1
|
Langlois B, Guerin F, Isnard C, Gakuba C, Du Cheyron D, Giard JC, Brisse S, Le Hello S, Gravey F. Phenotypic and genomic changes in enteric Klebsiella populations during long-term ICU patient hospitalization: the role of RamR regulation. mSphere 2024; 9:e0070424. [PMID: 39611855 DOI: 10.1128/msphere.00704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Acquired antimicrobial resistance and metabolic changes are central for bacterial host adaptation during the long-term hospitalization of patients. We aimed to analyze the genomic and phenotypic evolution of enteric Klebsiella populations in long-term intensive care unit (ICU) patients. Weekly rectal swabs were prospectively collected from all patients admitted to the ICU in a teaching hospital from December 2018 to February 2019. The inclusion criterion for patients was hospitalization for more than 15 days in the ICU without any history of hospitalization or antibiotic treatment for the 3 months prior to admission. Among them, enteric Klebsiella pneumoniae species complex (KpSC) populations were detected. For each isolate, extensive antimicrobial resistance profiles were determined using the disk diffusion method, and the whole genome was sequenced using an Illumina platform. In silico typing methods, such as Multilocus Sequence Typing (MLST), core-genome MLST, SNP typing, resistome characterization and mutation point detection, were applied. During the study period, 471 patients were admitted to ICUs. Among them, 21 patients met the inclusion criteria, and only 5 patients (24%) carried unique and distinct KpSC populations during 2-10 weeks in the gut that as detected at admission and excluding acquisition during the ICU stay. One patient showed a rare ST1563 K. variicola persistent carriage for 7 consecutive weeks, which displayed important antimicrobial resistance phenotype changes in the 2 last weeks. In-depth in silico characterization and RNA sequencing of these strains revealed a mutation within the ramR transcriptional regulator resulting in overexpression of the ramA regulator and decreased expression of acrR, which controls antibiotic efflux. This mutation also impacts tolerance to biliary salts. This study revealed the importance of endogenous colonization of KpSC populations in the gut throughout the patient's long-term ICU stay and highlighted the role of ramR in drug susceptibility. IMPORTANCE The Klebsiella pneumoniae species complex (KpSC) is one of the major causes of nosocomial infections, especially in intensive care unit (ICUs). These bacteria are frequently highly resistant to antibiotics, leading to an increase in morbidity and mortality. The origins of multidrug-resistant KpSC strains isolated from ICU patients are still unclear, with at least two hypotheses of acquisition paths: (i) endogenous KpSC populations that are or became resistant to antibiotics and/or (ii) hospital acquisition of circulating KpSC clones. Genomic changes observed in this study might reveal mechanisms to better adapt to KpSC in the patient's gut in the face of heavy ICU medical care pressure.
Collapse
Affiliation(s)
- Benedicte Langlois
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
| | - Francois Guerin
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| | - Christophe Isnard
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| | - Clement Gakuba
- Department of Surgical Intensive Care, CHU Caen, Caen, France
| | | | | | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Simon Le Hello
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| | - Francois Gravey
- Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France
- Department of Infectious Agents, Bacteriology, CHU Caen, Caen, France
| |
Collapse
|
2
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:501. [PMID: 38927168 PMCID: PMC11200565 DOI: 10.3390/antibiotics13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Marine Novelli
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Université Paris Cité, CNRS, Biochimie des Protéines Membranaires, F-75005 Paris, France
| | | |
Collapse
|
4
|
Giraud E, Baucheron S, Foubert I, Doublet B, Nishino K, Cloeckaert A. Major primary bile salts repress Salmonella enterica serovar Typhimurium invasiveness partly via the efflux regulatory locus ramRA. Front Microbiol 2024; 15:1338261. [PMID: 38410385 PMCID: PMC10895713 DOI: 10.3389/fmicb.2024.1338261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Bile represses Salmonella enterica serovar Typhimurium (S. Typhimurium) intestinal cell invasion, but it remains unclear which bile components and mechanisms are implicated. Previous studies reported that bile inhibits the RamR binding to the ramA promoter, resulting in ramA increased transcription, and that ramA overexpression is associated to decreased expression of type III secretion system 1 (TTSS-1) invasion genes and to impaired intestinal cell invasiveness in S. Typhimurium. In this study, we assessed the possible involvement of the ramRA multidrug efflux regulatory locus and individual bile salts in the bile-mediated repression of S. Typhimurium invasion, using Caco-2 intestinal epithelial cells and S. Typhimurium strain ATCC 14028s. Our results indicate that (i) major primary bile salts, chenodeoxycholate and its conjugated-derivative salts, cholate, and deoxycholate, activate ramA transcription in a RamR-dependent manner, and (ii) it results in repression of hilA, encoding the master activator of TTSS-1 genes, and as a consequence in the repression of cellular invasiveness. On the other hand, crude ox bile extract and cholate were also shown to repress the transcription of hilA independently of RamR, and to inhibit cell invasion independently of ramRA. Altogether, these data suggest that bile-mediated repression of S. Typhimurium invasion occurs through pleiotropic effects involving partly ramRA, as well as other unknown regulatory pathways. Bile components other than the bile salts used in this study might also participate in this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | |
Collapse
|
5
|
Hajiagha MN, Kafil HS. Efflux pumps and microbial biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105459. [PMID: 37271271 DOI: 10.1016/j.meegid.2023.105459] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Biofilm-related infections are resistant forms of pathogens that are regarded as a medical problem, particularly due to the spread of multiple drug resistance. One of the factors associated with biofilm drug resistance is the presence of various types of efflux pumps in bacteria. Efflux pumps also play a role in biofilm formation by influencing Physical-chemical interactions, mobility, gene regulation, quorum sensing (QS), extracellular polymeric substances (EPS), and toxic compound extrusion. According to the findings of studies based on efflux pump expression analysis, their role in the anatomical position within the biofilm will differ depending on the biofilm formation stage, encoding gene expression level, the type and concentration of substrate. In some cases, the function of the efflux pumps can overlap with each other, so it seems necessary to accurate identify the efflux pumps of biofilm-forming bacteria along with their function in this process. Such studies will help to choose treatment strategy, at least in combination with antibiotics. Furthermore, if the goal of treatment is an efflux pump manipulation, we should not limit it to inhibition.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajiagha
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Trampari E, Prischi F, Vargiu AV, Abi-Assaf J, Bavro VN, Webber MA. Functionally distinct mutations within AcrB underpin antibiotic resistance in different lifestyles. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:2. [PMID: 38686215 PMCID: PMC11057200 DOI: 10.1038/s44259-023-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2024]
Abstract
Antibiotic resistance is a pressing healthcare challenge and is mediated by various mechanisms, including the active export of drugs via multidrug efflux systems, which prevent drug accumulation within the cell. Here, we studied how Salmonella evolved resistance to two key antibiotics, cefotaxime and azithromycin, when grown planktonically or as a biofilm. Resistance to both drugs emerged in both conditions and was associated with different substitutions within the efflux-associated transporter, AcrB. Azithromycin exposure selected for an R717L substitution, while cefotaxime for Q176K. Additional mutations in ramR or envZ accumulated concurrently with the R717L or Q176K substitutions respectively, resulting in clinical resistance to the selective antibiotics and cross-resistance to other drugs. Structural, genetic, and phenotypic analysis showed the two AcrB substitutions confer their benefits in profoundly different ways. R717L reduces steric barriers associated with transit through the substrate channel 2 of AcrB. Q176K increases binding energy for cefotaxime, improving recognition in the distal binding pocket, resulting in increased efflux efficiency. Finally, we show the R717 substitution is present in isolates recovered around the world.
Collapse
Affiliation(s)
- Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, S. P. 8, km. 0.700, 09042 Monserrato, Italy
| | - Justin Abi-Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UA UK
| |
Collapse
|
8
|
Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023; 15:2172671. [PMID: 36740850 PMCID: PMC9904317 DOI: 10.1080/19490976.2023.2172671] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Changes in the composition of gut-associated microbial communities are associated with many human illnesses, but the factors driving dysbiosis remain incompletely understood. One factor governing the microbiota composition in the gut is bile. Bile acids shape the microbiota composition through their antimicrobial activity and by activating host signaling pathways that maintain gut homeostasis. Although bile acids are host-derived, their functions are integrally linked to bacterial metabolism, which shapes the composition of the intestinal bile acid pool. Conditions that change the size or composition of the bile acid pool can trigger alterations in the microbiota composition that exacerbate inflammation or favor infection with opportunistic pathogens. Therefore, manipulating the composition or size of the bile acid pool might be a promising strategy to remediate dysbiosis.
Collapse
Affiliation(s)
- Anaïs B. Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Hugo L. P. Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
9
|
Esteban-Torres M, Ruiz L, Rossini V, Nally K, van Sinderen D. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait. Gut Microbes 2023; 15:2235067. [PMID: 37526383 PMCID: PMC10395257 DOI: 10.1080/19490976.2023.2235067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The human gut microbiota is a key contributor to host metabolism and physiology, thereby impacting in various ways on host health. This complex microbial community has developed many metabolic strategies to colonize, persist and survive in the gastrointestinal environment. In this regard, intracellular glycogen accumulation has been associated with important physiological functions in several bacterial species, including gut commensals. However, the role of glycogen storage in shaping the composition and functionality of the gut microbiota offers a novel perspective in gut microbiome research. Here, we review what is known about the enzymatic machinery and regulation of glycogen metabolism in selected enteric bacteria, while we also discuss its potential impact on colonization and adaptation to the gastrointestinal tract. Furthermore, we survey the presence of such glycogen biosynthesis pathways in gut metagenomic data to highlight the relevance of this metabolic trait in enhancing survival in the highly competitive and dynamic gut ecosystem.
Collapse
Affiliation(s)
- Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
- Functionality and Ecology of Benefitial Microbes (MicroHealth Group), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Liu B, Zhuang S, Tian R, Liu Y, Wang Y, Lei X, Wang C. Chemoproteomic Profiling Reveals the Mechanism of Bile Acid Tolerance in Bacteria. ACS Chem Biol 2022; 17:2461-2470. [PMID: 36049085 DOI: 10.1021/acschembio.2c00286] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bile acids (BAs) are a class of endogenous metabolites with important functions. As amphipathic molecules, BAs have strong antibacterial effects, preventing overgrowth of the gut microbiota and defending the invasion of pathogens. However, some disease-causing pathogens can survive the BA stress and knowledge is limited about how they develop BA tolerance. In this work, we applied a quantitative chemoproteomic strategy to profile BA-interacting proteins in bacteria, aiming to discover the sensing pathway of BAs. Using a clickable and photo-affinity BA probe with quantitative mass spectrometry, we identified a list of histidine kinases (HKs) of the two-component systems (TCS) in bacteria as the novel binding targets of BA. Genetic screening revealed that knocking out one specific HK, EnvZ, renders bacteria with significant sensitivity to BA. Further biochemical and genetic experiments demonstrated that BA binds to a specific pocket in EnvZ and activates a downstream signaling pathway to help efflux of BA from bacteria, resulting in BA tolerance. Collectively, our data revealed that EnvZ is a novel sensor of BA in bacteria and its associated TCS signaling pathway plays a critical role in mediating bacterial BA tolerance, which opens new opportunities to combat BA-tolerating pathogens.
Collapse
Affiliation(s)
- Biwei Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shentian Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Runze Tian
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanqi Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Kerr R, Jabbari S, Blair JMA, Johnston IG. Dynamic Boolean modelling reveals the influence of energy supply on bacterial efflux pump expression. J R Soc Interface 2022; 19:20210771. [PMID: 35078338 PMCID: PMC8790346 DOI: 10.1098/rsif.2021.0771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance.
Collapse
Affiliation(s)
- Ryan Kerr
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,CAMRIA Centre for Antimicrobial Resistance, Vestland, Norway
| |
Collapse
|
12
|
Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front Microbiol 2021; 12:737288. [PMID: 34925258 PMCID: PMC8678522 DOI: 10.3389/fmicb.2021.737288] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Multidrug efflux pumps are inner membrane transporters that export multiple antibiotics from the inside to the outside of bacterial cells, contributing to bacterial multidrug resistance (MDR). Postgenomic analysis has demonstrated that numerous multidrug efflux pumps exist in bacteria. Also, the co-crystal structural analysis of multidrug efflux pumps revealed the drug recognition and export mechanisms, and the inhibitory mechanisms of the pumps. A single multidrug efflux pump can export multiple antibiotics; hence, developing efflux pump inhibitors is crucial in overcoming infectious diseases caused by multidrug-resistant bacteria. This review article describes the role of multidrug efflux pumps in MDR, and their physiological functions and inhibitory mechanisms.
Collapse
Affiliation(s)
- Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Hadchity L, Lanois A, Kiwan P, Nassar F, Givaudan A, Khattar ZA. AcrAB, the major RND-type efflux pump of Photorhabdus laumondii, confers intrinsic multidrug-resistance and contributes to virulence in insects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:637-648. [PMID: 34002534 DOI: 10.1111/1758-2229.12974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The resistance-nodulation-division (RND)-type efflux pumps AcrAB and MdtABC contribute to multidrug-resistance (MDR) in Gram-negative bacteria. Photorhabdus is a symbiotic bacterium of soil nematodes that also produces virulence factors killing insects by septicaemia. We previously showed that mdtA deletion in Photorhabdus laumondii TT01 resulted in no detrimental phenotypes. Here, we investigated the roles of the last two putative RND transporters in TT01 genome, AcrAB and AcrAB-like (Plu0759-Plu0758). Only ΔacrA and ΔmdtAΔacrA mutants were multidrug sensitive, even to triphenyltetrazolium chloride and bromothymol blue used for Photorhabdus isolation from nematodes on the nutrient bromothymol blue-triphenyltetrazolium chloride agar (NBTA) medium. Both mutants also displayed slightly attenuated virulence after injection into Spodoptera littoralis. Transcriptional analysis revealed intermediate levels of acrAB expression in vitro, in vivo and post-mortem, whereas its putative transcriptional repressor acrR was weakly expressed. Yet, plasmid-mediated acrR overexpression did not decrease acrAB transcript levels neither MDR in TT01 WT. While no pertinent mutations were detected in acrR of the same P. laumondii strain grown either on NBTA or nutrient agar, we suggest that AcrR-mediated repression of acrAB is not physiologically required under conditions tested. Finally, we propose that AcrAB is the primary RND-efflux pump, which is essential for MDR in Photorhabdus and may confer adaptive advantages during insect infection.
Collapse
Affiliation(s)
- Linda Hadchity
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Anne Lanois
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Paloma Kiwan
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| | - Fida Nassar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| | - Alain Givaudan
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| |
Collapse
|
14
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
15
|
Wang X, Wang Y, Ling N, Shen Y, Zhang D, Liu D, Ou D, Wu Q, Ye Y. Effects of tolC on tolerance to bile salts and biofilm formation in Cronobacter malonaticus. J Dairy Sci 2021; 104:9521-9531. [PMID: 34099300 DOI: 10.3168/jds.2021-20128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
Bile salts is one of essential components of bile secreted into the intestine to confer antibacterial protection. Cronobacter species are associated with necrotizing enterocolitis in newborns and show a strong tolerance to bile salts. However, little attempt has been made to focus on the molecular basis of the tolerance to bile salts. In this study, we investigated the roles of tolC on growth, cell morphology, motility, and biofilm formation ability in Cronobacter malonaticus under bile salt stress. The results indicated that the absence of tolC significantly affected the colony morphology and outer membrane structure in a normal situation, compared with those of the wild type strain. The deletion of tolC caused the decline in resistance to bile salt stress, inhibition of growth, and observable reduction in relative growth rate and motility. Moreover, the bacterial stress response promoted the biofilm formation ability of the mutant strain. The expression of the AcrAB-TolC system (acrA, acrB, and tolC) was effectively upregulated compared with the control sample when exposed to different bile salt concentrations. The findings provide valuable information for deeply understanding molecular mechanisms about the roles of tolC under bile salt stress and the prevention and control of C. malonaticus.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yizhong Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Danfeng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dengyu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
16
|
Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24889-24916. [PMID: 33765260 DOI: 10.1007/s11356-021-13143-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The overuse, misuse, and underuse of antibiotics tend to increase the antibiotic burden in the environment resulting into the evolution in microbial community to possess resistance that renders antibiotics ineffective against them. The current review recapitulates the present state of knowledge about the occurrence and fate of antibiotics in various environmental matrices. Also, the prevalence of antibiotic-resistant bacteria/antibiotic-resistant genes (ARB/ARGs) in various biological and non-biological systems, eco-toxicity of antibiotics on non-target organisms, and remediation methods for antibiotics and ARB/ARGs removal were critically reviewed. Furthermore, a comparison of various technologies for their efficiency to eliminate antibiotic residues and ARB/ARGs is made. The study identified gaps in the investigation of toxic effects of low concentration of antibiotics and the mixture of multiple antibiotics on non-target organisms. The study of antibiotics' phytotoxicity and toxicity towards sediment and soil-dwelling organisms are also recognized as a knowledge gap. The review also details policies implemented across the globe to fight against antibiotic resistance, and the scarcity of data on lab to land transferred remediation technology was identified. The present study entails a critical review of literature providing guidelines for the articulation of policies for prudent use of antibiotics, limits on the amount of antibiotics in pharmaceutical formulations, and regular surveillance in the Indian context.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
17
|
Shaheen A, Tariq A, Shehzad A, Iqbal M, Mirza O, Maslov DA, Rahman M. Transcriptional regulation of drug resistance mechanisms in Salmonella: where we stand and what we need to know. World J Microbiol Biotechnol 2020; 36:85. [PMID: 32468234 DOI: 10.1007/s11274-020-02862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Salmonellae have evolved a wide range of molecular mechanisms to neutralize the effect of antibiotics and evade the host immune system response. These mechanisms are exquisitely controlled by global and local regulators and enable the pathogens to use its energy as per need and hence allow the pathogen to economize the consumption of energy by its cellular machinery. Several families that regulate the expression of different drug resistance genes are known; some of these are: the TetR family (which affects tetracycline resistance genes), the AraC/XylS family (regulators that can act as both transcriptional activators and repressors), two-component signal transduction systems (e.g. PhoPQ, a key regulator for virulence), mercury resistance Mer-R and multiple antibiotic resistance Mar-R regulators, LysR-type global regulators (e.g. LeuO) and histone-like protein regulators (involved in the repression of newly transferred resistance genes). This minireview focuses on the role of different regulators harbored by the Salmonella genome and characterized for mediating the drug resistance mechanisms particularly via efflux and influx systems. Understanding of such transcriptional regulation mechanisms is imperative to address drug resistance issues in Salmonella and other bacterial pathogens.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Aamir Shehzad
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | - Moazur Rahman
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
18
|
Holden ER, Webber MA. MarA, RamA, and SoxS as Mediators of the Stress Response: Survival at a Cost. Front Microbiol 2020. [PMID: 32431683 DOI: 10.3389/fmicb.2020.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
To survive and adapt to changing environments, bacteria have evolved mechanisms to express appropriate genes at appropriate times. Exposure to antimicrobials triggers a global stress response in Enterobacteriaceae, underpinned by activation of a family of transcriptional regulators, including MarA, RamA, and SoxS. These control a program of altered gene expression allowing a rapid and measured response to improve fitness in the presence of toxic drugs. Increased expression of marA, ramA, and soxS up regulates efflux activity to allow detoxification of the cell. However, this also results in trade-offs in other phenotypes, such as impaired growth rates, biofilm formation and virulence. Here, we review the current knowledge regarding the trade-offs that exist between drug survival and other phenotypes that result from induction of marA, ramA, and soxS. Additionally, we present some new findings linking expression of these regulators and biofilm formation in Enterobacteriaceae, thereby demonstrating the interconnected nature of regulatory networks within the cell and explaining how trade-offs can exist between important phenotypes. This has important implications for our understanding of how bacterial virulence and biofilms can be influenced by exposure to antimicrobials.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Biosciences, Norwich, United Kingdom
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
19
|
Holden ER, Webber MA. MarA, RamA, and SoxS as Mediators of the Stress Response: Survival at a Cost. Front Microbiol 2020; 11:828. [PMID: 32431683 PMCID: PMC7216687 DOI: 10.3389/fmicb.2020.00828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
To survive and adapt to changing environments, bacteria have evolved mechanisms to express appropriate genes at appropriate times. Exposure to antimicrobials triggers a global stress response in Enterobacteriaceae, underpinned by activation of a family of transcriptional regulators, including MarA, RamA, and SoxS. These control a program of altered gene expression allowing a rapid and measured response to improve fitness in the presence of toxic drugs. Increased expression of marA, ramA, and soxS up regulates efflux activity to allow detoxification of the cell. However, this also results in trade-offs in other phenotypes, such as impaired growth rates, biofilm formation and virulence. Here, we review the current knowledge regarding the trade-offs that exist between drug survival and other phenotypes that result from induction of marA, ramA, and soxS. Additionally, we present some new findings linking expression of these regulators and biofilm formation in Enterobacteriaceae, thereby demonstrating the interconnected nature of regulatory networks within the cell and explaining how trade-offs can exist between important phenotypes. This has important implications for our understanding of how bacterial virulence and biofilms can be influenced by exposure to antimicrobials.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Biosciences, Norwich, United Kingdom
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
20
|
Salmonella enterica subsp. enterica Serovar Heidelberg Food Isolates Associated with a Salmonellosis Outbreak Have Enhanced Stress Tolerance Capabilities. Appl Environ Microbiol 2019; 85:AEM.01065-19. [PMID: 31175193 DOI: 10.1128/aem.01065-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Heidelberg is currently the 12th most common serovar of Salmonella enterica causing salmonellosis in the United States and results in twice the average incidence of blood infections caused by nontyphoidal salmonellae. Multiple outbreaks of salmonellosis caused by Salmonella Heidelberg resulted from the same poultry processor, which infected 634 people during 2013 and 2014. The hospitalization and invasive illness rates were 38% and 15%, respectively. We hypothesized that the outbreak strains of Salmonella Heidelberg had enhanced stress tolerance and virulence capabilities. We sourced nine food isolates collected during the outbreak investigation and three reference isolates to assess their tolerance to heat and sanitizers, ability to attach to abiotic surfaces, and invasiveness in vitro We performed RNA sequencing on three isolates (two outbreak-associated isolates and a reference Salmonella Heidelberg strain) with various levels of heat tolerance to gain insight into the mechanism behind the isolates' enhanced heat tolerance. We also performed genomic analyses to determine the genetic relationships among the outbreak isolates. Ultimately, we determined that (i) six Salmonella Heidelberg isolates associated with the foodborne outbreak had enhanced heat tolerance, (ii) one outbreak isolate with enhanced heat tolerance also had an enhanced biofilm-forming ability under stressful conditions, (iii) exposure to heat stress increased the expression of Salmonella Heidelberg multidrug efflux and virulence genes, and (iv) outbreak-associated isolates were likely transcriptionally primed to better survive processing stresses and, potentially, to cause illness.IMPORTANCE This study provides a deep analysis of the intrinsic stress tolerance and virulence capabilities of Salmonella Heidelberg that may have contributed to the length and severity of a recent salmonellosis outbreak. Additionally, this study provides a comprehensive analysis of the transcriptomic response of S. enterica strains to heat stress conditions and compares baseline stationary-phase gene expression among outbreak- and non-outbreak-associated Salmonella Heidelberg isolates. These data can be used in assay development to screen isolates for stress tolerance and subsequent survival. This study adds to our understanding of the strains associated with the outbreak and informs ongoing regulatory discussions on Salmonella in poultry.
Collapse
|
21
|
Yamasaki S, Nakashima R, Sakurai K, Baucheron S, Giraud E, Doublet B, Cloeckaert A, Nishino K. Crystal structure of the multidrug resistance regulator RamR complexed with bile acids. Sci Rep 2019; 9:177. [PMID: 30655545 PMCID: PMC6336783 DOI: 10.1038/s41598-018-36025-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
During infection, Salmonella senses and responds to harsh environments within the host. Persistence in a bile-rich environment is important for Salmonella to infect the small intestine or gallbladder and the multidrug efflux system AcrAB-TolC is required for bile resistance. The genes encoding this system are mainly regulated by the ramRA locus, which is composed of the divergently transcribed ramA and ramR genes. The acrAB and tolC genes are transcriptionally activated by RamA, whose encoding gene is itself transcriptionally repressed by RamR. RamR recognizes multiple drugs; however, the identity of the environmental signals to which it responds is unclear. Here, we describe the crystal structures of RamR in complexes with bile components, including cholic acid and chenodeoxycholic acid, determined at resolutions of 2.0 and 1.8 Å, respectively. Both cholic and chenodeoxycholic acids form four hydrogen bonds with Tyr59, Thr85, Ser137 and Asp152 of RamR, instead of π–π interactions with Phe155, a residue that is important for the recognition of multiple compounds including berberine, crystal violet, dequalinium, ethidium bromide and rhodamine 6 G. Binding of these compounds to RamR reduces its DNA-binding affinity, resulting in the increased transcription of ramA and acrAB-tolC. Our results reveal that Salmonella senses bile acid components through RamR and then upregulates the expression of RamA, which can lead to induction of acrAB-tolC expression with resulting tolerance to bile-rich environments.
Collapse
Affiliation(s)
- Suguru Yamasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ryosuke Nakashima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Keisuke Sakurai
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Benoît Doublet
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Kunihiko Nishino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
22
|
The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Sci Rep 2019; 9:108. [PMID: 30643184 PMCID: PMC6331568 DOI: 10.1038/s41598-018-36414-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022] Open
Abstract
Pathogenic bacteria use specific host factors to modulate virulence and stress responses during infection. We found previously that the host factor bile and the bile component glyco-conjugated cholate (NaGCH, sodium glycocholate) upregulate the colonization factor CS5 in enterotoxigenic Escherichia coli (ETEC). To further understand the global regulatory effects of bile and NaGCH, we performed Illumina RNA-Seq and found that crude bile and NaGCH altered the expression of 61 genes in CS5 + CS6 ETEC isolates. The most striking finding was high induction of the CS5 operon (csfA-F), its putative transcription factor csvR, and the putative ETEC virulence factor cexE. iTRAQ-coupled LC-MS/MS proteomic analyses verified induction of the plasmid-borne virulence proteins CS5 and CexE and also showed that NaGCH affected the expression of bacterial membrane proteins. Furthermore, NaGCH induced bacteria to aggregate, increased their adherence to epithelial cells, and reduced their motility. Our results indicate that CS5 + CS6 ETEC use NaGCH present in the small intestine as a signal to initiate colonization of the epithelium.
Collapse
|
23
|
Urdaneta V, Casadesús J. Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux. Environ Microbiol 2018; 20:1405-1418. [PMID: 29349886 DOI: 10.1111/1462-2920.14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Adaptation to bile is the ability to endure the lethal effects of bile salts after growth on sublethal concentrations. Surveys of adaptation to bile in Salmonella enterica ser. Tyhimurium reveal that active efflux is essential for adaptation while other bacterial functions involved in bile resistance are not. Among S. enterica mutants lacking one or more efflux systems, only strains lacking AcrAB are unable to adapt, thus revealing an essential role for AcrAB. Transcription of the acrAB operon is upregulated in the presence of a sublethal concentration of sodium deoxycholate (DOC) while other efflux loci are either weakly upregulated or irresponsive. Upregulation of acrAB transcription is strong during exponential growth, and weak in stationary cultures. Single cell analysis of ethidium bromide accumulation indicates that DOC-induced AcrAB-mediated efflux occurs in both exponential and stationary cultures. Upregulation of acrAB expression may thus be crucial at early stages of adaptation, while sustained AcrAB activity may be sufficient to confer bile resistance in nondividing cells.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| |
Collapse
|
24
|
Lo CC, Lin PT, Chiang-Ni C, Lin KH, Lee SL, Kuo TF, Lo HR. Contribution of efflux systems to the detergent resistance, cytotoxicity, and biofilm formation of Vibrio vulnificus. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
26
|
Urdaneta V, Casadesús J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne) 2017; 4:163. [PMID: 29043249 PMCID: PMC5632352 DOI: 10.3389/fmed.2017.00163] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome-bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
27
|
Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. Infect Immun 2017; 85:IAI.01067-16. [PMID: 28348056 DOI: 10.1128/iai.01067-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/23/2017] [Indexed: 01/07/2023] Open
Abstract
The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection.
Collapse
|
28
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|
29
|
Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology. mBio 2016; 7:mBio.01916-16. [PMID: 27879336 PMCID: PMC5120143 DOI: 10.1128/mbio.01916-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles. Efflux pumps in Gram-negative bacteria are studied because of their important contributions to antimicrobial resistance. However, the role of these pumps in bacterial biology has remained surprisingly elusive. Here, we provide evidence that loss of the AcrD efflux pump significantly impacts the physiology of Salmonella enterica serovar Typhimurium. Inactivation of acrD led to changes in the expression of 403 genes involved in fundamental processes, including basic metabolism, virulence, and stress responses. Pathways such as these allow Salmonella to grow, survive in the environment, and cause disease. Indeed, our data show that the acrD mutant is more fit than wild-type Salmonella under standard lab conditions. We hypothesized that inactivation of acrD would alter levels of bacterial metabolites, impacting traits such as swarming motility. We demonstrated this by exogenous addition of the metabolite fumarate, which partially restored the acrD mutant’s swarming defect. This work extends our understanding of the role of bacterial efflux pumps.
Collapse
|
30
|
Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms 2016; 4:microorganisms4010014. [PMID: 27681908 PMCID: PMC5029519 DOI: 10.3390/microorganisms4010014] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Jose Antonio Reales-Calderon
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Felipe Lira
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Alejandra Bernardini
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Maria Blanca Sanchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
31
|
Hay AJ, Zhu J. In Sickness and in Health: The Relationships Between Bacteria and Bile in the Human Gut. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:43-64. [PMID: 27565580 DOI: 10.1016/bs.aambs.2016.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colonization of a human host with a commensal microbiota has a complex interaction in which bacterial communities provide numerous health benefits to the host. An equilibrium between host and microbiota is kept in check with the help of biliary secretions by the host. Bile, composed primarily of bile salts, promotes digestion. It also provides a barrier between host and bacteria. After bile salts are synthesized in the liver, they are stored in the gallbladder to be released after food intake. The set of host-secreted bile salts is modified by the resident bacteria. Because bile salts are toxic to bacteria, an equilibrium of modified bile salts is reached that allows commensal bacteria to survive, yet rebuffs invading pathogens. In addition to direct toxic effects on cells, bile salts maintain homeostasis as signaling molecules, tuning the immune system. To cause disease, gram-negative pathogenic bacteria have shared strategies to survive this harsh environment. Through exclusion of bile, efflux of bile, and repair of bile-induced damage, these pathogens can successfully disrupt and outcompete the microbiota to activate virulence factors.
Collapse
Affiliation(s)
- A J Hay
- University of Pennsylvania, Philadelphia, PA, United States
| | - J Zhu
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
33
|
AbuO, a TolC-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrob Agents Chemother 2014; 59:1236-45. [PMID: 25512405 DOI: 10.1128/aac.03626-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Acinetobacter baumannii is well accepted as a nosocomial pathogen, only a few of the outer membrane proteins (OMPs) have been functionally characterized. In this study, we demonstrate the biological functions of AbuO, a homolog of TolC from Escherichia coli. Inactivation of abuO led to increased sensitivity to high osmolarity and oxidative stress challenge. The ΔabuO mutant displayed increased susceptibility to antibiotics, such as amikacin, carbenicillin, ceftriaxone, meropenem, streptomycin, and tigecycline, and hospital-based disinfectants, such as benzalkonium chloride and chlorhexidine. The reverse transcription (RT)-PCR analysis indicated increased expression of efflux pumps (resistance nodulation cell division [RND] efflux pump acrD, 8-fold; SMR-type emrE homolog, 12-fold; and major facilitator superfamily [MFS]-type ampG homolog, 2.7-fold) and two-component response regulators (baeR, 4.67-fold; ompR, 10.43-fold) in the ΔabuO mutant together with downregulation of rstA (4.22-fold) and the pilin chaperone (9-fold). The isogenic mutant displayed lower virulence in a nematode model (P<0.01). Experimental evidence for the binding of MerR-type transcriptional regulator SoxR to radiolabeled abuO promoter suggests regulation of abuO by SoxR in A. baumannii.
Collapse
|
34
|
Abstract
Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.
Collapse
|