyth S, Beyth N. Surface-modified nanoparticles as anti-biofilm filler for dental polymers. PLoS One 2017; 12:e0189397. [PMID: 29244848 PMCID: PMC5731751 DOI: 10.1371/journal.pone.0189397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/26/2017] [Indexed: 01/30/2023] Open
Abstract
The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were incorporated in commercial dental resin material and the degree of monomer conversion, mechanical strength, and water contact angle were tested to characterize the effect of the nanoparticles on resin material. Antibacterial activity was evaluated with the direct contact test and the biofilm inhibition test against Streptococcus mutans. Addition of cinnamaldehyde-modified particles preserved the degree of conversion and compressive strength of the base material and increased surface hydrophobicity. Quaternary ammonium functional groups led to a decrease in the degree of conversion and to low compressive strength, without altering the hydrophilic nature of the base material. In the direct contact test and the anti-biofilm test, the polyethyleneimine particles exhibited the strongest antibacterial effect. The cinnamaldehyde-modified particles displayed antibiofilm activity, silica particles with quaternary ammonium were ineffective. Immobilization of t-cinnamaldehyde onto a solid surface via amine linkers provided a better alternative to the well-known quaternary ammonium bactericides.
Collapse
Affiliation(s)
- Nathan Zaltsman
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Andrei C. Ionescu
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute, University of Milan, Milan, Italy
| | - Ervin I. Weiss
- Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eugenio Brambilla
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute, University of Milan, Milan, Italy
| | - Shaul Beyth
- Orthopedic Surgery Complex, Hadassah University Hospital, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
19
|
Zhu W, Liu F, He J. Synthesis of imidazolium-containing mono-methacrylates as polymerizable antibacterial agents for acrylic bone cements. J Mech Behav Biomed Mater 2017; 74:176-182. [DOI: 10.1016/j.jmbbm.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 10/18/2022]
|
20
|
Venkatesh M, Barathi VA, Goh ETL, Anggara R, Fazil MHUT, Ng AJY, Harini S, Aung TT, Fox SJ, Liu S, Yang L, Barkham TMS, Loh XJ, Verma NK, Beuerman RW, Lakshminarayanan R. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers. Antimicrob Agents Chemother 2017; 61:e00469-17. [PMID: 28784676 PMCID: PMC5610535 DOI: 10.1128/aac.00469-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022] Open
Abstract
The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections.
Collapse
Affiliation(s)
- Mayandi Venkatesh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
| | - Veluchamy Amutha Barathi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
| | - Raditya Anggara
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
| | | | - Alice Jie Ying Ng
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
| | - Sriram Harini
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
| | - Thet Tun Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
| | - Stephen John Fox
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shouping Liu
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR, Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
21
|
Tan JPK, Coady DJ, Sardon H, Yuen A, Gao S, Lim SW, Liang ZC, Tan EW, Venkataraman S, Engler AC, Fevre M, Ono R, Yang YY, Hedrick JL. Broad Spectrum Macromolecular Antimicrobials with Biofilm Disruption Capability and In Vivo Efficacy. Adv Healthc Mater 2017; 6. [PMID: 28504348 DOI: 10.1002/adhm.201601420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Indexed: 12/28/2022]
Abstract
In this study, antimicrobial polymers are synthesized by the organocatalytic ring-opening polymerization of an eight-membered heterocyclic carbonate monomer that is subsequently quaternized with methyl iodide. These polymers demonstrate activity against clinically relevant Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans with fast killing kinetics. Importantly, the polymer efficiently inhibits biofilm growth and lyses existing biofilm, leading to a reduction in biomass and cell viability. In addition, the macromolecular antimicrobial is less likely to induce resistance as it acts via a membrane-lytic mechanism. The polymer is not cytotoxic toward mammalian cells with LD50 of 99.0 ± 11.6 mg kg-1 in mice through i.v. injection. In an S. aureus blood stream infection mouse model, the polymer removes bacteria from the blood more rapidly than the antibiotic Augmentin. At the effective dose, the polymer treatment does not damage liver and kidney tissues or functions. In addition, blood electrolyte balance remains unchanged after the treatment. The low cost of starting materials, ease of synthesis, nontoxicity, broad spectrum activity with fast killing kinetics, and in vivo antimicrobial activity make these macromolecular antimicrobials ideal candidates for prevention of sepsis and treatment of infections.
Collapse
Affiliation(s)
- Jeremy P. K. Tan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Daniel J. Coady
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Haritz Sardon
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science; E-48011 Bilbao Spain
| | - Alexander Yuen
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Shaun W. Lim
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Eddy W. Tan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Amanda C. Engler
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Mareva Fevre
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Robert Ono
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| |
Collapse
|
22
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
23
|
Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M. Antimicrobial Polymers in the Nano-World. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E48. [PMID: 28336882 PMCID: PMC5333033 DOI: 10.3390/nano7020048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
Infections are one of the main concerns of our era due to antibiotic-resistant infections and the increasing costs in the health-care sector. Within this context, antimicrobial polymers present a great alternative to combat these problems since their mechanisms of action differ from those of antibiotics. Therefore, the microorganisms' resistance to these polymeric materials is avoided. Antimicrobial polymers are not only applied in the health-care sector, they are also used in many other areas. This review presents different strategies that combine nanoscience and nanotechnology in the polymer world to combat contaminations from bacteria, fungi or algae. It focuses on the most relevant areas of application of these materials, viz. health, food, agriculture, and textiles.
Collapse
Affiliation(s)
- Marta Álvarez-Paino
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
24
|
Fox SJ, Fazil MHUT, Dhand C, Venkatesh M, Goh ETL, Harini S, Eugene C, Lim RR, Ramakrishna S, Chaurasia SS, Beuerman RW, Verma CS, Verma NK, Loh XJ, Lakshminarayanan R. Insight into membrane selectivity of linear and branched polyethylenimines and their potential as biocides for advanced wound dressings. Acta Biomater 2016; 37:155-64. [PMID: 27079762 DOI: 10.1016/j.actbio.2016.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED We report here structure-property relationship between linear and branched polyethylene imines by examining their antimicrobial activities against wide range of pathogens. Both the polymers target the cytoplasmic membrane of bacteria and yeasts, eliciting rapid microbicidal properties. Using multiscale molecular dynamic simulations, we showed that, in both fully or partially protonated forms LPEI discriminates between mammalian and bacterial model membranes whereas BPEI lacks selectivity for both the model membranes. Simulation results suggest that LPEI forms weak complex with the zwitterionic lipids whereas the side chain amino groups of BPEI sequester the zwitterionic lipids by forming tight complex. Consistent with these observations, label-free cell impedance measurements, cell viability assays and high content analysis indicate that BPEI is cytotoxic to human epithelial and fibroblasts cells. Crosslinking of BPEI onto electrospun gelatin mats attenuate the cytotoxicity for fibroblasts while retaining the antimicrobial activity against Gram-positive and yeasts strains. PEI crosslinked gelatin mats elicit bactericidal activity by contact-mediated killing and durable to leaching for 7days. The potent antimicrobial activity combined with enhanced selectivity of the crosslinked ES gelatin mats would expand the arsenel of biocides in the management of superficial skin infections. The contact-mediated microbicidal properties may avert antimicrobial resistance and expand the diversity of applications to prevent microbial contamination. STATEMENT OF SIGNIFICANCE Current commercially available advanced wound dressings are either impregnated with metallic silver or silver salts which have side effects or may not avert antimicrobial resistance. In this article, we have used multidisciplinary approach comprising of computational, chemical and biological methods to understand the antimicrobial properties and biocompatibility of linear (LPEI) and branched (BPEI) polyethylenimines. We then applied this knowledge to develop dual purpose wound dressings containing these polymers, which encourages healing while maintain antimicrobial activity. In addition, the approach can be expanded to rationalize the antimicrobial vs. cytotoxicity of other cationic polymers and the method of crosslinking would enhance their potentials as biocides for advanced materials.
Collapse
|
25
|
Abid CKVZ, Jain S, Jackeray R, Chattopadhyay S, Singh H. Formulation and characterization of antimicrobial quaternary ammonium dendrimer in poly(methyl methcarylate) bone cement. J Biomed Mater Res B Appl Biomater 2015; 105:521-530. [PMID: 26584408 DOI: 10.1002/jbm.b.33553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 07/31/2015] [Accepted: 10/03/2015] [Indexed: 12/13/2022]
Abstract
The use of novel antimicrobial molecules in bone cement can improve efficiency of recuperation after arthroplasty or joint replacement surgeries, avoiding the risks associated with antibiotic resistant antimicrobial agents. Nanomaterials particularly dendrimers are particularly useful for making broad spectrum killing agents owing to their large surface areas and functionalities. Therefore, we have synthesized generation 1 quaternary ammonium dendrimer of tripropylene glycol diacrylate (TPGDA) using octyl iodide (OI) [TPGDA G1.0 (=) quaternary octyl iodide (QOI)] and capitalized on their capabilities of contact killing based mechanism. We formulated different TPGDA G1.0 (=) QOI antimicrobial agent loaded liquid component composed of methyl methacrylate monomer and N,N-dimethyl-p-toluidine coinitiator. Different polymethyl methacrylate (PMMA) based experimental bone cement formulations were made and dendrimer concentration was optimized. Mechanical strength and compressive modulus of modified bone cement decreased on increasing concentrations and 10% was optimized for further analysis. The mechanical strength of bone cement yield the similar trend in wet conditions bone cement immersed in artificially created stimulated body fluids. Ten percent TPGDA G1.0 (=) QOI in bone cement was sufficient to kill gram positive and negative bacteria and its property is retained even after a period of 30 days. Thus novel dendritic structures show promise for clinical antimicrobial activity while retaining mechanical properties of bone cements. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 521-530, 2017.
Collapse
Affiliation(s)
- C K V Zainul Abid
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Swati Jain
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Richa Jackeray
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sruti Chattopadhyay
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Harpal Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
26
|
Azevedo MM, Ramalho P, Silva AP, Teixeira-Santos R, Pina-Vaz C, Rodrigues AG. Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors. J Med Microbiol 2014; 63:1167-1173. [DOI: 10.1099/jmm.0.069609-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biofilms are commonly involved in medical device-related infections. The purpose of this study was to determine the antimicrobial and anti-biofilm activity of polyethyleneimine (PEI) and PEI-based nanoparticles (nanoPEI) against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii and Candida albicans (clinical and ATCC strains), and to evaluate their effect upon biofilm formation on polyurethane (PUR)-like catheters. MICs and minimal lethal concentrations of PEI and nanoPEI were determined according to CLSI microdilution reference protocols. For PEI, the MIC value was 195.31 mg l−1 for all the bacteria and 48.83 mg l−1 for the yeast strains. For nanoPEI, the MIC value was 1250 mg l−1 for all the strains except A. baumannii, for which it was 2500 mg l−1. Biofilm formation was assessed with PUR-like catheter segments and biofilm metabolic activity was quantified by colorimetry with a tetrazolium reduction assay. Plasma membrane integrity and membrane potential were assessed by flow cytometry after staining microbial cells with a membrane-impermeable dye, propidium iodide, and a membrane-potential marker, DiBAC4(3). PEI inhibited growth of all microbial species; higher concentrations of nanoPEI were needed to inhibit growth of all species. Biofilm formation in the presence of anti-bacterial PEI activity was dose-dependent (except for S. epidermidis) and species-related. NanoPEI at 0.5×MIC and MIC significantly reduced the metabolic activity of biofilms of S. aureus, S. epidermidis and A. baumannii, whereas 2×MIC was required in order to inhibit biofilm metabolic activity.
Collapse
Affiliation(s)
- M. M. Azevedo
- Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
- School D. Maria II, Rua da Alegria, V.N. Famalicão, Portugal
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - P. Ramalho
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - A. P. Silva
- Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - R. Teixeira-Santos
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - C. Pina-Vaz
- Department of Microbiology, Hospital S. João, Porto, Portugal
- Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - A. G. Rodrigues
- Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital S. João, Porto
- Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|