1
|
Karaaslan E, Oyardi O, Dosler S. Enhancing colistin efficacy with combination therapies for multidrug-resistant P. aeruginosa and A. baumannii isolates. Future Microbiol 2025:1-9. [PMID: 40208781 DOI: 10.1080/17460913.2025.2490377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/04/2025] [Indexed: 04/12/2025] Open
Abstract
AIM Increasing resistance among ESKAPEEc pathogens, particularly Acinetobacter baumannii and Pseudomonas aeruginosa, has necessitated the use of last-resort antibiotics such as colistin. This study aimed to evaluate the effectiveness and reveal a dynamic picture of colistin-based combination therapies. MATERIALS & METHODS This study evaluated the in vitro efficacy of colistin in combination with doxycycline, doripenem, and rifampicin against multidrug-resistant clinical isolates of P. aeruginosa (n = 23) and A. baumannii (n = 26). Susceptibility testing performed by microbroth dilution method, and synergistic interactions were assessed via checkerboard and time-kill curve (TKC) assays. RESULTS All isolates were resistant to colistin, according to their MICs. In checkerboard assays, according to synergism rates, colistin-doripenem and colistin-doxycycline combinations were particularly effective. The degrees of synergy for doripenem, doxycycline, and rifampicin were 30%, 90%, and 20%, respectively, against P. aeruginosa, and 30%, 60%, and 30%, respectively, against A. baumannii. In TKC analysis, synergistic interactions are generally observed with colistin at 1/4×MIC or 1×MIC, and indifference effects at 4×MIC, similar to colistin monotherapy. TKCs also confirmed the bactericidal activities of combinations that achieved ≥3-log10 reductions in initial bacterial counts. CONCLUSIONS Colistin-based combination therapies, especially colistin-doripenem, may be promising approaches for combating multidrug-resistant pathogens while potentially reducing nephrotoxicity risk.
Collapse
Affiliation(s)
- Elif Karaaslan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Rademacher J, Ewig S, Grabein B, Nachtigall I, Abele-Horn M, Deja M, Gaßner M, Gatermann S, Geffers C, Gerlach H, Hagel S, Heußel CP, Kluge S, Kolditz M, Kramme E, Kühl H, Panning M, Rath PM, Rohde G, Schaaf B, Salzer HJF, Schreiter D, Schweisfurth H, Unverzagt S, Weigand MA, Welte T, Pletz MW. [Epidemiology, diagnosis and treatment of adult patients with nosocomial pneumonia]. Pneumologie 2025. [PMID: 40169124 DOI: 10.1055/a-2541-9872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
BACKGROUND Nosocomial pneumonia, encompassing hospital-acquired (HAP) and ventilator-associated pneumonia (VAP), remains a major cause of morbidity and mortality in hospitalized adults. In response to evolving pathogen profiles and emerging resistance patterns, this updated S3 guideline (AWMF Register No. 020-013) provides an evidence-based framework to enhance the diagnosis, risk stratification, and treatment of nosocomial pneumonia. METHODS The guideline update was developed by a multidisciplinary panel representing key German professional societies. A systematic literature review was conducted with subsequent critical appraisal using the GRADE methodology. Structured consensus conferences and external reviews ensured that the recommendations were clinically relevant, methodologically sound, and aligned with current antimicrobial stewardship principles. RESULTS For the management of nosocomial pneumonia patients should be divided in those with and without risk factors for multidrug-resistant pathogens and/or Pseudomonas aeruginosa. Bacterial multiplex-polymerase chain reaction (PCR) should not be used routinely. Bronchoscopic diagnosis is not considered superior to non-bronchoscopic sampling in terms of main outcomes. Combination antibiotic therapy is now reserved for patients in septic shock and high risk for multidrug-resistant pathogens, while select patients may be managed with monotherapy (e. g., meropenem). In clinically stabilized patients, antibiotic therapy should be de-escalated and focused, as well as duration shortened to 7-8 days. In critically ill patients, prolonged application of suitable beta-lactam antibiotics should be preferred. Patients on the intensive care unit (ICU) are at risk for invasive pulmonary aspergillosis (IPA). Diagnostics for Aspergillus should be performed with an antigen test from bronchial lavage fluid. CONCLUSION This updated S3 guideline offers a comprehensive, multidisciplinary approach to the management of nosocomial pneumonia in adults. By integrating novel diagnostic modalities and refined therapeutic strategies, it aims to standardize care, improve patient outcomes, and enhance antimicrobial stewardship to curb the emergence of resistant pathogens.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Kranken-Anstalt Bochum, Bochum, Germany
| | - Béatrice Grabein
- LMU Hospital, Clinical Microbiology and Hospital Hygiene, Munich, Germany
| | - Irit Nachtigall
- Division of Infectious Diseases and Infection Prevention, Helios Hospital Emil-Von-Behring, Berlin, Germany
| | - Marianne Abele-Horn
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Maria Deja
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Berlin, Lübeck, Germany
| | - Martina Gaßner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Intensive Care Medicine, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for multidrug-resistant Gram-negative bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Christine Geffers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Herwig Gerlach
- Department for Anaesthesia, Intensive Care Medicine and Pain Management, Vivantes-Klinikum Neukoelln, Berlin, Germany
| | - Stefan Hagel
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
| | - Claus Peter Heußel
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Kolditz
- Medical Department 1, Division of Pulmonology, University Hospital of TU Dresden, Dresden, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Hilmar Kühl
- Department of Radiology, St. Bernhard-Hospital Kamp-Lintfort, Kamp-Lintfort, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter-Michael Rath
- Institute for Medical Microbiology, University Medicine Essen, Essen, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Bernhard Schaaf
- Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Dierk Schreiter
- Helios Park Clinic, Department of Intensive Care Medicine, Leipzig, Germany
| | | | - Susanne Unverzagt
- Institute of General Practice and Family Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus A Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Mathias W Pletz
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
| |
Collapse
|
3
|
Lai C, Ma Z, Zhang J, Wang J, Wang J, Wu Z, Luo Y. Efficiency of combination therapy versus monotherapy for the treatment of infections due to carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis. Syst Rev 2024; 13:309. [PMID: 39702227 DOI: 10.1186/s13643-024-02695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND For resistant Gram-positive bacteria, evidence suggests that combination therapy is more effective. However, for resistant Gram-negative bacteria, no consensus has been reached. This study aims to comprehensively summarize the evidence and evaluate the impact of combination versus monotherapy on infections caused by carbapenem-resistant Gram-negative bacteria (CRGNB). METHODS A systematic search was conducted in PubMed, Cochrane library, Web of Science, and Embase up to June 15, 2024, to identify relevant studies. This study included comparisons of monotherapy and combination therapy for treating infections caused by CRGNB. Topical antibiotics (i.e., inhalational or intratracheal administration) and monotherapy with sulbactam/relebactam was excluded. The primary outcome was mortality, and the secondary outcomes were clinical success and microbiological eradication. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated in order to systematically assess effect of treatment on mortality, clinical success and microbiological eradication. Subgroup analyses, publication bias tests, and sensitivity analyses were also performed. RESULTS A total of 62 studies, including 8342 participants, were analyzed, comprising 7 randomized controlled trials and 55 non-randomized studies. Monotherapy was associated with higher mortality (OR = 1.29, 95%CI: 1.11-1.51), lower clinical success (OR = 0.74, 95%CI: 0.56-0.98), and lower microbiological eradication (OR = 0.71, 95%CI: 0.55-0.91) compared to combination therapy for CRGNB infections. Specifically, patients with carbapenem-resistant Enterobacteriaceae (CRE) infections receiving monotherapy had higher mortality (OR = 1.50, 95%CI: 1.15-1.95), comparable clinical success (OR = 0.57,95%CI: 0.28-1.16), and lower microbiological eradication (OR = 0.48,95%CI:0.25-0.91) than those receiving combination therapy. For carbapenem-resistant Acinetobacter baumannii (CRAB) infections, no significant differences were observed in mortality (OR = 1.15.95%CI: 0.90-1.47), clinical success (OR = 0.95,95%CI: 0.74-1.24) and microbiological eradication (OR = 0.78,95%CI: 0.54-1.12). CONCLUSIONS Monotherapy or combination therapy is controversial. The systematic review and meta-analysis suggested that monotherapy is associated with higher mortality, lower clinical success, and lower microbiological eradication for treating infection caused by CRGNB. The available evidence suggests that treatment should be selected based on the specific bacteria and antibiotic used. Monotherapy for CRE infections may lead to adverse outcomes. For CRAB infections, no significant differences were found between combination therapy and monotherapy. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022331861.
Collapse
Affiliation(s)
- Chengcheng Lai
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zijun Ma
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjun Wang
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghui Wang
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuanghao Wu
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonggang Luo
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Rademacher J, Ewig S, Grabein B, Nachtigall I, Abele-Horn M, Deja M, Gaßner M, Gatermann S, Geffers C, Gerlach H, Hagel S, Heußel CP, Kluge S, Kolditz M, Kramme E, Kühl H, Panning M, Rath PM, Rohde G, Schaaf B, Salzer HJF, Schreiter D, Schweisfurth H, Unverzagt S, Weigand MA, Welte T, Pletz MW. Key summary of German national guideline for adult patients with nosocomial pneumonia- Update 2024 Funding number at the Federal Joint Committee (G-BA): 01VSF22007. Infection 2024; 52:2531-2545. [PMID: 39115698 PMCID: PMC11621171 DOI: 10.1007/s15010-024-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/19/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE This executive summary of a German national guideline aims to provide the most relevant evidence-based recommendations on the diagnosis and treatment of nosocomial pneumonia. METHODS The guideline made use of a systematic assessment and decision process using evidence to decision framework (GRADE). Recommendations were consented by an interdisciplinary panel. Evidence analysis and interpretation was supported by the German innovation fund providing extensive literature searches and (meta-) analyses by an independent methodologist. For this executive summary, selected key recommendations are presented including the quality of evidence and rationale for the level of recommendation. RESULTS The original guideline contains 26 recommendations for the diagnosis and treatment of adults with nosocomial pneumonia, thirteen of which are based on systematic review and/or meta-analysis, while the other 13 represent consensus expert opinion. For this key summary, we present 11 most relevant for everyday clinical practice key recommendations with evidence overview and rationale, of which two are expert consensus and 9 evidence-based (4 strong, 5 weak and 2 open recommendations). For the management of nosocomial pneumonia patients should be divided in those with and without risk factors for multidrug-resistant pathogens and/or Pseudomonas aeruginosa. Bacterial multiplex-polymerase chain reaction (PCR) should not be used routinely. Bronchoscopic diagnosis is not considered superior to´non-bronchoscopic sampling in terms of main outcomes. Only patients with septic shock and the presence of an additional risk factor for multidrug-resistant pathogens (MDRP) should receive empiric combination therapy. In clinically stabilized patients, antibiotic therapy should be de-escalated and focused. In critically ill patients, prolonged application of suitable beta-lactam antibiotics should be preferred. Therapy duration is suggested for 7-8 days. Procalcitonin (PCT) based algorithm might be used to shorten the duration of antibiotic treatment. Patients on the intensive care unit (ICU) are at risk for invasive pulmonary aspergillosis (IPA). Diagnostics for Aspergillus should be performed with an antigen test from bronchial lavage fluid. CONCLUSION The current guideline focuses on German epidemiology and standards of care. It should be a guide for the current treatment and management of nosocomial pneumonia in Germany.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine and Infectious Diseases, German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany.
| | - Santiago Ewig
- Department of Respiratory and Infectious Diseases, Thoraxzentrum Ruhrgebiet, EVK Herne and Augusta-Kranken-Anstalt Bochum, Bochum, Germany
| | - Béatrice Grabein
- LMU Hospital, Clinical Microbiology and Hospital Hygiene, Munich, Germany
| | - Irit Nachtigall
- Division of Infectious Diseases and Infection Prevention, Helios Hospital Emil-Von-Behring, Berlin, Germany
| | - Marianne Abele-Horn
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Maria Deja
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Berlin, Lübeck, Germany
| | - Martina Gaßner
- Department of Anaesthesiology and Intensive Care Medicine, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Christine Geffers
- Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Herwig Gerlach
- Department for Anaesthesia, Intensive Care Medicine and Pain Management, Vivantes-Klinikum Neukoelln, Berlin, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Claus Peter Heußel
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Kolditz
- Division of Pulmonology, Medical Department 1, University Hospital of TU Dresden, Dresden, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Hilmar Kühl
- Department of Radiology, St. Bernhard-Hospital Kamp-Lintfort, Bürgermeister-Schmelzing-Str. 90, 47475, Kamp-Lintfort, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter-Michael Rath
- Institute for Medical Microbiology, University Medicine Essen, Essen, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Bernhard Schaaf
- Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Dierk Schreiter
- Department of Intensive Care Medicine, Helios Park Clinic, Leipzig, Germany
| | | | - Susanne Unverzagt
- Institute of General Practice and Family Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus A Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Hong H, Fan L, Shi W, Zhu Y, Liu P, Wei D, Liu Y. Overexpression of β-lactamase genes ( blaKPC, blaSHV) and novel CirA deficiencies contribute to decreased cefiderocol susceptibility in carbapenem-resistant Klebsiella pneumoniae before its approval in China. Antimicrob Agents Chemother 2024; 68:e0075424. [PMID: 39387579 PMCID: PMC11539243 DOI: 10.1128/aac.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Cefiderocol (FDC) is an effective antibiotic that is used to treat severe infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). The mechanisms underlying FDC resistance and molecular epidemiology in China remain unclear. We collected 477 non-duplicate CRKP clinical isolates in central China and characterized their susceptibility to FDC, virulence genes, and sequence typing. The overall FDC susceptibility rate of CRKP was 99.2% in central China, which was higher than that in North America and Europe (96.1%), with MIC50/90 values of 1/2 mg/L. The decrease in FDC susceptibility in central China was concentrated in the ST11 CRKP-carrying virulence plasmids. Whole-genome sequencing (WGS) and quantitative reverse transcription PCR (qRT-PCR) experiments showed that serine β-lactamases, especially highly expressed KPC and SHV, substantially decreased FDC susceptibility in four FDC non-susceptible isolates (two resistant and two intermediate isolates). Notably, different CirA deficiencies, p.E450GfsTer16 and p.E133Ter, were found in both of the resistant isolates. In contrast, global WGS data indicate that the resistance mechanisms in North America and Europe were primarily associated with NDM and KPC variants, predominantly found in ST307 and ST147. Overall, FDC exhibits excellent activity against CRKP in central China, with resistance mechanisms primarily related to high KPC and SHV expression, along with deficiencies in CirA, frequently observed in ST11. This is remarkably different from the situation in North America and Europe and will directly impact the choice of clinical interventions. Additionally, the surveillance of FDC resistance in China is imperative.
Collapse
Affiliation(s)
- Hanxu Hong
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Linping Fan
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenbo Shi
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Yuchen Zhu
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Peng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - DanDan Wei
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Grabein B, Arhin FF, Daikos GL, Moore LSP, Balaji V, Baillon-Plot N. Navigating the Current Treatment Landscape of Metallo-β-Lactamase-Producing Gram-Negative Infections: What are the Limitations? Infect Dis Ther 2024; 13:2423-2447. [PMID: 39352652 PMCID: PMC11499561 DOI: 10.1007/s40121-024-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
The spread of carbapenemase-producing gram-negative pathogens, especially those producing metallo-β-lactamases (MBLs), has become a major health concern. MBLs are molecularly the most diverse carbapenemases, produced by a wide spectrum of gram-negative organisms, including the Enterobacterales, Pseudomonas spp., Acinetobacter baumannii, and Stenotrophomonas maltophilia, and can hydrolyze most β-lactams using metal ion cofactors in their active sites. Over the years, the prevalence of MBL-carrying isolates has increased globally, particularly in Asia. MBL infections are associated with adverse clinical outcomes including longer length of hospital stay, ICU admission, and increased mortality across the globe. The optimal treatment for MBL infections not only depends on the pathogen but also on the underlying resistance mechanisms. Currently, there are only few drugs or drug combinations that can efficiently offset MBL-mediated resistance, which makes the treatment of MBL infections challenging. The rising concern of MBLs along with the limited treatment options has led to the need and development of drugs that are specifically targeted towards MBLs. This review discusses the prevalence of MBLs, their clinical impact, and the current treatment options for MBL infections and their limitations. Furthermore, this review will discuss agents currently in the pipeline for treatment of MBL infections.
Collapse
Affiliation(s)
| | | | - George L Daikos
- National and Kapodistrian University of Athens, Athens, Greece
| | - Luke S P Moore
- Chelsea & Westminster NHS Foundation Trust, London, UK
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, London, UK
| | - V Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | |
Collapse
|
7
|
Kaur JN, Klem JF, Liu Y, Boissonneault KR, Holden PN, Kreiswirth B, Chen L, Smith NM, Tsuji BT. Maximally precise combinations to overcome metallo-β-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0077024. [PMID: 39287402 PMCID: PMC11459912 DOI: 10.1128/aac.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Gram-negatives harboring metallo-β-lactamases (MBLs) and extended-spectrum β-lactamases (ESBLs) pose a substantial risk to the public health landscape. In ongoing efforts to combat these "superbugs," we explored the clinical combination of aztreonam and ceftazidime/avibactam together with varying dosages of polymyxin B and imipenem against Klebsiella pneumoniae (Kp CDC Nevada) in a 9-day hollow fiber infection model (HFIM). As previously reported by our group, although the base of aztreonam and ceftazidime/avibactam alone leads to 3.34 log10 fold reductions within 72 hours, addition of polymyxin B or imipenem to the base regimen caused maximal killing of 7.55 log10 and 7.4 log10 fold reduction, respectively, by the 72-hour time point. Although low-dose polymyxin B and imipenem enhanced the bactericidal activity as an adjuvant to aztreonam +ceftazidime/avibactam, regrowth to ~9 log10CFU/mL by 216 hours rendered these combinations ineffective. When aztreonam +ceftazidime/avibactam was supplemented with high-dose polymyxin B and or low-dose polymyxin B + imipenem, it resulted in effective long-term clearance of the bacterial population. Time lapse microscopy profiled the emergence of long filamentous cells in response to PBP3 binding due to aztreonam and ceftazidime. The emergence of spheroplasts via imipenem and damage to the outer membrane via polymyxin B was visualized as a mechanism of persister killing. Despite intrinsic mgrB and blaNDM-1 resistance, polymyxin B and β-lactam combinations represent a promising strategy. Future studies using an integrated molecularly precise pharmacodynamic approach are warranted to unravel the mechanistic details to propose optimal antibiotic combinations to combat untreatable, pan-drug-resistant Gram-negatives.
Collapse
Affiliation(s)
- Jan Naseer Kaur
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jack F. Klem
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Yang Liu
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Patricia N. Holden
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Liang Chen
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Nicholas M. Smith
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brian T. Tsuji
- Center for Infectious Diseases Next Generation Therapeutics, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Yang X, Wang T, Zhang B, Zhang W, Wu G, Xu D, Liu D, He Y. Clinical outcome assessment of colistin sulphate in children with carbapenem-resistant organism infections: First data from China. Int J Antimicrob Agents 2024; 64:107273. [PMID: 39002699 DOI: 10.1016/j.ijantimicag.2024.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVES Colistin sulphate for injection (CSI) became clinically available in China in July 2019. To date, there is no published data regarding its usage in children. Our research group has been following data on the efficacy and safety of CSI in Chinese paediatric patients with carbapenem-resistant organism infections. The purpose of this short communication is to provide a brief overview of the findings to date. METHODS We reviewed the electronic medical records of paediatric patients (aged 9-17 y) who were administered CSI during their hospital stay at Tongji Hospital in Wuhan, China, between June 2021 and November 2023. Drug efficacy was evaluated based on clinical and microbiological outcomes, while drug safety was assessed using surveillance markers that reflect adverse reactions. RESULTS A total of 20 patients met the inclusion criteria. The predominant pathogens were Klebsiella pneumoniae (8 strains), followed by Acinetobacter baumannii (5 strains) and Pseudomonas aeruginosa (2 strains). The clinical response rate of CSI was 85%, with a bacterial clearance rate of 79%. None of the patients experienced colistin-related nephrotoxicity or neurotoxicity during the treatment. CONCLUSIONS In this real-world setting, CSI demonstrated a high level of clinical response and was well tolerated for the treatment of carbapenem-resistant organism infections in Chinese children.
Collapse
Affiliation(s)
- Xueping Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Department of Pharmacy, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, People's Republic of China
| | - Tao Wang
- Clinical Pharmacy, No. 920 Hospital, Joint Logistic Center of Chinese People's Liberation Army, Kunming, People's Republic of China
| | - Bohua Zhang
- Department of Pharmacy, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, People's Republic of China
| | - Wenting Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guangjie Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dong Xu
- Department of Infection Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Yan He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
9
|
Park SY, Baek YJ, Kim JH, Seong H, Kim B, Kim YC, Yoon JG, Heo N, Moon SM, Kim YA, Song JY, Choi JY, Park YS. Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections. Infect Chemother 2024; 56:308-328. [PMID: 39231504 PMCID: PMC11458495 DOI: 10.3947/ic.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 09/06/2024] Open
Abstract
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
Collapse
Affiliation(s)
- Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Yae Jee Baek
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Bongyoung Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yong Chan Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Namwoo Heo
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Song Mi Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea.
| |
Collapse
|
10
|
Zhao YC, Wang CY, Liu JY, Li JK, Liu HY, Sun ZH, Zhang BK, Yan M. Factors affecting the effectiveness and safety of polymyxin B in the treatment of Gram-negative bacterial infections: A meta-analysis of 96 articles. Int J Antimicrob Agents 2024; 64:107262. [PMID: 38945178 DOI: 10.1016/j.ijantimicag.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/19/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Polymyxin B, with its unique structure and mechanism of action, has emerged as a key therapeutic agent against Gram-negative bacteria. The study aims to explore potential factors to influence its effectiveness and safety. METHODS A model-based meta-analysis of 96 articles was conducted, focusing on factors like dosage, bacterial species, and combined antibiotic therapy. The analysis evaluated mortality rates and incidence rate of renal dysfunction, also employing parametric survival models to assess 30-d survival rates. RESULTS In the study involving 96 articles and 9716 patients, polymyxin B's daily dose showed minimal effect on overall mortality, with high-dose group mortality at 33.57% (95% confidence intervals [CI]: 29.15-38.00) compared to the low-dose group at 35.44% (95% CI: 28.99-41.88), P = 0.64. Mortality significantly varied by bacterial species, with Pseudomonas aeruginosa infections at 58.50% (95% CI: 55.42-63.58). Monotherapy exhibited the highest mortality at 40.25% (95% CI: 34.75-45.76), P < 0.01. Renal dysfunction was more common in high-dose patients at 29.75% (95% CI: 28.52-30.98), with no significant difference across antibiotic regimens, P = 0.54. The 30-d overall survival rate for monotherapy therapy was 63.6% (95% CI: 59.3-67.5) and 70.2% (95% CI: 64.4-76.2) for association therapy with β-lactam drugs. CONCLUSIONS The dosage of polymyxin B does not significantly change death rates, but its effectiveness varies based on the bacterial infection. Certain bacteria like P. aeruginosa are associated with higher mortality. Combining polymyxin B with other antibiotics, especially β-lactam drugs, improves survival rates. Side effects depend on the dose, with lower doses being safer. These findings emphasize the importance of customizing treatment to balance effectiveness and safety.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Chen-Yu Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Yi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Jia-Kai Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Huai-Yuan Liu
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China; China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhi-Hua Sun
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China; China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China.
| |
Collapse
|
11
|
Guo C, Xu S, Yan W. A case of treatment for pulmonary infection caused by multidrug-resistant Acinetobacter baumannii. Respirol Case Rep 2024; 12:e01420. [PMID: 38957160 PMCID: PMC11217549 DOI: 10.1002/rcr2.1420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Acinetobacter baumannii is a major pathogen in hospital-acquired infections notorious for its strong acquired resistance and complex drug resistance mechanisms. Owing to the lack of effective drugs, the mortality rate of extensively drug-resistant A. baumannii pneumonia can reach as high as 65%. This article analyzes a case where a combination of cefoperazone-sulbactam, polymyxin B, and minocycline with rifampicin successfully treated XDR-AB pulmonary infection. Combination therapy is effective and has a particular clinical value.
Collapse
Affiliation(s)
- Chenxia Guo
- Respiratory MedicinePeKing University Third HospitalBeijingChina
| | - Shaohua Xu
- Respiratory MedicinePeKing University Third HospitalBeijingChina
| | - Wei Yan
- Respiratory MedicinePeKing University Third HospitalBeijingChina
| |
Collapse
|
12
|
Müderris T, Dursun Manyaslı G, Sezak N, Kaya S, Demirdal T, Gül Yurtsever S. In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant Acinetobacter baumannii clinical isolates. Eur J Med Res 2024; 29:331. [PMID: 38880888 PMCID: PMC11180387 DOI: 10.1186/s40001-024-01885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) infections are one of the most common causes of nosocomial infections and have high mortality rates due to difficulties in treatment. In this study, the in vitro synergistic interactions of the colistin (CT)-meropenem (MEM) combination and patient clinical outcomes were compared in CRAB-infected patients that receive CT-MEM antimicrobial combination therapy. In addition, in vitro synergistic interactions of MEM-ertapenem (ETP), MEM-fosfomycin (FF) and CT-FF antimicrobial combinations were investigated. Finally, the epsilometer (E) test and checkerboard test results were compared and the compatibility of these two tests was evaluated. METHODS Twenty-one patients were included in the study. Bacterial identification was performed with MALDI-TOF, and antimicrobial susceptibility was assessed with an automated system. Synergy studies were performed using the E test and checkerboard method. RESULTS For the checkerboard method, the synergy rates for CT-MEM, MEM-FF, MEM-ETP and CT-FF were 100%, 52.3%, 23.8% and 28.5%, respectively. In the E test synergy tests, synergistic effects were detected for two isolates each in the CT-MEM and CT-FF combinations. Microbial eradication was achieved in nine (52.9%) of the 17 patients that received CT-MEM combination therapy. The agreement between the E test and the checkerboard test was 6.5%. CONCLUSIONS A synergistic effect was found with the checkerboard method for the CT-MEM combination in all isolates in our study, and approximately 70% of the patients benefited from treatment with this combination. In addition, more than half of the isolates showed a synergistic effect for the MEM-FF combination. Combinations of CT-MEM and MEM-FF may be options for the treatment of CRAB infections. However, a comprehensive understanding of the potential of the microorganism to develop resistant mutants under applied exposures, as well as factors that directly affect antimicrobial activity, such as pharmacokinetics/pharmacodynamics, is essential for providing treatment advice. We found a low rate of agreement between the E test method and the checkerboard test method in our study, in contrast to the literature. Comprehensive studies that compare clinical results with methods are needed to determine the ideal synergy test and interpretation method.
Collapse
Affiliation(s)
- Tuba Müderris
- Faculty of Medicine, Department of Medical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye.
| | - Gülden Dursun Manyaslı
- Cizre Dr. Selahattin Cizrelioğlu Public Hospital, Department of Medical Microbiology, Şırnak, Türkiye
| | - Nurbanu Sezak
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, İzmir Demokrasi University, İzmir, Türkiye
| | - Selçuk Kaya
- Faculty of Medicine, Department of Medical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Tuna Demirdal
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Süreyya Gül Yurtsever
- Faculty of Medicine, Department of Medical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye
| |
Collapse
|
13
|
Huang YS, Yang JL, Wang JT, Sheng WH, Yang CJ, Chuang YC, Chang SC. Evaluation of the synergistic effect of eravacycline and tigecycline against carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae. J Infect Public Health 2024; 17:929-937. [PMID: 38599013 DOI: 10.1016/j.jiph.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a substantial healthcare challenge. This study assessed the in vitro efficacy of selected antibiotic combinations against CRKP infections. METHODS Our research involved the evaluation of 40 clinical isolates of CRKP, with half expressing Klebsiella pneumoniae carbapenemase (KPC) and half producing Metallo-β-lactamase (MBL), two key enzymes contributing to carbapenem resistance. We determined the minimum inhibitory concentrations (MICs) of four antibiotics: eravacycline, tigecycline, polymyxin-B, and ceftazidime/avibactam. Synergistic interactions between these antibiotic combinations were examined using checkerboard and time-kill analyses. RESULTS We noted significant differences in the MICs of ceftazidime/avibactam between KPC and MBL isolates. Checkerboard analysis revealed appreciable synergy between combinations of tigecycline (35%) or eravacycline (40%) with polymyxin-B. The synergy rates for the combination of tigecycline or eravacycline with polymyxin-B were similar among the KPC and MBL isolates. These combinations maintained a synergy rate of 70.6% even against polymyxin-B resistant isolates. In contrast, combinations of tigecycline (5%) or eravacycline (10%) with ceftazidime/avibactam showed significantly lower synergy than combinations with polymyxin-B (P < 0.001 and P = 0.002, respectively). Among the MBL CRKP isolates, only one exhibited synergy with eravacycline or tigecycline and ceftazidime/avibactam combinations, and no synergistic activity was identified in the time-kill analysis for these combinations. The combination of eravacycline and polymyxin-B demonstrated the most promising synergy in the time-kill analysis. CONCLUSION This study provides substantial evidence of a significant synergy when combining tigecycline or eravacycline with polymyxin-B against CRKP strains, including those producing MBL. These results highlight potential therapeutic strategies against CRKP infections.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Ling Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Li D, Rao H, Xu Y, Zhang M, Zhang J, Luo J. Monotherapy vs combination therapy in patients with Klebsiella pneumoniae bloodstream infection: A systematic review and meta-analysis. J Infect Chemother 2024; 30:372-378. [PMID: 38369125 DOI: 10.1016/j.jiac.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/24/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE To determine whether mortality is lower in patients with Klebsiella pneumoniae bloodstream infection (BSI) who receive combination antimicrobial therapy than in those who receive monotherapy. METHODS Two authors independently searched for relevant articles in the PubMed, Embase, Web of Science, and Cochrane Library databases through to August 10, 2023. Risk of bias was evaluated using the ROBINS-I tool. Possible sources of heterogeneity were evaluated by meta-regression using a mixed-effects model. RESULTS Among 8044 articles screened, there were 23 studies (3443 patients) that were eligible for meta-analysis. Meta-regression analysis identified the proportion of patients with carbapenem-resistant Klebsiella pneumoniae (CRKP) BSI to be a potential source of heterogeneity. Subgroup analysis showed that mortality on monotherapy was significantly higher when the proportion of patients with CRKP BSI was ≥50% (OR 1.75, 95% CI 1.33-2.30) and significantly lower when this proportion was <50% (OR 0.55, 95% CI 0.24-1.24). Overall mortality was significantly higher on tigecycline monotherapy (OR 2.86, 95% CI 1.46-5.59) than on combination therapy containing both these agents. There was a trend in favor of colistin/polymyxin B-containing combination therapy (OR 1.37, 95% CI 0.83-2.28). CONCLUSIONS Combination antimicrobial therapy can lower mortality in patients with CRKP but may not show a survival advantage over monotherapy when the proportion of patients with CRKP BSI is <50%. High-quality prospective observational studies are needed because of the high risk of bias and limited data in the studies performed to date.
Collapse
Affiliation(s)
- Dan Li
- Department of Laboratory Medicine, Qionglai Medical Center Hospital , Chengdu, Sichuan, China
| | - Huayun Rao
- Department of Laboratory Medicine, Qionglai Medical Center Hospital , Chengdu, Sichuan, China
| | - Yi Xu
- Department of Laboratory Medicine, Qionglai Medical Center Hospital , Chengdu, Sichuan, China
| | - Min Zhang
- Department of Laboratory Medicine, Qionglai Medical Center Hospital , Chengdu, Sichuan, China
| | - Jie Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianrong Luo
- Department of Laboratory Medicine, Qionglai Medical Center Hospital , Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Franzone JP, Mackow N, van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr Opin Infect Dis 2024; 37:137-143. [PMID: 38179988 PMCID: PMC10922681 DOI: 10.1097/qco.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS In a multicenter, randomized, and controlled trial the novel β-lactam-β-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.
Collapse
Affiliation(s)
- John P. Franzone
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natalie Mackow
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Wang T, Liu H, Huang H, Weng Y, Wang X. Colistin monotherapy or combination for the treatment of bloodstream infection caused by Klebsiella pneumoniae: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:161. [PMID: 38317132 PMCID: PMC10845734 DOI: 10.1186/s12879-024-09024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Bloodstream infection of Klebsiella pneumoniae (BSI-KP) were associated with increased mortality. Klebsiella pneumoniae was tested to susceptible to colistin by E-test and broth microdilution method in clinical laboratory. This study aimed to assess the efficacy of colistin versus tigecycline, carbapenem monotherapy and combination in the treatment of BSI-KP. METHODS Electronic databases such as PubMed, Web of Science and Embase were searched. The last search was in November 24th, 2022, addressing the colistin, carbapenems and tigecycline monotherapy and combination treatments in patients with BSI-KP. The primary outcomes were 30-day or 28-day mortality. OR where available with 95% CI were pooled in random-effects meta-analysis. RESULTS Following the outlined search strategy, a total of 658 articles were identified from the initial database searching. Six studies, 17 comparisons were included. However, they all were observational design, lacking high-quality randomized controlled trials (RCTs). Moderate or low-quality evidences suggested that colistin monotherapy was associated with an OR = 1.35 (95% CI = 0.62-2.97, P = 0.45, Tau2 = 0.00, I2 = 0%) compared with tigecycline monotherapy, OR = 0.81 (95% CI = 0.27-2.45, P = 0.71, Tau2 = 0.00, I2 = 0%) compared with carbapenem monotherapy. Compared with combination with tigecycline or carbapenem, Colistin monotherapy resulted in OR of 3.07 (95% CI = 1.34-7.04, P = 0.008, Tau2 = 0.00, I2 = 0%) and 0.98 (95%CI = 0.29-3.31, P = 0.98, Tau2 = 0.00, I2 = 0% ), respectively. CONCLUSIONS Colistin, carbapenem and tigecycline monotherapy showed similar treatment effects in patients who suffered from BSI-KP. Compared with colistin monotherapy, colistin combined tigecycline therapy might play the synergism effects. TRIAL REGISTRATION retrospectively registered.
Collapse
Affiliation(s)
- Tao Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, 215000, Suzhou, China
| | - Hongcheng Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 215000, Suzhou, China
| | - Huiqing Huang
- Department of Clinical Laboratory, The Lianyungang Oriental Hospital, 222000, Lianyungang, China
| | - Yuesong Weng
- Department of Clinical Laboratory, The Affiliated People's Hospital of Ningbo University, 315010, Ningbo, China
| | - Xiaojun Wang
- Department of Clinical Laboratory, Suzhou Wuzhong People's Hospital, 215100, Suzhou, Jiangsu, PR China.
| |
Collapse
|
17
|
Wu Y, Jiang S, Li D, Wu Y, Li Q, Wang X, Liu B, Bao H, Wu D, Hu X. Clinical Efficacy and Safety of Colistin Sulfate in the Treatment of Carbapenem-Resistant Organism Infections in Patients with Hematological Diseases. Infect Dis Ther 2024; 13:141-154. [PMID: 38212555 PMCID: PMC10828183 DOI: 10.1007/s40121-023-00909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant organisms (CRO) have emerged as a significant worldwide issue. However, the availability of efficacious antibiotics for treating CRO infections remains limited. Polymyxins, including colistin sulfate, represent the last-line therapeutic option against CRO infections. This study aims to retrospectively evaluate the clinical effectiveness and safety of colistin sulfate in managing CRO infections among patients with hematological diseases. METHODS Between April 2022 and January 2023, a total of 118 hematological patients diagnosed with CRO infection were treated with colistin sulfate at Suzhou Hongci Hospital of Hematology. The assessment encompassed the clinical efficacy, bacterial clearance rate, adverse reactions, and 30-day all-cause mortality. RESULTS The study found that the total effective rate of colistin sulfate in the treatment of CRO infection was 74.6%, with a bacterial clearance rate of 72.6%. Throughout the treatment, nephrotoxicity occurred in 7.6% of cases, neurotoxicity in 2.5% of cases, and the 30-day all-cause mortality rate was 22.9%. Multivariate logistic analysis revealed that the treatment course and combination medication with other antimicrobials were independent factors affecting the clinical efficacy of colistin sulfate. CONCLUSION Our study demonstrates that the treatment of colistin sulfate can achieve high clinical efficacy and microbial responses, with a low risk of nephrotoxicity. This study provides evidence of the positive clinical efficacy and safety of colistin sulfate treatment in these patients. High-quality randomized controlled trials are still needed to further confirm the beneficial role of colistin sulfate.
Collapse
Affiliation(s)
- Yuanbing Wu
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Shanshan Jiang
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Dongyang Li
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Yaxue Wu
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Qian Li
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Xing Wang
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Bin Liu
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Haiyan Bao
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Depei Wu
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Xiaohui Hu
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
18
|
Aktas Z, Sonmez N, Oksuz L, Boral O, Issever H, Oncul O. Efficacy of antibiotic combinations in an experimental sepsis model with Pseudomonas aeruginosa. Braz J Microbiol 2023; 54:2817-2826. [PMID: 37828396 PMCID: PMC10689617 DOI: 10.1007/s42770-023-01141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to compare the efficacy of fosfomycin, colistin, tobramycin and their dual combinations in an experimental sepsis model. After sepsis was established with a Pseudomonas aeruginosa isolate (P1), antibiotic-administered rats were divided into six groups: Fosfomycin, tobramycin, colistin and their dual combinations were administered by the intravenous or intraperitoneal route to the groups. The brain, heart, lung, liver, spleen and kidney tissues of rats were cultured to investigate bacterial translocation caused by P1. Given the antibiotics and their combinations, bacterial colony counts in liver tissues were decreased in colistin alone and colistin plus tobramycin groups compared with control group, but there were no significant differences. In addition, a non-statistical decrease was found in the spleen tissues of rats in the colistin plus tobramycin group. There was a > 2 log10 CFU/ml decrease in the number of bacterial colonies in the kidney tissues of the rats in the fosfomycin group alone, but the decrease was not statistically significant. However, there was an increase in the number of bacterial colonies in the spleen and kidney samples in the group treated with colistin as monotherapy compared to the control group. The number of bacterial colonies in the spleen samples in fosfomycin plus tobramycin groups increased compared to the control group. Bacterial colony numbers in all tissue samples in the fosfomycin plus colistin group were found to be close to those in the control group. Colistin plus tobramycin combinations are effective against P. aeruginosa in experimental sepsis, and clinical success may be achieved. New in vivo studies demonstrating the ability of P. aeruginosa to biofilm formation in tissues other than the lung are warranted in future.
Collapse
Affiliation(s)
- Zerrin Aktas
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Nese Sonmez
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Lutfiye Oksuz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye.
| | - Ozden Boral
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Halim Issever
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Oral Oncul
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| |
Collapse
|
19
|
Aiesh BM, Maali Y, Qandeel F, Omarya S, Taha SA, Sholi S, Sabateen A, Taha AA, Zyoud SH. Epidemiology and clinical characteristics of patients with carbapenem-resistant enterobacterales infections: experience from a large tertiary care center in a developing country. BMC Infect Dis 2023; 23:644. [PMID: 37784023 PMCID: PMC10544366 DOI: 10.1186/s12879-023-08643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CREs) are a significant source of healthcare-associated infections. These bacteria are difficult to treat and have a high mortality rate due to high rates of antibiotic resistance. These pathogens are also linked to major outbreaks in healthcare institutions especially those with limited resources in infection prevention and control (IPC). Therefore, our study aimed to describe the epidemiology and clinical characteristics of patients with carbapenem-resistant Enterobacteriaceae in a referral hospital in a developing country. METHODS This was a retrospective cross-sectional study that included 218 patients admitted to An-Najah National University Hospital between January 1, 2021, and May 31, 2022. The target population was all patients with CRE infection or colonization in the hospital setting. RESULTS Of the 218 patients, 135 had CR-Klebsiella pneumoniae (61.9%), and 83 had CR-Escherichia coli (38.1%). Of these, 135 were male (61.9%) and 83 were female (38.1%), with a median age of 51 years (interquartile range 24-64). Malignancy was a common comorbidity in 36.7% of the patients. Approximately 18.3% of CRE patients were obtained from patients upon admission to the emergency department, the largest percentage among departments. Most CRE pathogens were isolated from rectal swabs, accounting for 61.3%. Among the 218 patients, colistin was the most widely used antimicrobial agent (13.3%). CR- E. coli showed resistance to amikacin in 23.8% of the pathogens tested and 85.7% for trimethoprim/sulfamethoxazole compared to CR- K. pneumonia, for which the resistance to trimethoprim/sulfamethoxazole was 74.1%, while for amikacin it was 64.2%. Regarding meropenem minimum inhibitory concentration, 85.7% of CR- E. coli were greater than 16 µg/mL compared to 84% of CR- K. pneumonia isolates. CONCLUSION This study found that CRE is frequently reported in this tertiary care setting, implying the presence of selective pressure and transmission associated with healthcare setting. The antibiotics tested showed a variety of resistance rates, with CR-K. pneumoniae being more prevalent than CR-E. coli, and exhibiting an extremely high resistance pattern to the available therapeutic options.
Collapse
Affiliation(s)
- Banan M Aiesh
- Department of Infection Prevention and Control, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Yazan Maali
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Farah Qandeel
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Siwar Omarya
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Shatha Abu Taha
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Suha Sholi
- Department of General Surgery, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Ali Sabateen
- Department of Infection Prevention and Control, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Adham Abu Taha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Department of Pathology, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839, Palestine
| |
Collapse
|
20
|
Baig M, Rahim S, Naseem Khan R, Memon DD, Ansari ZA, Athar Khan M. Efficacy of Intravenous Colistin Monotherapy Versus Colistin Combined With Meropenem in Patients With Multidrug-Resistant Infections: A Retrospective Observational Study. Cureus 2023; 15:e47342. [PMID: 38022127 PMCID: PMC10657236 DOI: 10.7759/cureus.47342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Intensive care units frequently contend with infections caused by highly drug-resistant organisms, particularly Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacterales (CRE), which often lead to high mortality rates. Colistin (colomycin) is employed to treat infections, notably extremely drug-resistant (XDR) bacteria. Antibiotic combination treatment is a frequently used tactic in this endeavour. However, the widespread use of antibiotics in synergy could result in the emergence of resistance and a rise in side effects, such as those linked to Clostridium difficile infection. The aim of the study was to assess and contrast the clinical results of intravenous colistin monotherapy with the combination of colistin and meropenem in patients experiencing MDR bacteremia resulting from Acinetobacter Baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacterales (CRE). Methods In this retrospective observational study, an analysis spanning two years, from June 2021 to June 2023, was conducted at a teaching hospital located in Karachi, Pakistan. The research involved the retrospective examination of medical records from 132 patients who had been diagnosed with MDR bacteremia. Patients were divided into two categories based on their treatment regimen, either intravenous colistin monotherapy or intravenous colistin combined with meropenem. Among the 132 patients included in the analysis, 66 underwent colistin monotherapy, while the other 66 received a combination of colistin and meropenem. The primary focus of evaluation in this study centered on the 14-day all-cause mortality, while secondary outcomes encompassed clinical success and microbiologic cure. Results The mean age of patients in both groups was comparable, and there were no noteworthy gender differences. Additionally, the distribution of infection types and the isolated pathogens showed no substantial distinctions between the two groups. The study revealed no statistically significant disparities in 14-day mortality, improvement in Sequential Organ Failure Assessment (SOFA) score, or the proportion of patients who were cured and survived between the two treatment groups. Conclusion The findings from this study lead to the conclusion that there exists no significant disparity in the efficacy of colistin monotherapy compared to the combination of colistin with meropenem in the treatment of MDR bacteremia stemming from Acinetobacter Baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacterales (CRE). The results provide a basis for future research and underscore the significance of ongoing endeavors to refine antibiotic treatment strategies in response to the worldwide issue of antibiotic resistance.
Collapse
Affiliation(s)
- Mehwish Baig
- Intensive Care Unit, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | - Sana Rahim
- Intensive Care Unit, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | - Rashid Naseem Khan
- Internal Medicine, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | | | - Zaid A Ansari
- Internal Medicine, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | | |
Collapse
|
21
|
Tuon FF, Yamada CH, de Andrade AP, Arend LNVS, Dos Santos Oliveira D, Telles JP. Oral doxycycline to carbapenem-resistant Acinetobacter baumannii infection as a polymyxin-sparing strategy: results from a retrospective cohort. Braz J Microbiol 2023; 54:1795-1802. [PMID: 37278889 PMCID: PMC10243254 DOI: 10.1007/s42770-023-01015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Acinetobacter baumannii infection presents a high mortality rate and few therapeutic options. This study aimed to evaluate clinical-microbiological characteristics and prognosis factors of patients diagnosed with A. baumanni. infections treated with oral doxycycline. A retrospective cohort of hospitalized patients with confirmed Acinetobacter spp. infection between 2018 and 2020 receives at least 3 days of oral doxycycline. Clinical and microbiological data were evaluated, including the outcome and molecular characterization of A. baumannii. Doxycycline minimal inhibitory concentrations were evaluated by the broth dilution method. One hundred patients were included with a median age of 51 years. The leading site of infection was pulmonary (n = 62), followed by the soft tissues and skin (n = 28). A. baumannii resistant to carbapenem was found on 94%. The gene blaOXA-23 and blaOXA-51 were amplified in all recovered isolates of A. baumannii (n = 44). Doxycycline MIC50 and MIC90 were 1 µg/mL and 2 µg/mL, respectively. Death rate at 14 days and 28 days of follow-up was 9% and 14%, respectively. The prognostic factors related to death at end of follow-up were age > 49 years [85.7% vs. 46%, CI 95% 6.9 (1.4-32.6), P = 0.015] and hemodialysis [28.6% vs. 7%, CI 95% 5.33 (1.2-22.1), P = 0.021]. Patients treated with doxycycline to A. baumannii presented a relatively low death rate, and risk factors related to death were age and hemodialysis. Further and larger studies should compare polymyxin to doxycycline to better understand the differences between these therapeutic options.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil.
| | - Carolina Hikari Yamada
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - Ana Paula de Andrade
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - Lavinia Nery Villa Stangler Arend
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - Dayana Dos Santos Oliveira
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - João Paulo Telles
- Department of Infection Control, Hospital Universitário Evangélico Mackenzie, Curitiba, Brazil
- Department of Infectious Disease, AC Camargo Cancer Center, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Zarras C, Iosifidis E, Simitsopoulou M, Pappa S, Kontou A, Roilides E, Papa A. Neonatal Bloodstream Infection with Ceftazidime-Avibactam-Resistant blaKPC-2-Producing Klebsiella pneumoniae Carrying blaVEB-25. Antibiotics (Basel) 2023; 12:1290. [PMID: 37627710 PMCID: PMC10451261 DOI: 10.3390/antibiotics12081290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Although ceftazidime/avibactam (CAZ/AVI) has become an important option for treating adults and children, no data or recommendations exist for neonates. We report a neonatal sepsis case due to CAZ/AVI-resistant blaKPC-2-harboring Klebsiella pneumoniae carrying blaVEB-25 and the use of a customized active surveillance program in conjunction with enhanced infection control measures. METHODS The index case was an extremely premature neonate hospitalized for 110 days that had been previously treated with multiple antibiotics. Customized molecular surveillance was implemented at hospital level and enhanced infection control measures were taken for early recognition and prevention of outbreak. Detection and identification of blaVEB-25 was performed using next-generation sequencing. RESULTS This was the first case of a bloodstream infection caused by KPC-producing K. pneumoniae that was resistant to CAZ/AVI without the presence of a metalo-β-lactamase in the multiplex PCR platform in a neonate. All 36 additional patients tested (12 in the same NICU and 24 from other hospital departments) carried wild-type blaVEB-1 but they did not harbor blaVEB-25. CONCLUSION The emergence of blaVEB-25 is signal for the horizontal transfer of plasmids at hospital facilities and it is of greatest concern for maintaining a sharp vigilance for the surveillance of novel resistance mechanisms. Molecular diagnostics can guide appropriate antimicrobial therapy and the early implementation of infection control measures against antimicrobial resistance.
Collapse
Affiliation(s)
- Charalampos Zarras
- Microbiology Department, Hippokration Hospital, 54642 Thessaloniki, Greece;
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (A.P.)
| | - Elias Iosifidis
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.R.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Simitsopoulou
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.R.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Styliani Pappa
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (A.P.)
| | - Angeliki Kontou
- 1st Department of Neonatology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.R.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (A.P.)
| |
Collapse
|
23
|
Thy M, Timsit JF, de Montmollin E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:antibiotics12050860. [PMID: 37237763 DOI: 10.3390/antibiotics12050860] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Aminoglycosides are a family of rapidly bactericidal antibiotics that often remain active against resistant Gram-negative bacterial infections. Over the past decade, their use in critically ill patients has been refined; however, due to their renal and cochleovestibular toxicity, their indications in the treatment of sepsis and septic shock have been gradually reduced. This article reviews the spectrum of activity, mode of action, and methods for optimizing the efficacy of aminoglycosides. We discuss the current indications for aminoglycosides, with an emphasis on multidrug-resistant Gram-negative bacteria, such as extended-spectrum β-lactamase-producing Enterobacterales, carbapenemase-producing Enterobacterales, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii. Additionally, we review the evidence for the use of nebulized aminoglycosides.
Collapse
Affiliation(s)
- Michaël Thy
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Equipe d'accueil (EA) 7323, Department of Pharmacology and Therapeutic Evaluation in Children and Pregnant Women, Université Paris Cité, 75018 Paris, France
| | - Jean-François Timsit
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Unité mixte de Recherche (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Université Paris Cité, 75018 Paris, France
| | - Etienne de Montmollin
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Unité mixte de Recherche (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Université Paris Cité, 75018 Paris, France
| |
Collapse
|
24
|
Shields RK, Paterson DL, Tamma PD. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin Infect Dis 2023; 76:S179-S193. [PMID: 37125467 PMCID: PMC10150276 DOI: 10.1093/cid/ciad094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed β-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Hanafin PO, Abdul Rahim N, Sharma R, Cess CG, Finley SD, Bergen PJ, Velkov T, Li J, Rao GG. Proof-of-concept for incorporating mechanistic insights from multi-omics analyses of polymyxin B in combination with chloramphenicol against Klebsiella pneumoniae. CPT Pharmacometrics Syst Pharmacol 2023; 12:387-400. [PMID: 36661181 PMCID: PMC10014067 DOI: 10.1002/psp4.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Carbapenemase-resistant Klebsiella pneumoniae (KP) resistant to multiple antibiotic classes necessitates optimized combination therapy. Our objective is to build a workflow leveraging omics and bacterial count data to identify antibiotic mechanisms that can be used to design and optimize combination regimens. For pharmacodynamic (PD) analysis, previously published static time-kill studies (J Antimicrob Chemother 70, 2015, 2589) were used with polymyxin B (PMB) and chloramphenicol (CHL) mono and combination therapy against three KP clinical isolates over 24 h. A mechanism-based model (MBM) was developed using time-kill data in S-ADAPT describing PMB-CHL PD activity against each isolate. Previously published results of PMB (1 mg/L continuous infusion) and CHL (Cmax : 8 mg/L; bolus q6h) mono and combination regimens were evaluated using an in vitro one-compartment dynamic infection model against a KP clinical isolate (108 CFU/ml inoculum) over 24 h to obtain bacterial samples for multi-omics analyses. The differentially expressed genes and metabolites in these bacterial samples served as input to develop a partial least squares regression (PLSR) in R that links PD responses with the multi-omics responses via a multi-omics pathway analysis. PMB efficacy was increased when combined with CHL, and the MBM described the observed PD well for all strains. The PLSR consisted of 29 omics inputs and predicted MBM PD response (R2 = 0.946). Our analysis found that CHL downregulated metabolites and genes pertinent to lipid A, hence limiting the emergence of PMB resistance. Our workflow linked insights from analysis of multi-omics data with MBM to identify biological mechanisms explaining observed PD activity in combination therapy.
Collapse
Affiliation(s)
- Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Rajnikant Sharma
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Colin G Cess
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Stacey D Finley
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences and Biomedicine Discovery Institute, Monash University, Parkville, Victoria, Australia
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Wei X, Li L, Li M, Liang H, He Y, Li S. Risk Factors and Outcomes of Patients with Carbapenem-Resistant Pseudomonas aeruginosa Bloodstream Infection. Infect Drug Resist 2023; 16:337-346. [PMID: 36698726 PMCID: PMC9869782 DOI: 10.2147/idr.s396428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose The rising incidence of carbapenem-resistant Pseudomonas aeruginosa (PA) bloodstream infection (BSI) has made the selection of antibiotic therapy more difficult and caused high mortality. This study was aimed at exploring the risk factors for carbapenem-resistant Pseudomonas aeruginosa (CRPA) bloodstream infection and identifying the risk factors for the outcomes of patients with PA-BSI. Methods We performed a retrospective cohort study of patients with PA-BSI in a tertiary hospital from January 2017 to December 2021 in China. Epidemiological, clinical, and microbiological characteristics were described. Risk factors for CRPA-BSI and the outcomes of PA-BSI inpatients were identified, using multivariate logistic regression analysis. Results A total of 198 PA-BSI inpatients were included. The negative outcome rate was significantly higher in patients infected with CRPA (15/34, 44.12%) than with carbapenem-susceptible Pseudomonas aeruginosa (CSPA) (35/164, 21.34%), and the difference was statistically significant (P=0.005). Multivariate logistic regression analysis showed that previous exposure to carbapenem (OR 3.519, 95% CI 1.359-9.110, P=0.010) was an independent risk factor for CRPA-BSI. In addition, CRPA (OR 1.615, 95% CI 0.626-4.171, P=0.32) was not an independent risk factor for negative outcome among PA-BSI inpatients. Conclusion Our study showed that previous exposure to carbapenem was an independent risk factor for CRPA-BSI. CRPA was not an independent risk factor for a negative outcome in PA-BSI inpatients.
Collapse
Affiliation(s)
- Xianzhen Wei
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Linlin Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Meng Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hongjie Liang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yu He
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China,Correspondence: Shan Li, Email
| |
Collapse
|
28
|
Kong W, Yang X, Shu Y, Li S, Song B, Yang K. Cost-effectiveness analysis of ceftazidime-avibactam as definitive treatment for treatment of carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Front Public Health 2023; 11:1118307. [PMID: 36926178 PMCID: PMC10011158 DOI: 10.3389/fpubh.2023.1118307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Background Ceftazidime-avibactam (CAZ-AVI) is a novel antibiotic that has been confirmed in the United States and China for use in patients with carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infection (BSI). However, the cost-effectiveness of CAZ-AVI is unknown in China. This study aimed to evaluate the cost-effectiveness of CAZ-AVI compared to polymyxin B (PMB) monotherapy or PMB-based therapy for the treatment of CRKP BSI from the Chinese healthcare perspective. Methods A hybrid decision tree and Markov model were constructed for a hypothetical cohort of patients with CRKP BSI. The time horizon of the Markov model was 5 years with an annual discount rate of 5% used in both costs and quality-adjusted life-years (QALYs). The model data was derived from published literature and publicly available database. Regimens with an incremental cost-effectiveness ratio (ICER) lower than the willingness-to-pay (WTP) threshold of $ 11,600 per QALY were considered cost-effective. Deterministic and probabilistic sensitivity analyses were performed to examine the robustness of model analysis. Results In the base-analysis, CAZ-AVI provided an additional 60 QALYs and reduced the cost by $ 2,218,300, yielding an ICER of $ -36,730.9/QALY, well below the WTP threshold of $ 11,600 per QALY when compared with PMB-based therapy. CAZ-AVI provided an additional 350 QALYs and increased the cost of $ 208,400, producing an ICER of $ 591.7/QALY that was below the WTP threshold compared to PMB monotherapy. At a $ 11,600/QALY threshold, results were sensitive to the cost of PMB-based strategy, the cost of CAZ-AVI strategy, the probability of cure with CAZ-AVI, and the probability of cure with PMB or PMB-based therapy. CAZ-AVI was an optimal regimen in 76.9% and 80.8% of 10,000 Monte Carlo simulations at $ 11,600/QALY and $ 34,800/QALY, respectively. Meanwhile, CAZ-AVI was cost-effective at the WTP thresholds of all 31 Chinese provinces in 61.4% (Gansu) to 83.1% (Beijing) of simulations. Conclusions Ceftazidime-avibactam is expected to be a cost-effective treatment compared with PMB monotherapy or PMB-based therapy for CRKP BSI from the Chinese healthcare perspective.
Collapse
Affiliation(s)
- Wenqiang Kong
- Department of Pharmacy, Zi Gong First People's Hospital, Zi Gong, China
| | - Xueting Yang
- Department of Pharmacy, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kun Ming, China
| | - Yunfeng Shu
- Department of Pharmacy, Zi Gong First People's Hospital, Zi Gong, China
| | - Shiqin Li
- Department of Pharmacy, Zi Gong First People's Hospital, Zi Gong, China
| | - Bihui Song
- Department of Pharmacy, Zi Gong First People's Hospital, Zi Gong, China
| | - Kun Yang
- Department of Hematology, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
29
|
Ahmadpour F, Shaseb E, Izadpanah M, Rakhshan A, Hematian F. Optimal dosing interval of intravenous Colistin monotherapy versus combination therapy: A systematic review and meta-analysis. Eur J Transl Myol 2022; 32:10833. [PMID: 36533669 PMCID: PMC9830404 DOI: 10.4081/ejtm.2022.10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023] Open
Abstract
We aimed to maximize the clinical response and effectiveness of colistin antibiotics in patients with multi-drug (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria, there is an increasing interest in colistin combination therapy with other antibiotics and extended interval dosing regimens. This systematic review and meta-analysis aim is to evaluate if the combination therapy is superior to monotherapy with colistin regarding increased survival and also which dose interval is the most effective to utilize. English language, peer-reviewed journal publications from the first date available to 25 January 2022 were identified by searching the PubMed and Web of Science databases. Forest plots for overall and subgroups and funnel plots were graphed. 42 studies were included in the study. Among them, 38 studies were on combination therapy, and four on dose interval. The overall pooled odds ratio is 0.77 (CI: 0.62; 0.95) (p value < 0.017). The I^2 value was 43% (p value < 0.01). The Begg correlation test of funnel plot asymmetry showed no significant publication bias (0.064). The overall pooled odds ratio for Carbapenem is 0.74 (CI: 0.48; 1.13). A prospective randomized controlled trials (RCT) on 40 adults intensive care unit (ICU) patients with ventilator-associated pneumonia (VAP), comparing the mortality and ICU length of stay of 8- or 24- hour intervals regimens, showed that the ICU length of stay and ICU mortality were; 31.31, 35.3 days, and 32.06, 22.2% in groups 24-h interval and 8- hour interval (p value: 0.39, 0.87), respectively. It seems that combination therapy is associated with drug synergism and increased survival. The extended interval colistin administration may result in higher peak concentration and bacterial eradication. In both cases, we face a dearth of literature.
Collapse
Affiliation(s)
- Forouzan Ahmadpour
- Department of Pharmacotherapy, School of Pharmacy, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Elnaz Shaseb
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mandana Izadpanah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Rakhshan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Hematian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Assistant professor of clinical pharmacy, Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. ORCID ID: 0000-0001-7062-4669
| |
Collapse
|
30
|
Mitra S, Sultana SA, Prova SR, Uddin TM, Islam F, Das R, Nainu F, Sartini S, Chidambaram K, Alhumaydhi FA, Emran TB, Simal-Gandara J. Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision. Expert Rev Anti Infect Ther 2022; 20:1309-1332. [PMID: 36069241 DOI: 10.1080/14787210.2022.2122442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Superbugs are microorganisms that cause disease and have increased resistance to the treatments typically used against infections. Recently, antibiotic resistance development has been more rapid than the pace at which antibiotics are manufactured, leading to refractory infections. Scientists are concerned that a particularly virulent and lethal 'superbug' will one day join the ranks of existing bacteria that cause incurable diseases, resulting in a global health disaster on the scale of the Black Death. AREAS COVERED This study highlights the current developments in the management of antibiotic-resistant bacteria and recommends strategies for further regulating antibiotic-resistant microorganisms associated with the healthcare system. This review also addresses the origins, prevalence, and pathogenicity of superbugs, and the design of antibacterial against these growing multidrug-resistant organisms from a medical perspective. EXPERT OPINION It is recommended that antimicrobial resistance should be addressed by limiting human-to-human transmission of resistant strains, lowering the use of broad-spectrum antibiotics, and developing novel antimicrobials. Using the risk-factor domains framework from this study would assure that not only clinical but also community and hospital-specific factors are covered, lowering the chance of confounders. Extensive subjective research is necessary to fully understand the underlying factors and uncover previously unexplored areas.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, 90245, Makassar, Indonesia
| | - Sartini Sartini
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, 90245, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, 62529, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
31
|
Sadyrbaeva-Dolgova S, García-Fumero R, Exposito-Ruiz M, Pasquau-Liaño J, Jiménez-Morales A, Hidalgo-Tenorio C. Incidence of nephrotoxicity associated with intravenous colistimethate sodium administration for the treatment of multidrug-resistant gram-negative bacterial infections. Sci Rep 2022; 12:15261. [PMID: 36088407 PMCID: PMC9464192 DOI: 10.1038/s41598-022-19626-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractColistimethate sodium (CMS) is the inactive prodrug of colistin, CMS has a narrow antibacterial spectrum with concentration-dependent bactericidal activity against multidrug-resistant gram-negative bacteria, including Pseudomonas aeruginosa and Acinetobacter baumannii. This study aimed to analyze potential correlations between clinical features and the development of CMS-induced nephrotoxicity. This retrospective cohort study was conducted in a tertiary-care university hospital between 1 January 2015 and 31 December 2019. A total of 163 patients received CMS therapy. 75 patients (46%) developed nephrotoxicity attributable to colistin treatment, although only 14 patients (8.6%) discontinued treatment for this reason. 95.7% of CMS were prescribed as target therapy. Acinetobacter baumannii spp. was the most commonly identified pathogen (72.4%) followed by P. aeruginosa (19.6%). Several risk factors associated with nephrotoxicity were identified, among these were age (HR 1.033, 95%CI 1.016–1.052, p < 0.001), Charlson Index (HR 1.158, 95%CI 1.0462–1.283; p = 0.005) and baseline creatinine level (HR 1.273, 95%CI 1.071–1.514, p = 0.006). In terms of in-hospital mortality, risk factors were age (HR 2.43, 95%CI 1.021–1.065, p < 0.001); Charlson Index (HR 1.274, 95%CI 1.116–1.454, p = 0.043), higher baseline creatinine levels (HR 1.391, 95%CI 1.084–1.785, p = 0.010) and nephrotoxicity due to CMS treatment (HR 5.383, 95%CI 3.126–9.276, p < 0.001). In-hospital mortality rate were higher in patients with nephrotoxicity (log rank test p < 0.001). In conclusion, the nephrotoxicity was reported in almost half of the patients. Its complex management, continuous renal dose adjustment and monitoring creatinine levels at least every 48 h leads to a high percentage of inappropriate use and treatment failure.
Collapse
|
32
|
Vidal-Cortés P, Martin-Loeches I, Rodríguez A, Bou G, Cantón R, Diaz E, De la Fuente C, Torre-Cisneros J, Nuvials FX, Salavert M, Aguilar G, Nieto M, Ramírez P, Borges M, Soriano C, Ferrer R, Maseda E, Zaragoza R. Current Positioning against Severe Infections Due to Klebsiella pneumoniae in Hospitalized Adults. Antibiotics (Basel) 2022; 11:antibiotics11091160. [PMID: 36139940 PMCID: PMC9495006 DOI: 10.3390/antibiotics11091160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infections due to Klebsiella pneumoniae have been increasing in intensive care units (ICUs) in the last decade. Such infections pose a serious problem, especially when antimicrobial resistance is present. We created a task force of experts, including specialists in intensive care medicine, anaesthesia, microbiology and infectious diseases, selected on the basis of their varied experience in the field of nosocomial infections, who conducted a comprehensive review of the recently published literature on the management of carbapenemase-producing Enterobacterales (CPE) infections in the intensive care setting from 2012 to 2022 to summarize the best available treatment. The group established priorities regarding management, based on both the risk of developing infections caused by K. pneumoniae and the risk of poor outcome. Moreover, we reviewed and updated the most important clinical entities and the new antibiotic treatments recently developed. After analysis of the priorities outlined, this group of experts established a series of recommendations and designed a management algorithm.
Collapse
Affiliation(s)
| | - Ignacio Martin-Loeches
- ICU, Trinity Centre for Health Science HRB-Welcome Trust, St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| | - Alejandro Rodríguez
- ICU, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Ciruurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Microbiology Department, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Emili Diaz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Critical Care Department, Corporació Sanitària Parc Taulí, 08208 Sabadell, Spain
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), 08193 Barcelona, Spain
| | | | - Julián Torre-Cisneros
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Service, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain
| | | | - Miguel Salavert
- Infectious Diseases Department, Hospital Universitari I Politecnic La Fe, 46026 Valencia, Spain
| | - Gerardo Aguilar
- SICU, Department of Anesthesiology and Critical Care, Hospital Clínico Universitario Valencia, 46014 Valencia, Spain
- School of Medicine, Universitat de Valencia, 46010 Valencia, Spain
| | - Mercedes Nieto
- ICU, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Paula Ramírez
- ICU, Hospital Universitari I Politecnic La Fe, 46026 Valencia, Spain
| | - Marcio Borges
- ICU, Hospital Universitario Son Llázter, 07198 Palma de Mallorca, Spain
- Fundación Micellium, 46183 Valencia, Spain
| | - Cruz Soriano
- ICU, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - Emilio Maseda
- Fundación Micellium, 46183 Valencia, Spain
- SICU, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rafael Zaragoza
- Fundación Micellium, 46183 Valencia, Spain
- ICU, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
- Correspondence:
| |
Collapse
|
33
|
Chang K, Wang H, Zhao J, Yang X, Wu B, Sun W, Huang M, Cheng Z, Chen H, Song Y, Chen P, Chen X, Gan X, Ma W, Xing L, Wang Y, Gu X, Zou X, Cao B. Polymyxin B/Tigecycline Combination vs. Polymyxin B or Tigecycline Alone for the Treatment of Hospital-Acquired Pneumonia Caused by Carbapenem-Resistant Enterobacteriaceae or Carbapenem-Resistant Acinetobacter baumannii. Front Med (Lausanne) 2022; 9:772372. [PMID: 35755062 PMCID: PMC9226555 DOI: 10.3389/fmed.2022.772372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction It is not clear whether polymyxin B/tigecycline (PMB/TGC) combination is better than PMB or TGC alone in the treatment of hospital-acquired pneumonia (HAP) caused by carbapenem-resistant organisms (CROs). Methods We conducted a multicenter, retrospective cohort study in patients with HAP caused by CROs. The primary outcome was 28-day mortality, and the secondary outcomes included clinical success and the incidence of acute kidney injury (AKI). Multivariate Cox regression analysis was performed to examine the relationship between antimicrobial treatments and 28-day mortality by adjusting other potential confounding factors. Results A total of 364 eligible patients were included in the final analysis, i.e., 99 in the PMB group, 173 in the TGC group, and 92 in the PMB/TGC combination group. The 28-day mortality rate was 28.3% (28/99) in the PMB group, 39.3% (68/173) in the TGC group, and 48.9% (45/92) in the PMB/TGC combination group (p = 0.014). The multivariate Cox regression model showed that there was a statistically significant lower risk of 28-day mortality among participants in the PMB group when compared with the PMB/TGC combination group [hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.31–0.81, p = 0.004] and that participants in the TGC group had a lower risk of 28-day mortality than in the PMB/TGC combination group but without statistical significance. The incidence of AKI in the PMB group (52.5%) and the PMB/TGC combination group (53.3%) was significantly higher than that in the TGC group (33.5%, p = 0.001). Conclusion The appropriate PMB/TGC combination was not superior to appropriate PMB therapy in the treatment of HAP caused by carbapenem-resistant Enterobacteriaceae/carbapenem-resistant Acinetobacter baumannii (CRE/CRAB) in terms of 28-day mortality.
Collapse
Affiliation(s)
- Kang Chang
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bo Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenkui Sun
- Department of Respirology and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenshun Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xin Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Xing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Tiseo G, Brigante G, Giacobbe DR, Maraolo AE, Gona F, Falcone M, Giannella M, Grossi P, Pea F, Rossolini GM, Sanguinetti M, Sarti M, Scarparo C, Tumbarello M, Venditti M, Viale P, Bassetti M, Luzzaro F, Menichetti F, Stefani S, Tinelli M. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents 2022; 60:106611. [PMID: 35697179 DOI: 10.1016/j.ijantimicag.2022.106611] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
Abstract
Management of patients with infections caused by multidrug-resistant organisms is challenging and requires a multidisciplinary approach to achieve successful clinical outcomes. The aim of this paper is to provide recommendations for the diagnosis and optimal management of these infections, with a focus on targeted antibiotic therapy. The document was produced by a panel of experts nominated by the five endorsing Italian societies, namely the Italian Association of Clinical Microbiologists (AMCLI), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Society of Microbiology (SIM), the Italian Society of Infectious and Tropical Diseases (SIMIT) and the Italian Society of Anti-Infective Therapy (SITA). Population, Intervention, Comparison and Outcomes (PICO) questions about microbiological diagnosis, pharmacological strategies and targeted antibiotic therapy were addressed for the following pathogens: carbapenem-resistant Enterobacterales; carbapenem-resistant Pseudomonas aeruginosa; carbapenem-resistant Acinetobacter baumannii; and methicillin-resistant Staphylococcus aureus. A systematic review of the literature published from January 2011 to November 2020 was guided by the PICO strategy. As data from randomised controlled trials (RCTs) were expected to be limited, observational studies were also reviewed. The certainty of evidence was classified using the GRADE approach. Recommendations were classified as strong or conditional. Detailed recommendations were formulated for each pathogen. The majority of available RCTs have serious risk of bias, and many observational studies have several limitations, including small sample size, retrospective design and presence of confounders. Thus, some recommendations are based on low or very-low certainty of evidence. Importantly, these recommendations should be continually updated to reflect emerging evidence from clinical studies and real-world experience.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Gioconda Brigante
- Clinical Pathology Laboratory, ASST Valle Olona, Busto Arsizio, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Floriana Gona
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo 'A. Gemelli', Rome, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Scarparo
- Clinical Microbiology Laboratory, Angel's Hospital, AULSS3 Serenissima, Mestre, Venice, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario Venditti
- Policlinico 'Umberto I', Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Tinelli
- Infectious Diseases Consultation Service, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
35
|
Colistin Monotherapy versus Colistin plus Meropenem Combination Therapy for the Treatment of Multidrug-Resistant Acinetobacter baumannii Infection: A Meta-Analysis. J Clin Med 2022; 11:jcm11113239. [PMID: 35683622 PMCID: PMC9181109 DOI: 10.3390/jcm11113239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Introduction: Colistin combination therapy with other antibiotics is a way to enhance colistin activity. The purpose of this meta-analysis was to compare the efficacy and safety of treatment with colistin monotherapy versus colistin plus meropenem combination therapy in patients with drug-resistant Acinetobacter baumannii infection. (2) Methods: All studies were included if they reported one or more of the following outcomes: clinical improvement, complete microbiological response, 14-day mortality, hospital mortality, or nephrotoxicity. (3) Results: Three randomized controlled trials and seven retrospective studies were included in the meta-analysis. Colistin monotherapy has similar rates of clinical improvement, 14-day mortality, hospital mortality, and nephrotoxicity as colistin plus meropenem combination therapy. Regarding complete microbiological response, the colistin plus meropenem combination was better than colistin monotherapy. (4) Discussion: Previous meta-analyses demonstrated heterogeneity in study quality and a lack of evidence supporting the use of colistin-based combination therapy. Our meta-analysis clearly showed that colistin combined with meropenem was not superior to colistin monotherapy for the treatment of Acinetobacter baumannii infection. (5) Conclusions: The efficacy and safety of treatment with colistin monotherapy and that of colistin plus meropenem combination therapy in patients with drug-resistant Acinetobacter baumannii infection were comparable. The majority of the evidence was obtained from nonrandomized studies, and high-quality randomized controlled trials are needed to confirm the role of colistin plus meropenem combination therapy in the treatment of multidrug-resistant Acinetobacter baumannii infection.
Collapse
|
36
|
Clinical outcome of nosocomial pneumonia caused by Carbapenem-resistant gram-negative bacteria in critically ill patients: a multicenter retrospective observational study. Sci Rep 2022; 12:7501. [PMID: 35525867 PMCID: PMC9079069 DOI: 10.1038/s41598-022-11061-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Nosocomial pneumonia caused by carbapenem-resistant gram-negative bacteria (CRGNB) is a growing threat due to the limited therapeutic choices and high mortality rate. The aim of this study was to evaluate the prognostic factors for mortality in patients with nosocomial pneumonia caused by CRGNB and the impact of colistin-based therapy on the outcomes of intensive care unit (ICU) patients. We conducted a retrospective study of the ICUs in five tertiary teaching hospitals in Taiwan. Patients with nosocomial pneumonia caused by CRGNB from January 2016 to December 2016 were included. Prognostic factors for mortality were analyzed using multivariate logistic regression. The influence of colistin-based therapy on mortality and clinical and microbiological outcomes were evaluated in subgroups using different severity stratification criteria. A total of 690 patients were enrolled in the study, with an in-hospital mortality of 46.1%. The most common CRGNB pathogens were Acinetobacter baumannii (78.7%) and Pseudomonas aeruginosa (13.0%). Significant predictors (odds ratio and 95% confidence interval) of mortality from multivariate analysis were a length of hospital stay (LOS) prior to pneumonia of longer than 9 days (2.18, 1.53-3.10), a sequential organ failure assessment (SOFA) score of more than 7 (2.36, 1.65-3.37), supportive care with vasopressor therapy (3.21, 2.26-4.56), and escalation of antimicrobial therapy (0.71, 0.50-0.99). There were no significant differences between the colistin-based therapy in the deceased and survival groups (42.1% vs. 42.7%, p = 0.873). In the subgroup analysis, patients with multiple organ involvement (> 2 organs) or higher SOFA score (> 7) receiving colistin-based therapy had better survival outcomes. Prolonged LOS prior to pneumonia onset, high SOFA score, vasopressor requirement, and timely escalation of antimicrobial therapy were predictors for mortality in critically ill patients with nosocomial CRGNB pneumonia. Colistin-based therapy was associated with better survival outcomes in subgroups of patients with a SOFA score of more than 7 and multiple organ involvement.
Collapse
|
37
|
Wang Y, Ma X, Zhao L, He Y, Yu W, Fu S, Ni W, Gao Z. Heteroresistance Is Associated With in vitro Regrowth During Colistin Treatment in Carbapenem-Resistant Klebsiella pneumoniae. Front Microbiol 2022; 13:868991. [PMID: 35464921 PMCID: PMC9022032 DOI: 10.3389/fmicb.2022.868991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Polymyxins including polymyxin B and colistin (polymyxin E) are considered the last resort for treating infections caused by carbapenem-resistant gram-negative bacteria. However, in vitro regrowth with the emergence of resistance during treatment is common. Polymyxin heteroresistance, particularly in Acinetobacter baumannii and Klebsiella pneumoniae, has been widely reported. This study was primarily performed to evaluate the prevalence of colistin heteroresistance in carbapenem-resistant K. pneumoniae (CR-KP) and the association between in vitro regrowth and heteroresistance. The mechanisms of colistin resistance and the ability of combination therapies to suppress resistance selection were further investigated. A population analysis profile (PAP) analysis showed that 69 (71.9%) of 96 CR-KP strains had colistin heteroresistance. Time-kill assays revealed that the colistin monotherapy could quickly eliminate the bacterial cells in strains without heteroresistance within the first 6 h. Conversely, it could initially reduce the number of cells in heteroresistant strains, but then regrowth occurred rapidly. Resistance screening at 12 and 24 h in the time-kill assays indicated that susceptible populations were killed, and regrowth was the exact result of the continued growth of resistant subpopulations. Colistin resistance in the regrowth subpopulations was mainly due to the overexpression of phoPQ and pmrD. Colistin combined with tetracyclines (tigecycline or minocycline) or aminoglycosides (amikacin or gentamicin) could effectively suppress the resistance selection and significantly elicit in vitro synergistic effects. These findings suggested that the combination therapy can be used to treat infections caused by CR-KP with colistin heteroresistance. Nevertheless, further in vivo studies considering drugs pharmacokinetics/pharmacodynamics are needed to confirm these findings.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xinqian Ma
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Lili Zhao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yukun He
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Wenyi Yu
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Shining Fu
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Wentao Ni
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
38
|
Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses. Antibiotics (Basel) 2022; 11:antibiotics11040524. [PMID: 35453274 PMCID: PMC9027966 DOI: 10.3390/antibiotics11040524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
There is increasing evidence regarding the optimal therapeutic strategies for multidrug-resistant (MDR) bacteria that cause common infections and are resistant to existing antibiotics. Combination therapies, such as β-lactam combined with β-lactamase inhibitors or combination antibiotics, is a therapeutic strategy to overcome MDR bacteria. In recent years, the therapeutic options have expanded as certain combination drugs have been approved in more countries. However, only a handful of guidelines support these options, and the recommendations are based on low-quality evidence. This review describes the significance and efficacy of combination therapy as a therapeutic strategy against Gram-negative MDR pathogens based on previously reported meta-analyses.
Collapse
|
39
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|
40
|
Gan WK, Liew HS, Pua LJW, Ng XY, Fong KW, Cheong SL, Liew YK, Low ML. Novel Cu(II) Schiff Base Complex Combination with Polymyxin B/Phenylalanine-Arginine β-Naphthylamide Against Various Bacterial Strains. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Treatment of Severe Infections Due to Metallo-Betalactamases Enterobacterales in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11020144. [PMID: 35203747 PMCID: PMC8868391 DOI: 10.3390/antibiotics11020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Metallo-beta-lactamases-producing (MBL) Enterobacterales is a growing problem worldwide. The optimization of antibiotic therapy is challenging. The pivotal available therapeutic options are either the combination of ceftazidime/avibactam and aztreonam or cefiderocol. Colistin, fosfomycin, tetracyclines and aminoglycosides are also frequently effective in vitro, but are associated with less bactericidal activity or more toxicity. Prior to the availability of antibiotic susceptibility testing, severe infections should be treated with a combination therapy. A careful optimization of the pharmacokinetic/pharmacodynamic properties of antimicrobials is instrumental in severe infections. The rules of antibiotic therapy are also reported and discussed. To conclude, treatment of severe MBL infections in critically ill patients is difficult. It should be individualized with a close collaboration of intensivists with microbiologists, pharmacists and infection control practitioners.
Collapse
|
42
|
Sangthawan P, Geater AF, Naorungroj S, Nikomrat P, Nwabor OF, Chusri S. Characteristics, Influencing Factors, Predictive Scoring System, and Outcomes of the Patients with Nephrotoxicity Associated with Administration of Intravenous Colistin. Antibiotics (Basel) 2021; 11:antibiotics11010002. [PMID: 35052879 PMCID: PMC8772935 DOI: 10.3390/antibiotics11010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant Gram-negative infection is a major global public health threat. Currently, colistin is considered the last-resort treatment despite its nephrotoxicity. The purpose of this study was to estimate the incidence, characteristics, and influencing factors and to develop a prediction model for colistin-associated nephrotoxicity. A retrospective study was conducted in the university hospital in the South of Thailand from December 2015 to June 2019. A total of 381 patients (median age (IQR) of 64 (51–62) years) were analyzed. Overall, 282 (74%) had nephrotoxicity according to the Kidney Disease: Improving Global Outcomes (KDIGO) classification. In-hospital, 30-day mortality rates and cost of hospital admission were significantly higher among those with nephrotoxicity. Age > 60 years, comorbidities, serum albumin less than 3.5 g/dL, and concomitant nephrotoxic use were significantly associated with colistin-associated nephrotoxicity with adjusted OR (95% CI) 2.01 (1.23–2.45), 1.85 (1.18–3.6), 1.68 (1.09–2.99), and 1.77 (1.10–2.97), respectively. The prediction model for high-risk colistin-associated nephrotoxicity was identified with good overall performance (specificity of 79.6% (95% CI 70.3–87.1) and positive predictive value of 92.1% (95% CI 88.0–95.1)). In conclusion, the incidence of colistin-associated nephrotoxicity was high and incurred significant morbidity, mortality, and economic burden. Our predictive scoring system is relatively simple and useful for optimizing colistin therapy.
Collapse
Affiliation(s)
- Pornpen Sangthawan
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Alan Frederick Geater
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Surarit Naorungroj
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Piyarat Nikomrat
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Ozioma Forstinus Nwabor
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
- Correspondence:
| |
Collapse
|
43
|
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, de Waele J, Daikos GL, Akova M, Harbarth S, Pulcini C, Garnacho-Montero J, Seme K, Tumbarello M, Lindemann PC, Gandra S, Yu Y, Bassetti M, Mouton JW, Tacconelli E, Baño JR. European Society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by Multidrug-resistant Gram-negative bacilli (endorsed by ESICM -European Society of intensive care Medicine). Clin Microbiol Infect 2021; 28:521-547. [PMID: 34923128 DOI: 10.1016/j.cmi.2021.11.025] [Citation(s) in RCA: 502] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
SCOPE These ESCMID guidelines address the targeted antibiotic treatment of 3rd generation cephalosporin-resistant Enterobacterales (3GCephRE) and carbapenem-resistant Gram-negative bacteria, focusing on the effectiveness of individual antibiotics and on combination vs. monotherapy. METHODS An expert panel was convened by ESCMID. A systematic review was performed including randomized controlled trials and observational studies, examining different antibiotic treatment regimens for the targeted treatment of infections caused by the 3GCephRE, carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Acinetobacter baumanni (CRAB). Treatments were classified as head-to-head comparisons between individual antibiotics and monotherapy vs. combination therapy regimens, including defined monotherapy and combination regimens only. The primary outcome was all-cause mortality, preferably at 30 days and secondary outcomes included clinical failure, microbiological failure, development of resistance, relapse/recurrence, adverse events and length of hospital stay. The last search of all databases was conducted in December 2019, followed by a focused search for relevant studies up until ECCMID 2021. Data were summarized narratively. The certainty of the evidence for each comparison between antibiotics and between monotherapy vs. combination therapy regimens was classified by the GRADE recommendations. The strength of the recommendations for or against treatments was classified as strong or conditional (weak). RECOMMENDATIONS The guideline panel reviewed the evidence per pathogen, preferably per site of infection, critically appraising the existing studies. Many of the comparisons were addressed in small observational studies at high risk of bias only. Notably, there was very little evidence on the effects of the new, recently approved, beta-lactam beta-lactamase inhibitors on infections caused by carbapenem-resistant Gram-negative bacteria. Most recommendations are based on very-low and low certainty evidence. A high value was placed on antibiotic stewardship considerations in all recommendations, searching for carbapenem-sparing options for 3GCephRE and limiting the recommendations of the new antibiotics for severe infections, as defined by the sepsis-3 criteria. Research needs are addressed.
Collapse
Affiliation(s)
- Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Pilar Retamar
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roni Bitterman
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA;; VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| | - Jan de Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George L Daikos
- First Department of Medicine, National and Kapodistrian University of Athens
| | - Murat Akova
- Hacettepe University School of Medicine, Department Of Infectious Diseases, Ankara, Turkey
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Celine Pulcini
- Université de Lorraine, APEMAC, Nancy, France; Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | | | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Italy
| | | | - Sumanth Gandra
- Division of Infectious Diseases, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; Clinica Malattie Infettive, San Martino Policlinico Hospital, Genoa, Italy
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| | - Jesus Rodriguez Baño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
44
|
Tabah A, Buetti N, Barbier F, Timsit JF. Current opinion in management of septic shock due to Gram-negative bacteria. Curr Opin Infect Dis 2021; 34:718-727. [PMID: 34751185 DOI: 10.1097/qco.0000000000000767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic has caused multiple challenges to ICUs, including an increased rate of secondary infections, mostly caused by Gram-negative micro-organisms. Worrying trends of resistance acquisition complicate this picture. We provide a review of the latest evidence to guide management of patients with septic shock because of Gram-negative bacteria. RECENT FINDINGS New laboratory techniques to detect pathogens and specific resistance patterns from the initial culture are available. Those may assist decreasing the time to adequate antimicrobial therapy and avoid unnecessary broad-spectrum antibiotic overuse. New antimicrobials, including β-lactam/β-lactamase inhibitor combinations, such as ceftolozane-tazobactam, imipenem-relebactam or meropenem-vaborbactam and cephalosporins, such as cefiderocol targeted to specific pathogens and resistance patterns are available for use in the clinical setting. Optimization of antibiotic dosing and delivery should follow pharmacokinetic and pharmacodynamic principles and wherever available therapeutic drug monitoring. Management of sepsis has brought capillary refill time back to the spotlight along with more reasoned fluid resuscitation and a moderate approach to timing of dialysis initiation. SUMMARY Novel rapid diagnostic tests and antimicrobials specifically targeted to Gram-negative pathogens are available and should be used within the principles of antimicrobial stewardship including de-escalation and short duration of antimicrobial therapy.
Collapse
Affiliation(s)
- Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Redcliffe.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Niccolò Buetti
- Infection Control Program and World Health Organization Collaborating Centre on Patient Safety, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,University of Paris, INSERM U1137, IAME, Team DeSCID, Paris
| | | | - Jean-François Timsit
- University of Paris, INSERM U1137, IAME, Team DeSCID, Paris.,Medical and Infectious Diseases Intensive Care Unit (MI2), Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| |
Collapse
|
45
|
El-Sherbiny GM, Basha AM, Mabrouk MI. Control of extensively drug-resistant Pseudomonas aeruginosa co-harboring metallo-β-lactamase enzymes with oprD gene downregulation. Indian J Med Microbiol 2021; 40:51-56. [PMID: 34802794 DOI: 10.1016/j.ijmmb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/17/2021] [Accepted: 11/07/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE to study control and treatment of infection with extensive drug-resistant carbapenem-resistant Pseudomonas aeruginosa (XDR-CRPA). METHODS Eleven Pseudomonas aeruginosa (XDR-CRPA) strains used in this study were isolated from a clinical sample, identified, and antibiotics susceptibility recorded in a previous study. Real-time PCR (RT-PCR) was performed to determine the expression level of the OprD gene. Besides, a checkerboard technique was performed to assess the effect of polymyxin-B (POX), colistin (COL), rifampicin (RIF), imipenem (IPM), and meropenem (MEM) during 2 and 3- dimensional antibiotic combinations. Further, the time-kill study was determined for the most potent combination against four representative strains, log10 changes of viable cell counts were expressed as their mean value (±SD) values. RESULTS Molecular analysis by Real-time PCR revealed that the diminished expression level of OprD mRNA was overwhelming to various degrees. The checkerboard method demonstrated that the relevant synergism was achieved in 90.9% of strains for both carbapenem antibiotics during the triple combinations. While an additive effect was noted for all the dual regimen assays. Regarding time-kill experiments, a remarkable bactericidal effect with [99.9% killing rate] was observed toward only one strain whilst a bacteriostatic attitude was proven with ≥95% bacterial eradication against the three remaining strains. CONCLUSIONS These findings underscore the promising implications of these combinations for treatment against XDR-Pseudomonas aeruginosa even they are resistant to carbapenems due to multiple mechanisms of action.
Collapse
Affiliation(s)
- Gamal M El-Sherbiny
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
| | - Amr Mohamad Basha
- Department of Microbiology, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| | - Mona I Mabrouk
- Department of Microbiology, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| |
Collapse
|
46
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
47
|
Wang SH, Yang KY, Sheu CC, Chen WC, Chan MC, Feng JY, Chen CM, Wu BR, Zheng ZR, Chou YC, Peng CK. Efficacies of Colistin-Carbapenem versus Colistin-Tigecycline in Critically Ill Patients with CR-GNB-Associated Pneumonia: A Multicenter Observational Study. Antibiotics (Basel) 2021; 10:antibiotics10091081. [PMID: 34572663 PMCID: PMC8467228 DOI: 10.3390/antibiotics10091081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Evaluating the options for antibiotic treatment for carbapenem-resistant Gram-negative bacteria (CR-GNB)-associated pneumonia remains crucial. We compared the therapeutic efficacy and nephrotoxicity of two combination therapies, namely, colistin + carbapenem (CC) versus colistin + tigecycline (CT), for treating CR-GNB-related nosocomial pneumonia in critically ill patients. Methods: In this multicenter, retrospective, and cohort study, we recruited patients admitted to intensive care units and diagnosed with CR-GNB-associated nosocomial pneumonia. We divided the enrolled patients into CC (n = 62) and CT (n = 59) groups. After propensity score matching (n = 39), we compared the therapeutic efficacy by mortality, favorable outcome, and microbiological eradication and compared nephrotoxicity by acute kidney injury between groups. Results: There was no significant difference between the CC and CT groups regarding demographic characteristics and disease severities as assessed using the Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, and other organ dysfunction variables. Therapeutic efficacy was non-significantly different between groups in all-cause mortality, favorable outcomes, and microbiological eradication at days 7, 14, and 28; as was the Kaplan-Meier analysis of 28-day survival. For nephrotoxicity, both groups had similar risks of developing acute kidney injury, evaluated using the Kidney Disease Improving Global Outcomes criteria (p = 1.000). Conclusions: Combination therapy with CC or CT had similar therapeutic efficacy and risk of developing acute kidney injury for treating CR-GNB-associated nosocomial pneumonia in critically ill patients.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (K.-Y.Y.); (J.-Y.F.)
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.S.); (C.-M.C.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Cheng Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan
| | - Ming-Cheng Chan
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (K.-Y.Y.); (J.-Y.F.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.S.); (C.-M.C.)
| | - Biing-Ru Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Correspondence: or
| | | |
Collapse
|
48
|
Saelim W, Changpradub D, Thunyaharn S, Juntanawiwat P, Nulsopapon P, Santimaleeworagun W. Colistin plus Sulbactam or Fosfomycin against Carbapenem-Resistant Acinetobacter baumannii: Improved Efficacy or Decreased Risk of Nephrotoxicity? Infect Chemother 2021; 53:128-140. [PMID: 34409786 PMCID: PMC8032916 DOI: 10.3947/ic.2021.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background Acinetobacter baumannii has been recognized as a cause of nosocomial infection. To date, polymyxins, the last-resort therapeutic agents for carbapenem-resistant A. baumannii (CRAB). Thus, the small number of effective antibiotic options against CRAB represents a challenge to human health. This study examined the appropriate dosage regimens of colistin alone or in combination with sulbactam or fosfomycin using Monte Carlo simulation with the aims of improving efficacy and reducing the risk of nephrotoxicity. Materials and Methods Clinical CRAB isolates were obtained from patients admitted to Phramongkutklao Hospital in 2014 and 2015. The minimum inhibitory concentration (MIC) of colistin for each CRAB isolate was determined using the broth dilution method, whereas those of sulbactam and fosfomycin were determined using the agar dilution method. Each drug regimen was simulated using the Monte Carlo technique to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR). Nephrotoxicity based on RIFLE (Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease) criteria was indicated by colistin trough concentration exceeding
≥3.3 µg/mL. Results A total of 50 CRAB isolates were included. The MIC50 and MIC90 were 64 and 128 µg/mL, respectively, for sulbactam, 256 and 2,048 µg/mL, respectively, for fosfomycin, and 1 and 4 µg/mL, respectively, for colistin. In patients with creatinine clearance of 91 – 130 m/min, the dosing regimens of 180 mg every 12 h and 150 mg every 8 h achieved ≥ 90% of target of the area under the free drug plasma concentration–time curve from 0 to 24 hr (fAUC24)/MIC ≥25 against isolates MICs of ≤0.25 and ≤0.5 µg/mL, respectively, and their rates of colistin trough concentration more than ≥3.3 µg/mL were 35 and 54%, respectively. Colistin combined with sulbactam or fosfomycin decreased the colistin MIC of CRAB isolates from 1 – 16 µg/mL to 0.0625 – 1 and 0.0625 – 2 µg/mL, respectively. Based on CFR ≥ 90%, no colistin monotherapy regimens in patients with creatinine clearance of 91 – 130 mL/min were effective against all of the studied CRAB isolates. For improving efficacy and reducing the risk of nephrotoxicity, colistin 150 mg given every 12 h together with sulbactam (≥6 g/day) or fosfomycin (≥18 g/day) was effective in patients with creatinine clearance of 91 – 130 mL/min. Additionally, both colistin combination regimens were effective against five colistin-resistant A. baumannii isolates. Conclusion Colistin monotherapy at the maximum recommended dose might not cover some CRAB isolates. Colistin combination therapy appears appropriate for achieving the pharmacokinetic/pharmacodynamic targets of CRAB treatment.
Collapse
Affiliation(s)
- Weerayuth Saelim
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Diseases, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Sudaluck Thunyaharn
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima, Thailand
| | - Piraporn Juntanawiwat
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Parnrada Nulsopapon
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.,Antibiotic Optimization and Patient Care Project by Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group [PIRBIG]
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.,Antibiotic Optimization and Patient Care Project by Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group [PIRBIG].
| |
Collapse
|
49
|
El Kettani A, Maaloum F, Nzoyikorera N, Khalis M, Katfy K, Belabbes H, Zerouali K. Evaluation of the Performances of the Rapid Test RESIST-5 O.O.K.N.V Used for the Detection of Carbapenemases-Producing Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10080953. [PMID: 34439003 PMCID: PMC8388884 DOI: 10.3390/antibiotics10080953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The emergence of carbapenemase-producing Enterobacterales (CPE) is a public health problem, requiring rapid and reliable diagnostic methods. The aim is to compare the new rapid immunochromatographic (IC) test: RESIST-5 O.O.K.N.V with PCR and the predictive model of EUCAST algorithm for the detection of CPE. Methods: A longitudinal cross-sectional study was carried out in the bacteriology-virology laboratory of the Ibn Rochd-Casablanca University Hospital, from 1 February 2019 to 28 February 2020, concerning strains with reduced sensitivity to Ertapenem. The identification of bacterial species was carried out according to the standard criteria of microbiology and antibiogram according to CASFM-EUCAST 2019 recommendations. The sensitivity and specificity of the rapid IC test were calculated. Results: The results of the new IC test showed a sensitivity and specificity of 100% for the detection of OXA-48 and NDM. These carbapenemases were detected simultaneously with a sensitivity and specificity of 100%. OXA-48 was the most common carbapenemas found (36%), followed by NDM (24%) and (13.4%) cases of OXA-48 and NDM coexistence. Conclusion: The rapid IC test could be a rapid and effective diagnostic tool for detecting the most common carbapenemases in our context, and to accelerate the implementation of adequate antibiotic therapy and infection control measures in patients with CPE infections
Collapse
Affiliation(s)
- Assiya El Kettani
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
- Correspondence: ; Tel.: +212-0619094322
| | - Fakhreddine Maaloum
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| | - Nehemie Nzoyikorera
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| | - Mohamed Khalis
- International School of Public Health, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco;
| | - Khalid Katfy
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
| | - Houria Belabbes
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| | - Khalid Zerouali
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, Casablanca 20503, Morocco; (F.M.); (N.N.); (K.K.); (H.B.); (K.Z.)
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20503, Morocco
| |
Collapse
|
50
|
Paul M. Management of KPC-producing Klebsiella pneumoniae in clinical practice: introduction. J Antimicrob Chemother 2021; 76:i2-i3. [PMID: 33534877 DOI: 10.1093/jac/dkaa491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|