1
|
Chisembe P, Suzuki M, Dao DT, Njunga G, Nkhoma J, Mthilakuwili L, Kinoshita-Daitoku R, Kuroda E, Kimura K, Shibayama K. A nationwide survey of antimicrobial resistance of Escherichia coli isolated from broiler chickens in Malawi. JAC Antimicrob Resist 2024; 6:dlae200. [PMID: 39669661 PMCID: PMC11635101 DOI: 10.1093/jacamr/dlae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024] Open
Abstract
Background Antimicrobial resistance is a global health challenge with profound implications across sectors. Livestock, a significant field at the One Health interface, lacks sufficient information, particularly in low-resource settings such as Malawi. Objectives We determined the antimicrobial resistance rates of Escherichia coli isolated from broiler chickens in Malawi and explored the relationship between resistance genes across sectors using genomic analysis. Methods In 2023, we isolated 115 E. coli strains from 116 faecal and caecal samples from broiler chickens across Malawi. Antimicrobial susceptibility tests were performed using agar dilution method according to the Clinical Laboratory Standard Institute guidelines. Whole-genome sequencing was performed using Illumina sequencing. Results Notably, 50 isolates (44%) were resistant to cefotaxime. We detected ESBL bla CTX-M genes (bla CTX-M-55, bla CTX-M-14, bla CTX-M-65, bla CTX-M-27, bla CTX-M-15, bla CTX-M-1, and bla CTX-M-3) in 48 cefotaxime-resistant isolates, which exhibited higher resistance rates to levofloxacin than non-ESBL-encoding isolates (29/48; 60% versus 20/67; 30%). All isolates were susceptible to colistin and carbapenems. High resistance rates were observed for tetracycline and co-trimoxazole commonly used in broiler chickens (90% and 70%, respectively). Sequence type 206 and phylogroup A were predominant (14% and 65%, respectively). In the genetic context of bla CTX-M genes, whole-genome alignment of the ESBL-producing isolates with reference plasmids from E. coli of various origins indicated significant similarity. Conclusions Antimicrobial resistance is highly prevalent among E. coli from broiler chickens in Malawi. Genomic analysis suggests potential transmission pathways for ESBL genes across sectors, necessitating further studies from One Health perspective.
Collapse
Affiliation(s)
- Pilirani Chisembe
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8850, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Duc Trung Dao
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8850, Japan
| | - Gilson Njunga
- Department of Bacteriology, Central Veterinary Laboratory, Post Office Box 527, Lilongwe, Malawi
| | - Joseph Nkhoma
- Department of Bacteriology, Central Veterinary Laboratory, Post Office Box 527, Lilongwe, Malawi
| | - Lecollins Mthilakuwili
- Department of Bacteriology, Central Veterinary Laboratory, Post Office Box 527, Lilongwe, Malawi
| | - Ryo Kinoshita-Daitoku
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8850, Japan
| | - Eisuke Kuroda
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8850, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8850, Japan
| | - Keigo Shibayama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8850, Japan
| |
Collapse
|
2
|
Graf FE, Goodman RN, Gallichan S, Forrest S, Picton-Barlow E, Fraser AJ, Phan MD, Mphasa M, Hubbard ATM, Musicha P, Schembri MA, Roberts AP, Edwards T, Lewis JM, Feasey NA. Molecular mechanisms of re-emerging chloramphenicol susceptibility in extended-spectrum beta-lactamase-producing Enterobacterales. Nat Commun 2024; 15:9019. [PMID: 39424629 PMCID: PMC11489765 DOI: 10.1038/s41467-024-53391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Infections with Enterobacterales (E) are increasingly difficult to treat due to antimicrobial resistance. After ceftriaxone replaced chloramphenicol (CHL) as empiric therapy for suspected sepsis in Malawi in 2004, extended-spectrum beta-lactamase (ESBL)-E rapidly emerged. Concurrently, resistance to CHL in Escherichia coli and Klebsiella spp. decreased, raising the possibility of CHL re-introduction. However, many phenotypically susceptible isolates still carry CHL acetyltransferase (cat) genes. To understand the molecular mechanisms and stability of this re-emerging CHL susceptibility we use a combination of genomics, phenotypic susceptibility assays, experimental evolution, and functional assays for CAT activity. Here, we show that of 840 Malawian E. coli and Klebsiella spp. isolates, 31% have discordant CHL susceptibility genotype-phenotype, and we select a subset of 42 isolates for in-depth analysis. Stable degradation of cat genes by insertion sequences leads to re-emergence of CHL susceptibility. Our study suggests that CHL could be reintroduced as a reserve agent for critically ill patients with ESBL-E infections in Malawi and similar settings and highlights the ongoing challenges in inferring antimicrobial resistance from sequence data.
Collapse
Affiliation(s)
- Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Richard N Goodman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sarah Gallichan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sally Forrest
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Esther Picton-Barlow
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Alice J Fraser
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Patrick Musicha
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
3
|
Wolde D, Eguale T, Medhin G, Haile AF, Alemayehu H, Mihret A, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, Janko T, Steyer A, Starčič Erjavec M. Genomic Characterization of Extended-Spectrum β-Lactamase-Producing and Third-Generation Cephalosporin-Resistant Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics (Basel) 2024; 13:851. [PMID: 39335024 PMCID: PMC11428868 DOI: 10.3390/antibiotics13090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) in Escherichia coli is a major public health concern. The aim of this study was to investigate the genomic characteristics of extended-spectrum β-lactamase (ESBL)-producing and third-generation cephalosporin-resistant E. coli from a previously obtained collection of 260 E. coli isolates from fecal samples of patients attending primary healthcare facilities in Addis Ababa and Hossana, Ethiopia. A total of 29 E. coli isolates (19 phenotypically confirmed ESBL-producing and 10 third-generation cephalosporin-resistant isolates) were used. Whole-genome sequencing (NextSeq 2000 system, Illumina) and bioinformatic analysis (using online available tools) were performed to identify ARGs, virulence-associated genes (VAGs), mobile genetic elements (MGEs), serotypes, sequence types (STs), phylogeny and conjugative elements harbored by these isolates. A total of 7 phylogenetic groups, 22 STs, including ST131, and 23 serotypes with different VAGs were identified. A total of 31 different acquired ARGs and 10 chromosomal mutations in quinolone resistance-determining regions (QRDRs) were detected. The isolates harbored diverse types of MGEs, with IncF plasmids being the most prevalent (66.7%). Genetic determinants associated with conjugative transfer were identified in 75.9% of the E. coli isolates studied. In conclusion, the isolates exhibited considerable genetic diversity and showed a high potential for transferability of ARGs and VAGs. Bioinformatic analyses also revealed that the isolates exhibited substantial genetic diversity in phylogenetic groups, sequence types (ST) and serogroups and were harboring a variety of virulence-associated genes (VAGs). Thus, the studied isolates have a high potential for transferability of ARGs and VAGs.
Collapse
Affiliation(s)
- Deneke Wolde
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, Hossana P.O. Box 667, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Ohio State Global One Health, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Adane Mihret
- College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia
| | - Tea Janko
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Arconada Nuin E, Vilken T, Xavier BB, Doua J, Morrow B, Geurtsen J, Go O, Spiessens B, Sarnecki M, Poolman J, Bonten M, Ekkelenkamp M, Lammens C, Goossens H, Glupczynski Y, Van Puyvelde S. A microbiological and genomic perspective of globally collected Escherichia coli from adults hospitalized with invasive E. coli disease. J Antimicrob Chemother 2024; 79:2142-2151. [PMID: 39001716 PMCID: PMC11368426 DOI: 10.1093/jac/dkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Escherichia coli can cause infections in the urinary tract and in normally sterile body sites leading to invasive E. coli disease (IED), including bacteraemia and sepsis, with older populations at increased risk. We aimed to estimate the theoretical coverage rate by the ExPEC4V and 9V vaccine candidates. In addition, we aimed at better understanding the diversity of E. coli isolates, including their genetic and phenotypic antimicrobial resistance (AMR), sequence types (STs), O-serotypes and the bacterial population structure. METHODS Blood and urine culture E. coli isolates (n = 304) were collected from hospitalized patients ≥60 years (n = 238) with IED during a multicentric, observational study across three continents. All isolates were tested for antimicrobial susceptibility, O-serotyped, whole-genome sequenced and bioinformatically analysed. RESULTS A large diversity of STs and of O-serotypes were identified across all centres, with O25b-ST131, O6-ST73 and O1-ST95 being the most prevalent types. A total of 45.4% and 64.7% of all isolates were found to have an O-serotype covered by the ExPEC4V and ExPEC9V vaccine candidates, respectively. The overall frequency of MDR was 37.4% and ST131 was predominant among MDR isolates. Low in-patient genetic variability was observed in cases where multiple isolates were collected from the same patient. CONCLUSIONS Our results highlight the predominance of MDR O25b-ST131 E. coli isolates across diverse geographic areas. These findings provide further baseline data on the theoretical coverage of novel vaccines targeting E. coli associated with IED in older adults and their associated AMR levels.
Collapse
Affiliation(s)
- Enya Arconada Nuin
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tuba Vilken
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joachim Doua
- Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium
| | - Brian Morrow
- Janssen Research & Development, Raritan, NJ, USA
| | - Jeroen Geurtsen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Oscar Go
- Janssen Research & Development, Raritan, NJ, USA
| | - Bart Spiessens
- Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium
| | - Michal Sarnecki
- Janssen Vaccines, Branch of Cilag GmbH International, Bern, Switzerland
| | - Jan Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Marc Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- ECRAID, Utrecht, The Netherlands
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
5
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
6
|
Lewis JM, Mphasa M, Banda R, Beale MA, Mallewa J, Anscome C, Zuza A, Roberts AP, Heinz E, Thomson NR, Feasey NA. Genomic analysis of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli colonising adults in Blantyre, Malawi reveals previously undescribed diversity. Microb Genom 2023; 9:mgen001035. [PMID: 37314322 PMCID: PMC10327512 DOI: 10.1099/mgen.0.001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
Escherichia coli is one of the most prevalent Gram-negative species associated with drug resistant infections. Strains that produce extended-spectrum beta-lactamases (ESBLs) or carbapenemases are both particularly problematic and disproportionately impact resource limited healthcare settings where last-line antimicrobials may not be available. A large number of E. coli genomes are now available and have allowed insights into pathogenesis and epidemiology of ESBL E. coli but genomes from sub-Saharan Africa (sSA) are significantly underrepresented. To reduce this gap, we investigated ESBL-producing E. coli colonising adults in Blantyre, Malawi to assess bacterial diversity and AMR determinants and to place these isolates in the context of the wider population structure. We performed short-read whole-genome sequencing of 473 colonising ESBL E. coli isolated from human stool and contextualised the genomes with a previously curated multi-country collection of 10 146 E. coli genomes and sequence type (ST)-specific collections for our three most commonly identified STs. These were the globally successful ST131, ST410 and ST167, and the dominant ESBL genes were bla CTX-M, mirroring global trends. However, 37 % of Malawian isolates did not cluster with any isolates in the curated multicountry collection and phylogenies were consistent with locally spreading monophyletic clades, including within the globally distributed, carbapenemase-associated B4/H24RxC ST410 lineage. A single ST2083 isolate in this collection harboured a carbapenemase gene. Long read sequencing demonstrated the presence of a globally distributed ST410-associated carbapenemase carrying plasmid in this isolate, which was absent from the ST410 strains in our collection. We conclude there is a risk that carbapenem resistance in E. coli could proliferate rapidly in Malawi under increasing selection pressure, and that both ongoing antimicrobial stewardship and genomic surveillance are critical as local carbapenem use increases.
Collapse
Affiliation(s)
- Joseph M. Lewis
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Catherine Anscome
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Allan Zuza
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
Kariuki K, Diakhate MM, Musembi S, Tornberg-Belanger SN, Rwigi D, Mutuma T, Mutuku E, Tickell KD, Soge OO, Singa BO, Walson JL, Pavlinac PB, Kariuki S. Plasmid-mediated quinolone resistance genes detected in Ciprofloxacin non-susceptible Escherichia coli and Klebsiella isolated from children under five years at hospital discharge, Kenya. BMC Microbiol 2023; 23:129. [PMID: 37173674 PMCID: PMC10182689 DOI: 10.1186/s12866-023-02849-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The increasing spread of fluoroquinolone resistant enteric bacteria is a global public health concern. Children recently discharged from the hospital are at high risk of carriage of antimicrobial resistance (AMR) due to frequent exposure to antimicrobials during inpatient stays. This study aimed to determine the prevalence, correlates of ciprofloxacin (CIP) non-susceptibility, and distribution of plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli (E. coli) and Klebsiella spp isolated from children under five years being discharged from two Kenyan Hospitals. METHODS E. coli and Klebsiella spp were isolated from fecal samples from children discharged from hospital and subjected to antimicrobial susceptibility testing (AST) by disc diffusion and E-test. CIP non-susceptible isolates were screened for seven PMQR genes using multiplex polymerase chain reaction (PCR). Poisson regression was used to determine the association between the carriage of CIP non-susceptible isolates and patient characteristics. RESULTS Of the 280 CIP non-susceptible isolates: 188 E. coli and 92 Klebsiella spp isolates identified among 266 discharged children, 195 (68%) were CIP-non-susceptible with minimum inhibitory concentrations (MICs) of ≥ 1 µg/mL. Among these 195 isolates, 130 (67%) had high-level CIP MIC = ≥ 32 µg/mL). Over 80% of the isolates had at least one PMQR gene identified: aac(6')lb-cr (60%), qnrB (24%), oqxAB (22%), qnrS (16%), and qepA (6%), however, qnrA was not identified in any isolates tested. Co-carriage of qnrB with acc(6')-lb-cr was the most predominant accounting for 20% of all the isolates. Ceftriaxone use during hospital admission and the presence of extended spectrum beta-lactamase (ESBL) production were significantly associated with the carriage of CIP non-susceptible E. coli and Klebsiella spp. CONCLUSION CIP non-susceptibility is common among E. coli and Klebsiella spp isolated from hospital discharged children in Kenya. Carriage and co-carriage of PMQR, including the newly identified qepA gene, were frequently observed. These findings suggest that children leaving the hospital may serve as an important reservoir for transmission of resistant E. coli and Klebsiella spp to the community. Enhanced surveillance for AMR determinants is critical to inform interventions to control antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Kevin Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
| | | | - Susan Musembi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | | | - Doreen Rwigi
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Timothy Mutuma
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Elizabeth Mutuku
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Kirkby D Tickell
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Olusegun O Soge
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Benson O Singa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Centre for Clinical Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Judd L Walson
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Pediatrics and Medicine (Allergy and Infectious Diseases), University of Washington, Seattle, WA, USA
| | - Patricia B Pavlinac
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
8
|
Pankok F, Fuchs F, Loderstädt U, Kaase M, Balczun C, Scheithauer S, Frickmann H, Hagen RM. Molecular Epidemiology of Escherichia coli with Resistance against Third-Generation Cephalosporines Isolated from Deployed German Soldiers-A Retrospective Assessment after Deployments to the African Sahel Region and Other Sites between 2007 and 2016. Microorganisms 2022; 10:microorganisms10122448. [PMID: 36557701 PMCID: PMC9788009 DOI: 10.3390/microorganisms10122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Colonization and infection with bacteria with acquired antibiotic resistance are among the risks for soldiers on international deployments. Enterobacterales with resistance against third-generation cephalosporines are amongst the most frequently imported microorganisms. To contribute to the scarcely available epidemiological knowledge on deployment-associated resistance migration, we assessed the molecular epidemiology of third-generation cephalosporine-resistant Escherichia coli isolated between 2007 and 2016 from German soldiers after deployments, with a particular focus on the African Sahel region. A total of 51 third-generation cephalosporine-resistant E. coli isolated from 51 military returnees from deployment collected during the assessment period between 2007 and 2016 were subjected to short-read next-generation sequencing analysis. Returnees from the Sahel region (Djibouti, Mali, South Sudan, Sudan, Sudan, and Uganda) comprised a proportion of 52.9% (27/51). Repeatedly isolated sequence types according to the Warwick University scheme from returnees from the Sahel region were ST38, ST131, and ST648, confirming previous epidemiological assessments from various sub-Saharan African regions. Locally prevalent resistance genes in isolates from returnees from the Sahel region associated with third-generation resistance were blaCTX-M-15, blaCTX-M-27, blaCTX-M-1, blaTEM-169, blaCTX-M-14, blaCTX-M-99-like, blaCTX-M-125, blaSHV-12, and blaDHA-1, while virulence genes were east1, sat, and tsh in declining order of frequency of occurrence each. In line with phenotypically observed high resistance rates for aminoglycosides and trimethoprim/sulfamethoxazole, multiple associated resistance genes were observed. A similar, slightly more diverse situation was recorded for the other deployment sites. In summary, this assessment provides first next-generation sequencing-based epidemiological data on third-generation cephalosporine-resistant E. coli imported by deployed German soldiers with a particular focus on deployments to the Sahel region, thus serving as a small sentinel. The detected sequence types are well in line with the results from previous epidemiological assessments in sub-Saharan Africa.
Collapse
Affiliation(s)
- Frederik Pankok
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: (F.P.); (U.L.)
| | - Frieder Fuchs
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical Faculty and University Hospital of Cologne, 50931 Cologne, Germany
| | - Ulrike Loderstädt
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: (F.P.); (U.L.)
| | - Martin Kaase
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carsten Balczun
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany
| | - Simone Scheithauer
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hospital Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany
| |
Collapse
|
9
|
Lester R, Musicha P, Kawaza K, Langton J, Mango J, Mangochi H, Bakali W, Pearse O, Mallewa J, Denis B, Bilima S, Gordon SB, Lalloo DG, Jewell CP, Feasey NA. Effect of resistance to third-generation cephalosporins on morbidity and mortality from bloodstream infections in Blantyre, Malawi: a prospective cohort study. THE LANCET. MICROBE 2022; 3:e922-e930. [PMID: 36335953 PMCID: PMC9712123 DOI: 10.1016/s2666-5247(22)00282-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The burden of antimicrobial resistance is a major threat to global health; however, prospective clinical outcome data from Africa are scarce. In Malawi, third-generation cephalosporins are the antibiotics of choice in patients admitted to hospital despite a rapid proliferation of resistance to these drugs. We aimed to quantify the effect of resistance to third-generation cephalosporins on mortality and length of hospital stay among patients with bloodstream infections. METHODS We did a prospective cohort study of patients admitted to Queen Elizabeth Central Hospital in Blantyre, Malawi. Patients of all ages who had positive blood cultures for Enterobacterales were included, with the exception of those from the genus Salmonella, and were followed up for 180 days. We characterised blood culture isolates using whole-genome sequencing and used Cox regression models to estimate the effect of resistance to third-generation cephalosporins on length of hospital stay, in-hospital mortality, and survival. FINDINGS Between Jan 31, 2018, and Jan 13, 2020, we recruited 326 patients, from whom 220 (68%) of 326 isolates were resistant to third-generation cephalosporins. The case fatality proportion was 45% (99 of 220) in patients with bloodstream infections that were resistant to third-generation cephalosporins, and 34% (36 of 106) in patients with bloodstream infections that were sensitive to third-generation cephalosporins. Resistance to third-generation cephalosporins was associated with an increased probability of in-hospital mortality (hazard ratio [HR] 1·44, 95% CI 1·02-2·04), longer hospital stays (1·5 days, 1·0-2·0) and decreased probability of discharge alive (HR 0·31, 0·22-0·45). Whole-genome sequencing showed a high diversity of sequence types of both Escherichia coli and Klebsiella pneumoniae. Although isolates associated with death were distributed across clades, we identified three E coli clades (ST410, ST617, and ST648) that were isolated from 14 patients who all died. INTERPRETATION Resistance to third-generation cephalosporins is associated with increased mortality and longer hospital stays in patients with bloodstream infections in Malawi. These data show the urgent need for allocation of resources towards antimicrobial resistance mitigation strategies in Africa. FUNDING Wellcome Trust and Wellcome Asia and Africa Programme.
Collapse
Affiliation(s)
- Rebecca Lester
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Patrick Musicha
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Kondwani Kawaza
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Josephine Langton
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - James Mango
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Helen Mangochi
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Winnie Bakali
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Oliver Pearse
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Mallewa
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Brigitte Denis
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sithembile Bilima
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Stephen B Gordon
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David G Lalloo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher P Jewell
- Centre for Health Informatics, Computing and Statistics, Lancaster University, Lancaster, UK
| | - Nicholas A Feasey
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
10
|
MacPherson EE, Reynolds J, Sanudi E, Nkaombe A, Phiri C, Mankhomwa J, Dixon J, Chandler CIR. Understanding antimicrobial resistance through the lens of antibiotic vulnerabilities in primary health care in rural Malawi. Glob Public Health 2022; 17:2630-2646. [PMID: 34932915 DOI: 10.1080/17441692.2021.2015615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diminishing effectiveness of antimicrobials raises serious concerns for human health. While policy makers grapple to reduce the overuse of antimicrobial medicines to stem the rise of antimicrobial resistance, insufficient attention has been paid to how this applies to low-resource contexts. We provide an in-depth portrayal of antimicrobial prescribing at primary health care level in rural Chikwawa District, Malawi. Ethnographic fieldwork took place over 18 months (2018-2020). We surveyed 22 health facilities in the district, observed 1348 health worker-patient consultations, and carried out 49 in-depth interviews with staff and patients. Care was centred around provision of an antimicrobial. Amid chronic lack of essential medicines and other resources, clinic interactions were tightly scripted, providing patients little time to question or negotiate their treatment. We develop the concept of 'antibiotic vulnerabilities' to reveal multiple ways in which provision of antimicrobials in rural Malawi impacts care in conditions of extreme scarcity. Antibiotics are central and essential to primary care. As targets for optimal antimicrobial prescribing take a more central role in global policy, close attention is required of the ramifications for the delivery of care to ensure that efforts to stem resistance do not undermine the goal of improved health for all.
Collapse
Affiliation(s)
- Eleanor E MacPherson
- Malawi-Liverpool-Wellcome Trust and Liverpool School of Tropical Medicine, Blantyre, Malawi
| | | | | | | | | | | | - Justin Dixon
- London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
11
|
Lewis JM, Mphasa M, Banda R, Beale MA, Heinz E, Mallewa J, Jewell C, Faragher B, Thomson NR, Feasey NA. Colonization dynamics of extended-spectrum beta-lactamase-producing Enterobacterales in the gut of Malawian adults. Nat Microbiol 2022; 7:1593-1604. [PMID: 36065064 PMCID: PMC9519460 DOI: 10.1038/s41564-022-01216-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Drug-resistant bacteria of the order Enterobacterales which produce extended-spectrum beta-lactamase enzymes (ESBL-Enterobacterales, ESBL-E) are global priority pathogens. Antimicrobial stewardship interventions proposed to curb their spread include shorter courses of antimicrobials to reduce selection pressure but individual-level acquisition and selection dynamics are poorly understood. We sampled stool of 425 adults (aged 16-76 years) in Blantyre, Malawi, over 6 months and used multistate modelling and whole-genome sequencing to understand colonization dynamics of ESBL-E. Models suggest a prolonged effect of antimicrobials such that truncating an antimicrobial course at 2 days has a limited effect in reducing colonization. Genomic analysis shows largely indistinguishable diversity of healthcare-associated and community-acquired isolates, hence some apparent acquisition of ESBL-E during hospitalization may instead represent selection from a patient's microbiota by antimicrobial exposure. Our approach could help guide stewardship protocols; interventions that aim to review and truncate courses of unneeded antimicrobials may be of limited use in preventing ESBL-E colonization.
Collapse
Affiliation(s)
- Joseph M Lewis
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
- University of Liverpool, Liverpool, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - Eva Heinz
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
12
|
Choonara FE, Haldorsen BC, Janice J, Mbanga J, Ndhlovu I, Saulosi O, Maida T, Lampiao F, Simonsen GS, Essack SY, Sundsfjord A. Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi. Trop Med Infect Dis 2022; 7:245. [PMID: 36136656 PMCID: PMC9501462 DOI: 10.3390/tropicalmed7090245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The global rise in infections caused by multidrug resistant (MDR) Enterobacterales poses a public health problem. We have performed a molecular epidemiological characterisation of representative plasmid-mediated AmpC (pAmpC) and ESBL-positive clinical isolates of Escherichia coli (n = 38) and Klebsiella pneumoniae (n = 17) from a tertiary hospital in Malawi collected in 2017. BlaCTX-M-15 was the most prevalent ESBL-determinant in E. coli (n = 30/38) and K. pneumoniae (n = 17/17), whereas blaCMY-2 was detected in nearly all AmpC-phenotype E. coli (n = 15/17). Whole genome sequencing revealed dominant globally disseminated E. coli sequence types (STs); ST410 (n = 16), ST131 (n = 7), and ST617 (n = 6). The ST distribution in K. pneumoniae was more diverse but included ST101 (n = 2), ST14 (n = 2), and ST340 (n = 2), all considered high-risk MDR clones. The isolates expressed an MDR profile, including resistance against commonly used antibiotics, such as fluoroquinolones, aminoglycosides, and/or trimethoprim-sulfamethoxazole, and harboured corresponding resistance determinants. Clonal analyses of the major STs of E. coli revealed closely related genetic clusters within ST410, ST131, and ST617 supporting within-hospital transmission between patients and/or via a common reservoir. The overall findings add to the limited knowledge on the molecular epidemiology of MDR E. coli and K. pneumoniae in Malawi and may help health policy makers to identify areas to target when addressing this major threat of antibiotic resistance.
Collapse
Affiliation(s)
- Faheema Ebrahim Choonara
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
- Africa Centre of Excellence in Public Health and Herbal Medicine, College of Medicine, University of Malawi, Private Bag 360, Blantyre 3, Malawi
| | - Bjørg Christina Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Jessin Janice
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Corner Cecil & Gwanda Road, Private Bag 939, Bulwayo P.O. Box AC939, Zimbabwe
| | - Isaac Ndhlovu
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
| | - Osborne Saulosi
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
| | - Tarsizio Maida
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
| | - Fanuel Lampiao
- Africa Centre of Excellence in Public Health and Herbal Medicine, College of Medicine, University of Malawi, Private Bag 360, Blantyre 3, Malawi
| | - Gunnar Skov Simonsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
13
|
Mankhomwa J, Tolhurst R, M'biya E, Chikowe I, Banda P, Mussa J, Mwasikakata H, Simpson V, Feasey N, MacPherson EE. A Qualitative Study of Antibiotic Use Practices in Intensive Small-Scale Farming in Urban and Peri-Urban Blantyre, Malawi: Implications for Antimicrobial Resistance. Front Vet Sci 2022; 9:876513. [PMID: 35685344 PMCID: PMC9171431 DOI: 10.3389/fvets.2022.876513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The routine use of antimicrobials in meat production has been identified as a driver of antimicrobial resistance (AMR) in both animals and humans. Significant knowledge gaps exist on antibiotic use practices in farming, particularly in sub-Saharan Africa. This paper sought to generate in-depth understanding of household antibiotic use practices in food animals in urban- and peri-urban Blantyre. We used a qualitative research methodology focusing on households that kept scavenging animals and those engaged in small-scale intensive farming of food animals. Methods used were: medicine-use surveys with 130 conducted with a range of households; in-depth interviews (32) with a range of participants including farmers, community based veterinary health workers and veterinary shop workers; and stakeholder interviews (17) with policy makers, regulators, and academics. Six months of ethnographic fieldwork was also undertaken, with households engaged in farming, veterinary officers and veterinary stores. Our findings suggest antibiotic use in animals was more common in households that used small-scale intensive farming techniques, but rare in households that did not. For farmers engaged in small-scale intensive farming, antibiotics were often considered vital to remain solvent in a precarious economic and social environment, with limited access to veterinary services. A complex regulatory framework governed the import, prescription, and administration of antibiotics. Veterinary stores provided easy access to antibiotics, including colistin, an antibiotic on the WHO's critically important antibiotics for human health. Our work suggests that the high dependence on antibiotics for small-scale intensive farming may contribute to the growth of drug resistant infections in Malawi. The socio-economic drivers of antibiotic use mean that interventions need to take a holistic approach to address the high dependence on antibiotics. Key interventions could include improving farmers' access to affordable veterinary services, providing information about appropriate antibiotic use including withdrawal periods and feed supplementation, as well as improvements in regulation (nationally and internationally) and enforcement of current regulations. Taken together these approaches could lead to antibiotic use being optimised in feed animals.
Collapse
Affiliation(s)
- John Mankhomwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Rachel Tolhurst
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Eunice M'biya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Ibrahim Chikowe
- Pharmacy Department, Kamuzu University of Health Sciences (KUHeS) Formerly College of Medicine, University of Malawi, Blantyre, Malawi
| | - Pemphero Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Jimmy Mussa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Henry Mwasikakata
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Victoria Simpson
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Eleanor E. MacPherson
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom,*Correspondence: Eleanor E. MacPherson
| |
Collapse
|
14
|
Wilson CN, Chunga A, Masesa C, Denis B, Silungwe N, Bilima S, Galloway H, Gordon M, Feasey NA. Incidence of invasive non-typhoidal Salmonella in Blantyre, Malawi between January 2011-December 2019. Wellcome Open Res 2022; 7:143. [PMID: 37153453 PMCID: PMC10160792 DOI: 10.12688/wellcomeopenres.17754.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) has undertaken sentinel surveillance of bloodstream infection and meningitis at Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi for 20 years. Previously, three epidemics of Salmonella bloodstream infection have been identified. Here we provide updated surveillance data on invasive non-typhoidal Salmonella disease from 2011 – 2019. Methods: Surveillance data describing trends in invasive non-typhoidal Salmonella disease and associated antimicrobial susceptibility profiles are presented for the period January 2011 – December 2019. Results: Between January 2011-December 2019, 128,588 blood cultures and 40,769 cerebrospinal fluid cultures were processed at MLW. Overall, 1.00% of these were positive for S. Typhimurium, 0.10% for S. Enteritidis, and 0.05% positive for other Salmonella species. Estimated minimum incidence of invasive non-typhoidal Salmonella (iNTS) disease decreased from 21/100,000 per year in 2011 to 7/100,000 per year in 2019. Over this period, 26 confirmed cases of Salmonella meningitis were recorded (88.5% S. Typhimurium). Between 2011-2019 there was a substantial decrease in proportion of S. Typhimurium (78.5% to 27.7%) and S. Enteritidis (31.8% in 2011 to 0%) that were multidrug-resistant. Resistance to fluoroquinolones and third-generation generation cephalosporins (3GC) remained uncommon, however 3GC increased amongst Salmonella spp. and S. Typhimurium in the latter part of the period. Conclusions: The total number of iNTS bloodstream infections decreased between 2011-2019. Although the number multidrug resistance (MDR) S. Typhimurium and S. Enteritidis isolates has fallen, the number of MDR isolates of other Salmonella spp. has increased, including 3GC isolates.
Collapse
|
15
|
Cubas-Atienzar AI, Williams CT, Karkey A, Dongol S, Sulochana M, Rajendra S, Hobbs G, Evans K, Musicha P, Feasey N, Cuevas LE, Adams ER, Edwards T. A novel air-dried multiplex high-resolution melt assay for the detection of extended-spectrum β-lactamase and carbapenemase genes. J Glob Antimicrob Resist 2021; 27:123-131. [PMID: 34482019 PMCID: PMC8692233 DOI: 10.1016/j.jgar.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES This study aimed to develop and evaluate a novel air-dried high-resolution melt (HRM) assay to detect eight major extended-spectrum β-lactamase (ESBL) (blaSHV and blaCTX-M groups 1 and 9) and carbapenemase (blaNDM, blaIMP, blaKPC, blaVIM and blaOXA-48-like) genes that confer resistance to cephalosporins and carbapenems. METHODS The assay was evaluated using 439 DNA samples extracted from bacterial isolates from Nepal, Malawi and the UK and 390 clinical isolates from Nepal with known antimicrobial susceptibility. Assay reproducibility was evaluated across five different real-time quantitative PCR (qPCR) instruments [Rotor-Gene® Q, QuantStudioTM 5, CFX96, LightCycler® 480 and Magnetic Induction Cycler (Mic)]. Assay stability was also assessed under different storage temperatures (6.2 ± 0.9°C, 20.4 ± 0.7°C and 29.7 ± 1.4°C) at six time points over 8 months. RESULTS The sensitivity and specificity (with 95% confidence intervals) for detecting ESBL and carbapenemase genes was 94.7% (92.5-96.5%) and 99.2% (98.8-99.5%) compared with the reference gel-based PCR and sequencing and 98.3% (97.0-99.3%) and 98.5% (98.0-98.9%) compared with the original HRM wet PCR mix format. Overall agreement was 91.1% (90.0-92.9%) when predicting phenotypic resistance to cefotaxime and meropenem among Enterobacteriaceae isolates. We observed almost perfect inter-machine reproducibility of the air-dried HRM assay, and no loss of sensitivity occurred under all storage conditions and time points. CONCLUSION We present a ready-to-use air-dried HRM PCR assay that offers an easy, thermostable, fast and accurate tool for the detection of ESBL and carbapenemase genes in DNA samples to improve antimicrobial resistance detection.
Collapse
Affiliation(s)
- Ana I Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Abhilasha Karkey
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Sabina Dongol
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Manandhar Sulochana
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Shrestha Rajendra
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Glyn Hobbs
- Liverpool John Moores University, Liverpool, UK
| | - Katie Evans
- Liverpool John Moores University, Liverpool, UK
| | | | - Nicholas Feasey
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Luis E Cuevas
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
16
|
Mazumder R, Hussain A, Abdullah A, Islam MN, Sadique MT, Muniruzzaman SM, Tabassum A, Halim F, Akter N, Ahmed D, Mondal D. International High-Risk Clones Among Extended-Spectrum β-Lactamase-Producing Escherichia coli in Dhaka, Bangladesh. Front Microbiol 2021; 12:736464. [PMID: 34671331 PMCID: PMC8521144 DOI: 10.3389/fmicb.2021.736464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
Background:Escherichia coli is a major extended-spectrum β-lactamase (ESBL)–producing organism responsible for the rapid spread of antimicrobial resistance (AMR) that has compromised our ability to treat infections. Baseline data on population structure, virulence, and resistance mechanisms in E. coli lineages from developing countries such as Bangladesh are lacking. Methods: Whole-genome sequencing was performed for 46 ESBL–E. coli isolates cultured from patient samples at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)-Dhaka. Sequence data were analyzed to glean details of AMR, virulence, and phylogenetic and molecular markers of E. coli lineages. Results: Genome comparison revealed presence of all major high-risk clones including sequence type 131 (ST131) (46%), ST405 (13%), ST648 (7%), ST410 (4.3%), ST38 (2%), ST73 (2%), and ST1193 (2%). The predominant ESBL gene and plasmid combination were blaCTX–M–15 and FII-FIA-FIB detected in diverse E. coli phylogroups and STs. The blaNDM–5 (9%) gene was present in prominent E. coli STs. One (2%) mcr-1–positive ST1011 E. coli, coharboring blaCTXM–55 gene, was detected. The extraintestinal pathogenic E. coli genotype was associated with specific E. coli lineages. The single nucleotide polymorphism (SNP)-based genome phylogeny largely showed correlation with phylogroups, serogroups, and fimH types. Majority of these isolates were susceptible to amikacin (93%), imipenem (93%), and nitrofurantoin (83%). Conclusion: Our study reveals a high diversity of E. coli lineages among ESBL-producing E. coli from Dhaka. This study suggests ongoing circulation of ST131 and all major non-ST131 high-risk clones that are strongly associated with cephalosporin resistance and virulence genes. These findings warrant prospective monitoring of high-risk clones, which would otherwise worsen the AMR crises.
Collapse
Affiliation(s)
- Razib Mazumder
- Genomics Center, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Arif Hussain
- Genomics Center, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ahmed Abdullah
- Genomics Center, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Nazrul Islam
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Tuhin Sadique
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S M Muniruzzaman
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anika Tabassum
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Farhana Halim
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nasrin Akter
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Dilruba Ahmed
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Dinesh Mondal
- Genomics Center, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
17
|
Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult Sci 2021; 100:101370. [PMID: 34332223 PMCID: PMC8339308 DOI: 10.1016/j.psj.2021.101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
The extended-spectrum cephalosporin resistant E. coli from food animals transferring to community settings of humans causes a serious threat to public health. Unlike phylogroup B2 E. coli strains, the clinical significance of isolates in phylogroup F is not well revealed. Here, we report on a collection (n = 563) of phylogroup F E. coli isolates recovered from chicken colibacillosis tissues and retail raw chicken meat samples in Eastern China. There was an overlapped distribution of MLST types between chicken colibacillosis-origin and meat-source phylogroup F E. coli, including dominant STs (ST648, ST405, ST457, ST393, ST1158, etc). This study further investigated the presence of extended-spectrum β-lactamase (ESBL/pAmpC) producers in these chicken-source phylogroup F E. coli strains. The prevalence of extended-spectrum cephalosporin resistant strains in phylogroup F E. coli from chicken colibacillosis and raw meat separately accounted for 66.1 and 71.2%. The resistance genotypes and plasmid replicon types of chicken-source phylogroup F E. coli isolates were characterized by multiplex PCR. Our results revealed β-lactamase CTX-M, OXA, CMY and TEM genes were widespread in chicken-source phylogroup F E. coli, and blaCTX-M was the most predominant ESBL gene. Moreover, there was a high prevalence of non-lactamase resistance genes in these β-lactam-resistant isolates. The replicons IncB/O/K/Z, IncI1, IncN, IncFIC, IncQ1, IncX4, IncY, and p0111, associated with antibiotic-resistant large plasmids, were widespread in chicken-source phylogroup F E. coli. There was no obvious difference for the populations, resistance spectrums, and resistance genotypes between phylogroup F E. coli from chicken colibacillosis tissues and retail meats. This detail assessment of the population and resistance genotype showed chicken-source phylogroup F E. coli might hold zoonotic risk and contribute the spread of multidrug-resistant E. coli to humans.
Collapse
|
18
|
Tompkins K, Juliano JJ, van Duin D. Antimicrobial Resistance in Enterobacterales and Its Contribution to Sepsis in Sub-saharan Africa. Front Med (Lausanne) 2021; 8:615649. [PMID: 33575265 PMCID: PMC7870712 DOI: 10.3389/fmed.2021.615649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistant Enterobacterales (formerly Enterobactereaceae) are a growing threat to Sub-Saharan Africa. Genes causing antibiotic resistance are easily spread between the environment and humans and infections due to drug resistant organisms contribute to sepsis mortality via delayed time to appropriate antimicrobial therapy. Additionally, second or third-line antibiotics are often not available or are prohibitively expensive in resource-constrained settings leading to limited treatment options. Lack of access to water and sanitation facilities, unregulated use of antibiotics, and malnutrition are contributors to high rates of antibiotic resistance in the region. Improvements in the monitoring of drug resistant infections and antibiotic stewardship are needed to preserve the efficacy of antibiotics for the future.
Collapse
Affiliation(s)
- Kathleen Tompkins
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Jonathan J Juliano
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - David van Duin
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Tegha G, Ciccone EJ, Krysiak R, Kaphatika J, Chikaonda T, Ndhlovu I, van Duin D, Hoffman I, Juliano JJ, Wang J. Genomic epidemiology of Escherichia coli isolates from a tertiary referral center in Lilongwe, Malawi. Microb Genom 2021; 7:mgen000490. [PMID: 33295867 PMCID: PMC8115906 DOI: 10.1099/mgen.0.000490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat, including in sub-Saharan Africa. However, little is known about the genetics of resistant bacteria in the region. In Malawi, there is growing concern about increasing rates of antimicrobial resistance to most empirically used antimicrobials. The highly drug resistant Escherichia coli sequence type (ST) 131, which is associated with the extended spectrum β-lactamase blaCTX-M-15, has been increasing in prevalence globally. Previous data from isolates collected between 2006 and 2013 in southern Malawi have revealed the presence of ST131 and the blaCTX-M-15 gene in the country. We performed whole genome sequencing (WGS) of 58 clinical E. coli isolates at Kamuzu Central Hospital, a tertiary care centre in central Malawi, collected from 2012 to 2018. We used Oxford Nanopore Technologies (ONT) sequencing, which was performed in Malawi. We show that ST131 is observed more often (14.9% increasing to 32.8%) and that the blaCTX-M-15 gene is occurring at a higher frequency (21.3% increasing to 44.8%). Phylogenetics indicates that isolates are highly related between the central and southern geographic regions and confirms that ST131 isolates are contained in a single group. All AMR genes, including blaCTX-M-15, were widely distributed across sequence types. We also identified an increased number of ST410 isolates, which in this study tend to carry a plasmid-located copy of blaCTX-M-15 gene at a higher frequency than blaCTX-M-15 occurs in ST131. This study confirms the expanding nature of ST131 and the wide distribution of the blaCTX-M-15 gene in Malawi. We also highlight the feasibility of conducting longitudinal genomic epidemiology studies of important bacteria with the sequencing done on site using a nanopore platform that requires minimal infrastructure.
Collapse
Affiliation(s)
| | - Emily J. Ciccone
- Division of Infectious Diseases, School of Medicine, University of North Carolina, USA
| | | | | | | | | | - David van Duin
- Division of Infectious Diseases, School of Medicine, University of North Carolina, USA
| | - Irving Hoffman
- Division of Infectious Diseases, School of Medicine, University of North Carolina, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, USA
| | - Jeremy Wang
- Department of Genetics, School of Medicine, University of North Carolina, USA
| |
Collapse
|
20
|
Hubbard ATM, Bulgasim I, Roberts AP. A novel hemA mutation is responsible for a small-colony-variant phenotype in Escherichia coli. MICROBIOLOGY-SGM 2020; 167. [PMID: 32762803 DOI: 10.1099/mic.0.000962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We identified a small colony variant (SCV) of an amoxicillin/clavulanic acid-resistant derivative of a clinical isolate of Escherichia coli from Malawi, which was selected for in vitro in a subinhibitory concentration of gentamicin. The SCV was auxotrophic for hemin and had impaired biofilm formation compared to the ancestral isolates. A single novel nucleotide polymorphism (SNP) in hemA, which encodes a glutamyl-tRNA reductase that catalyses the initial step of porphyrin biosynthesis leading to the production of haem, was responsible for the SCV phenotype. We showed the SNP in hemA resulted in a significant fitness cost to the isolate, which persisted even in the presence of hemin. However, the phenotype quickly reverted during sequential sub-culturing in liquid growth media. As hemA is not found in mammalian cells, and disruption of the gene results in a significant fitness cost, it represents a potential target for novel drug development specifically for the treatment of catheter-associated urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Issra Bulgasim
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
21
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Kim S, Kim H, Kim Y, Kim M, Kwak H, Ryu S. Whole-Genome Sequencing-Based Characteristics in Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Retail Meats in Korea. Microorganisms 2020; 8:E508. [PMID: 32252466 PMCID: PMC7232390 DOI: 10.3390/microorganisms8040508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
The spread of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) has posed a critical health risk to both humans and animals, because resistance to beta-lactam antibiotics makes treatment for commonly infectious diseases more complicated. In this study, we report the prevalence and genetic characteristics of ESBL-ECs isolated from retail meat samples in Korea. A total of 1205 E. coli strains were isolated from 3234 raw meat samples, purchased from nationwide retail stores between 2015 and 2018. Antimicrobial susceptibility testing was performed for all isolates by a broth microdilution method, and the ESBL phenotype was determined according to the Clinical and Laboratory Standards Institute (CLSI) confirmatory method. All ESBL-EC isolates (n = 29) were subjected to whole-genome sequencing (WGS). The antimicrobial resistance genes, plasmid incompatibility types, E. coli phylogroups, and phylogenetic relations were investigated based on the WGS data. The prevalence of ESBL-ECs in chicken was significantly higher than that in other meat samples. The results in this study demonstrate that clonally diverse ESBL-ECs with a multidrug resistance phenotype were distributed nationwide, although their prevalence from retail meat was 0.9%. The dissemination of ESBL-ECs from retail meat poses a potential risk to consumers and food-handlers, suggesting that the continuous surveillance of ESBL-ECs in retail meat should be conducted at the national level.
Collapse
Affiliation(s)
- Seokhwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hansol Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Yonghoon Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Migyeong Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Hyosun Kwak
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea; (S.K.); (H.K.); (Y.K.); (M.K.)
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Lewis JM, Lester R, Mphasa M, Banda R, Edwards T, Thomson NR, Feasey N. Emergence of carbapenemase-producing Enterobacteriaceae in Malawi. J Glob Antimicrob Resist 2020; 20:225-227. [PMID: 31899349 PMCID: PMC7049292 DOI: 10.1016/j.jgar.2019.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Joseph M Lewis
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK; Wellcome Trust Sanger Institute, Hinxton, UK.
| | - Rebecca Lester
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madalitso Mphasa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
24
|
Hussain A, Shaik S, Ranjan A, Suresh A, Sarker N, Semmler T, Wieler LH, Alam M, Watanabe H, Chakravortty D, Ahmed N. Genomic and Functional Characterization of Poultry Escherichia coli From India Revealed Diverse Extended-Spectrum β-Lactamase-Producing Lineages With Shared Virulence Profiles. Front Microbiol 2019; 10:2766. [PMID: 31849903 PMCID: PMC6901389 DOI: 10.3389/fmicb.2019.02766] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/13/2019] [Indexed: 01/16/2023] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) form the most important resistance determinants prevalent worldwide. Data on ESBL-producing Escherichia coli from poultry and livestock are scarce in India. We present data on the functional and genomic characterization of ESBL-producing E. coli obtained from poultry in India. The whole genome sequences of 28 ESBL-producing E. coli were analyzed comprising of 12 broiler chicken E. coli isolates, 11 free-range chicken E. coli isolates, and 5 human extraintestinal pathogenic E. coli. All of the 28 ESBL-producing E. coli isolates were tested for antibiotic susceptibilities, in vitro conjugation, and virulence-associated phenotypic characteristics. A total of 13 sequence types were identified from the poultry E. coli, which included globally successful sequence types such as ST117 (9%), ST131 (4.3%), and ST10 (4.3%). The most common ESBL gene detected in poultry E. coli genomes was bla CTX-M-15 (17%). Also, FIB (73%) and FII (73%) were the most common plasmid replicons identified. Conjugation experiments demonstrated 54 (7/13), 30 (3/10), and 40% (2/5) of broiler, free-range, and human ExPEC E. coli to be able to transfer their ESBL genes, respectively. The in vitro virulence-associated phenotypic tests revealed the broiler, free-range, and human ExPEC isolates to be comparable in biofilm formation, resistance to serum bactericidal activity, adherence, and invasion capabilities. Our overall results showed prevalence of virulence phenotypes among the diverse ESBL-producing E. coli from poultry; while certain E. coli clones from broiler-poultry may indeed have the potential to cause infection in humans.
Collapse
Affiliation(s)
- Arif Hussain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sabiha Shaik
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Amit Ranjan
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Arya Suresh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Nishat Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Torsten Semmler
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Lothar H. Wieler
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Haruo Watanabe
- International University of Health and Welfare, Tokyo, Japan
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Niyaz Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| |
Collapse
|
25
|
Kumwenda GP, Sugawara Y, Abe R, Akeda Y, Kasambara W, Chizani K, Takeuchi D, Sakamoto N, Tomono K, Hamada S. First Identification and genomic characterization of multidrug-resistant carbapenemase-producing Enterobacteriaceae clinical isolates in Malawi, Africa. J Med Microbiol 2019; 68:1707-1715. [PMID: 31661049 DOI: 10.1099/jmm.0.001087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose. Carbapenemase-producing Enterobacteriaceae (CPE) have become a global concern and a serious threat to human health due to their resistance to multiple antibiotics. In this study, we identified and characterized CPE for the first time in Malawi, southeastern Africa.Methodology. We investigated the possible presence of carbapenemases among a collection of 200 ceftriaxone-nonsusceptible Gram-negative clinical isolates obtained from five Malawian hospitals between January 2016 and December 2017, using both phenotypic and genotypic tests. Molecular typing of CPE was done by PFGE, multilocus sequence typing (ST) or phylogenetic grouping. Resistant plasmids were characterized by S1 PFGE, Southern blotting and conjugation assays.Results. Out of 200 isolates, we detected 16 (8 %) CPE of which all originated from one referral hospital, Kamuzu Central Hospital, in the Central part of Malawi. Of 16 isolates, seven Klebsiella pneumoniae ST340/CC258 carried bla KPC-2, two Escherichia coli ST636 (phylogroup B2) carried bla NDM-5, six E. coli ST617 (phylogroup A) and one Klebsiella variicola carried bla OXA-48. All carbapenemases were plasmid-encoded, but only bla NDM-5-carrying plasmids could be conjugated. Most isolates co-harboured other β-lactamases and consequently exhibited a wider spectrum of resistance to commonly used antibiotics. We observed indistinguishable genetic profiles between strain types, despite originating from different wards, suggesting acquisition during admission and intra-hospital spread.Conclusion. This report strongly suggests a probable existence of highly resistant various types of CPE organisms in Malawi including KPC-2-producing K. pneumoniae ST340/CC258, a known high-risk epidemic lineage.
Collapse
Affiliation(s)
- Geoffrey P Kumwenda
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan.,Microbiology Department, National Reference Laboratory, Community Health Sciences Unit, Ministry of Health, Lilongwe, Malawi
| | - Yo Sugawara
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Ryuichiro Abe
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Watipaso Kasambara
- Microbiology Department, National Reference Laboratory, Community Health Sciences Unit, Ministry of Health, Lilongwe, Malawi
| | - Kenneth Chizani
- Microbiology Department, National Reference Laboratory, Community Health Sciences Unit, Ministry of Health, Lilongwe, Malawi
| | - Dan Takeuchi
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Noriko Sakamoto
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
26
|
Sellera FP, Fernandes MR, Ruiz R, Falleiros ACM, Rodrigues FP, Cerdeira L, Lincopan N. Identification of KPC-2-producing Escherichia coli in a companion animal: a new challenge for veterinary clinicians. J Antimicrob Chemother 2019; 73:2259-2261. [PMID: 29800301 DOI: 10.1093/jac/dky173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Miriam R Fernandes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Regina Ruiz
- Microbiology Sector, Provet Diagnostic Center, São Paulo, Brazil
| | | | | | - Louise Cerdeira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Paulshus E, Thorell K, Guzman-Otazo J, Joffre E, Colque P, Kühn I, Möllby R, Sørum H, Sjöling Å. Repeated Isolation of Extended-Spectrum-β-Lactamase-Positive Escherichia coli Sequence Types 648 and 131 from Community Wastewater Indicates that Sewage Systems Are Important Sources of Emerging Clones of Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2019; 63:e00823-19. [PMID: 31235629 PMCID: PMC6709473 DOI: 10.1128/aac.00823-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance in bacteria is an emerging problem globally. Resistant bacteria are found in human and animal microbiota, as well as in the environment. Wastewater receives bacteria from all these sources and thus can provide a measurement of abundance and diversity of antibiotic-resistant bacteria circulating in communities. In this study, water samples were collected from a wastewater pump station in a Norwegian suburban community over a period of 15 months. A total of 45 daily samples were cultured and analyzed for the presence of Escherichia coli Eighty E. coli-like colonies were collected from each daily sample and then phenotyped and analyzed for antibiotic resistance using the PhenePlate-AREB system. During the sampling period, two unique E. coli phenotypes with resistance to cefotaxime and cefpodoxime indicating carriage of extended-spectrum β-lactamases (ESBL) were observed repeatedly. Whole-genome sequencing of 15 representative isolates from the two phenotypes identified these as two distinct clones belonging to the two globally spread E. coli multilocus sequence types (STs) ST131 and ST648 and carrying blaCTX-M-15 The number of ESBL-positive E. coli strains in the community wastewater pump station was 314 of 3,123 (10%) analyzed E. coli strains. Of the ESBL-positive isolates, 37% belonged to ST648, and 7% belonged to ST131. Repeated findings of CTX-M-15-positive ST648 and ST131 over time indicate that these STs are resident in the analyzed wastewater systems and/or circulate abundantly in the community.
Collapse
Affiliation(s)
- Erik Paulshus
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Guzman-Otazo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Enrique Joffre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Patricia Colque
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Inger Kühn
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Roland Möllby
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Henning Sørum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| |
Collapse
|
28
|
Hubbard ATM, Jafari NV, Feasey N, Rohn JL, Roberts AP. Effect of Environment on the Evolutionary Trajectories and Growth Characteristics of Antibiotic-Resistant Escherichia coli Mutants. Front Microbiol 2019; 10:2001. [PMID: 31555237 PMCID: PMC6722461 DOI: 10.3389/fmicb.2019.02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022] Open
Abstract
The fitness cost to bacteria of acquisition of resistance determinants is critically under-investigated, and the identification and exploitation of these fitness costs may lead to novel therapeutic strategies that prevent the emergence of antimicrobial resistance. Here we used Escherichia coli and amoxicillin–clavulanic acid (AMC) resistance as a model to understand how the artificial environments utilized in studies of bacterial fitness could affect the emergence of resistance and associated fitness costs. Further, we explored the predictive value of this data when strains were grown in the more physiologically relevant environments of urine and urothelial organoids. Resistant E. coli isolates were selected for following 24-h exposure to sub-inhibitory concentrations of AMC in either M9, ISO, or LB, followed by growth on LB agar containing AMC. No resistant colonies emerged following growth in M9, whereas resistant isolates were detected from cultures grown in ISO and LB. We observed both within and between media-type variability in the levels of resistance and fitness of the resistant mutants grown in LB. MICs and fitness of these resistant strains in different media (M9, ISO, LB, human urine, and urothelial organoids) showed considerable variation. Media can therefore have a direct effect on the isolation of mutants that confer resistance to AMC and these mutants can exhibit unpredictable MIC and fitness profiles under different growth conditions. This preliminary study highlights the risks in relying on a single culture protocol as a model system to predict the behavior and treatment response of bacteria in vivo and highlights the importance of developing comprehensive experimental designs to ensure effective translation of diagnostic procedures to successful clinical outcomes.
Collapse
Affiliation(s)
- Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nazila V Jafari
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Nicholas Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Jennifer L Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
29
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.
Collapse
|
30
|
Zhuge X, Ji Y, Tang F, Sun Y, Jiang M, Hu W, Wu Y, Xue F, Ren J, Zhu W, Dai J. Population structure and antimicrobial resistance traits of avian-origin mcr-1-positive Escherichia coli in Eastern China, 2015 to 2017. Transbound Emerg Dis 2019; 66:1920-1929. [PMID: 31059196 DOI: 10.1111/tbed.13222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Recent emergence of mcr-1-positive Escherichia coli (MCRPEC) is causing serious concern around the world. Due to poultry-origin E. coli holding zoonotic potential, the improved understandings of MCRPEC population structure and antimicrobial resistance are critical to public health purposes. This study provided novel insights into the molecular epidemiology of avian-origin MCRPEC. For the mcr genes prevalence study, we analysed 1,360 E. coli recovered from avian colibacillosis in eastern China from 2015 to 2017. The mcr-1 was present in 172 (12.6%) E. coli isolates. For all of MCRPEC isolates, MICs of colistin were ≥4 mg/L. Avian-origin MCRPEC was widely distributed throughout phylogroups A, B1, B2, D, and F. Moreover, those isolates were assigned to 52 unique STs, such as ST48, ST117, ST131, and ST648, suggesting substantial horizontal dissemination of mcr-1 gene through avian-origin E. coli populations. The susceptibility of MCRPEC isolates was tested with 26 antimicrobial agents from 16 antimicrobial categories. There were high resistance rates of MCRPEC isolates against the clinically used antibiotics. All MCRPEC isolates in this study presented the multidrug-resistant (MDR) trait were even considered as extensively drug-resistant (XDR) strains. Resistance genotypes and plasmid replicon profiling showed that a majority of MCRPEC isolates contained plasmid-mediated resistance genes and exhibited the co-existence of mcr-1 with ESBLs and pAmpCs genes. Furthermore, the overlapped distribution of ST types and resistance gene contents was detected among MCRPEC isolates from humans and poultry. Besides mcr-1, our findings highlighted a significant prevalence of plasmid-mediated resistance genes among avian-origin MCRPEC isolates.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,Center for Post-doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yiming Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenhao Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yibang Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.,China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Patil S, Chen X, Lian M, Wen F. Phenotypic and genotypic characterization of multi-drug-resistant Escherichia coli isolates harboring bla CTX-M group extended-spectrum β-lactamases recovered from pediatric patients in Shenzhen, southern China. Infect Drug Resist 2019; 12:1325-1332. [PMID: 31190921 PMCID: PMC6529603 DOI: 10.2147/idr.s199861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
Aims and Objectives: The emergence and spread of extended-spectrum β-lactamases (ESBLs) particularly CTX-M producing multi-drug-resistant (MDR) Escherichia coli (E. coli) is one of the greatest challenges for community health globally. The study investigated the phenotypic and genotypic characteristics of ESBLs-producing E. coli recovered from pediatric patients from Shenzhen Children’s Hospital, China. Materials and methods: Present study, a total of 2,670 isolates of E. coli were collected from Shenzhen Children’s Hospital, China of which 950 were ESBLs producer. ESBLs production was confirmed by using the combination disc diffusion method, and antimicrobial susceptibility test was detected. In addition, β-lactamase-producing genes and co-existence of carbapenem/colistin resistance genes were determined by PCR assay and sequencing. The diversity and phylogenetic relationship were determined by multi-locus sequence typing method. Results: Thirty-five percent (n=950) prevalence of ESBLs-producing E. coli we reported in Shenzhen, China of which 50 ESBLs producing E. coli were randomly selected for a further characterization. All 50 ESBLs- producing E. coli isolates revealed MDR phenotype and 100% were resistant to Ampicillin/sulbactam, Ampicillin, Cefazolin, and Ceftriaxone. All 50 ESBLs producers harbored at least one type of β-lactamase gene particular blaCTX-M. The PCR and sequencing revealed the most common CTX-M subtype was blaCTX-M-15 (n=18), followed by blaCTX-M-14 (n=16), blaCTX-M-90 (n=9), blaCTX-M-55 (n=3), blaCTX-M-27, blaCTX-M-101, and blaCTX-M-211 each (n=1). Co-existence of blaCTX-M with blaTEM, blaSHV, blaGES, and blaVEB was detected in few isolates. Among identified sequence types, ST131 (12%) was more dominant in ESBLs-producing E. coli. Phylogenetic group A was the most prominent group among the ESBLs-producing E. coli based on multiplex PCR. Conclusion: Our study shows the prevalence of blaCTX-M gene in ESBLs-producing E. coli in pediatric patients in Shenzhen, China. We highlight the importance to monitor the emergence and trends of ESBLs-producing isolates in a pediatric healthcare setting.
Collapse
Affiliation(s)
- Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China.,Paediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China
| | - Xiaowen Chen
- Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China.,Paediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China
| | - Ma Lian
- Paediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China
| | - Feiqiu Wen
- Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China.,Paediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, People's Republic of China
| |
Collapse
|
32
|
Musicha P, Msefula CL, Mather AE, Chaguza C, Cain AK, Peno C, Kallonen T, Khonga M, Denis B, Gray KJ, Heyderman RS, Thomson NR, Everett DB, Feasey NA. Genomic analysis of Klebsiella pneumoniae isolates from Malawi reveals acquisition of multiple ESBL determinants across diverse lineages. J Antimicrob Chemother 2019; 74:1223-1232. [PMID: 30778540 PMCID: PMC6477993 DOI: 10.1093/jac/dkz032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES ESBL-producing Klebsiella pneumoniae (KPN) pose a major threat to human health globally. We carried out a WGS study to understand the genetic background of ESBL-producing KPN in Malawi and place them in the context of other global isolates. METHODS We sequenced genomes of 72 invasive and carriage KPN isolates collected from patients admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi. We performed phylogenetic and population structure analyses on these and previously published genomes from Kenya (n = 66) and from outside sub-Saharan Africa (n = 67). We screened for presence of antimicrobial resistance (AMR) genetic determinants and carried out association analyses by genomic sequence cluster, AMR phenotype and time. RESULTS Malawian isolates fit within the global population structure of KPN, clustering into the major lineages of KpI, KpII and KpIII. KpI isolates from Malawi were more related to those from Kenya, with both collections exhibiting more clonality than isolates from the rest of the world. We identified multiple ESBL genes, including blaCTX-M-15, several blaSHV, blaTEM-63 and blaOXA-10, and other AMR genes, across diverse lineages of the KPN isolates from Malawi. No carbapenem resistance genes were detected; however, we detected IncFII and IncFIB plasmids that were similar to the carbapenem resistance-associated plasmid pNDM-mar. CONCLUSIONS There are multiple ESBL genes across diverse KPN lineages in Malawi and plasmids in circulation that are capable of carrying carbapenem resistance. Unless appropriate interventions are rapidly put in place, these may lead to a high burden of locally untreatable infection in vulnerable populations.
Collapse
Affiliation(s)
- Patrick Musicha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Chisomo L Msefula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Chrispin Chaguza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Amy K Cain
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Katherine J Gray
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| | - Nicholas R Thomson
- Quadram Institute Bioscience, Norwich, UK
- London School of Tropical Medicine, London, UK
| | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- University of Edinburgh, Edinburgh, UK
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
33
|
Williams CT, Musicha P, Feasey NA, Adams ER, Edwards T. ChloS-HRM, a novel assay to identify chloramphenicol-susceptible Escherichia coli and Klebsiella pneumoniae in Malawi. J Antimicrob Chemother 2019; 74:1212-1217. [PMID: 30689880 PMCID: PMC6477986 DOI: 10.1093/jac/dky563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Chloramphenicol is a broad-spectrum antimicrobial widely available in sub-Saharan Africa. With susceptibility re-emerging among Enterobacteriaceae in Blantyre, Malawi, we designed and evaluated a new high-resolution melt (HRM) RT-PCR assay, ChloS-HRM, to identify chloramphenicol-susceptible infections in a hospital setting. METHODS Seventy-two previously whole-genome sequenced isolates of Escherichia coli and Klebsiella pneumoniae from the Queen Elizabeth Central Hospital, Malawi, were subjected to determination of chloramphenicol MICs. Primers were designed to detect 18 chloramphenicol resistance genes that produce seven distinct peaks correlating with different gene groups (catA1, catA2, catA3, catB2, catB group 3, cmlA and floR) following HRM analysis. ChloS-HRM results were compared with MIC and WGS results. RESULTS ChloS-HRM correctly identified 15 of 17 phenotypically susceptible isolates and 54 of 55 resistant isolates, giving an accuracy of 88% in identifying susceptibility and 98% in identifying resistance. WGS identified 16 of 17 susceptible and 54 of 55 resistant isolates, giving an accuracy of 94% in identifying susceptibility and 98% in identifying resistance. The single false-susceptible result had no detectable gene by ChloS-HRM or WGS. Compared with WGS, ChloS-HRM had 100% sensitivity and specificity for catA (catA1-3), cmlA and floR, and 96% specificity for catB; sensitivity could not be estimated due to the lack of catB in the clinical sample collection. The overall agreement between MIC and HRM was 96% and between MIC and WGS it was 97%. CONCLUSIONS ChloS-HRM could support antimicrobial stewardship in enabling de-escalation from third-generation cephalosporins by identifying chloramphenicol-susceptible infections. This would be valuable in areas with chloramphenicol-susceptible MDR and XDR Enterobacteriaceae.
Collapse
Affiliation(s)
- Christopher T Williams
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Patrick Musicha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily R Adams
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
34
|
Nguyen VT, Jamrozy D, Matamoros S, Carrique-Mas JJ, Ho HM, Thai QH, Nguyen TNM, Wagenaar JA, Thwaites G, Parkhill J, Schultsz C, Ngo TH. Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother 2019; 74:561-570. [PMID: 30629197 PMCID: PMC6376849 DOI: 10.1093/jac/dky506] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the risk of colonization with ESBL-producing Escherichia coli (ESBL-Ec) in humans in Vietnam associated with non-intensive chicken farming. METHODS Faecal samples from 204 randomly selected farmers and their chickens, and from 306 age- and sex-matched community-based individuals who did not raise poultry were collected. Antimicrobial usage in chickens and humans was assessed by medicine cabinet surveys. WGS was employed to obtain a high-resolution genomic comparison between ESBL-Ec isolated from humans and chickens. RESULTS The adjusted prevalence of ESBL-Ec colonization was 20.0% (95% CI 10.8%-29.1%) and 35.2% (95% CI 30.4%-40.1%) in chicken farms and humans in Vietnam, respectively. Colonization with ESBL-Ec in humans was associated with antimicrobial usage (OR = 2.52, 95% CI = 1.08-5.87) but not with involvement in chicken farming. blaCTX-M-55 was the most common ESBL-encoding gene in strains isolated from chickens (74.4%) compared with blaCTX-M-27 in human strains (47.0%). In 3 of 204 (1.5%) of the farms, identical ESBL genes were detected in ESBL-Ec isolated from farmers and their chickens. Genomic similarity indicating recent sharing of ESBL-Ec between chickens and farmers was found in only one of these farms. CONCLUSIONS The integration of epidemiological and genomic data in this study has demonstrated a limited contribution of non-intensive chicken farming to ESBL-Ec colonization in humans in Vietnam and further emphasizes the importance of reducing antimicrobial usage in both human and animal host reservoirs.
Collapse
Affiliation(s)
- Vinh Trung Nguyen
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | | | - Sébastien Matamoros
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Juan J Carrique-Mas
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Huynh Mai Ho
- Sub-Department of Animal Health, My Tho, Tien Giang, Vietnam
| | - Quoc Hieu Thai
- Sub-Department of Animal Health, My Tho, Tien Giang, Vietnam
| | | | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Constance Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Thi Hoa Ngo
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Assessing Transmission of Antimicrobial-Resistant Escherichia coli in Wild Giraffe Contact Networks. Appl Environ Microbiol 2018; 85:AEM.02136-18. [PMID: 30413480 DOI: 10.1128/aem.02136-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
There is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistant Escherichia coli in wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistant E. coli between giraffe. Of 195 giraffe sampled, only 5.1% harbored E. coli isolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistant E. coli, but this relationship was likely driven by a correlation between an individual's social connectedness and age. Indeed, resistant E. coli was most frequently detected in socially isolated neonates, indicating that resistant E. coli may have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCE Antimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems.
Collapse
|
36
|
Bubpamala J, Khuntayaporn P, Thirapanmethee K, Montakantikul P, Santanirand P, Chomnawang MT. Phenotypic and genotypic characterizations of extended-spectrum beta-lactamase-producing Escherichia coli in Thailand. Infect Drug Resist 2018; 11:2151-2157. [PMID: 30464558 PMCID: PMC6223337 DOI: 10.2147/idr.s174506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Extended-spectrum β-lactamases (ESBLs) have become an issue in community worldwide due to an increase in antibiotic resistance over the past decade. This study was aimed to investigate the phenotypic and genotypic characteristics of ESBL-producing Escherichia coli in Thailand. Materials and methods In this study, all clinical isolates collected from tertiary hospitals in Thailand were identified as E. coli by biochemical tests and MALDI-TOF mass spectrometry. ESBL-producing E. coli was preliminary screened with disk diffusion method by cephalosporin disks and confirmed by the method of combination disk diffusion. Antimicrobial susceptibility test was used to determine MIC values of all ESBL-producing E. coli. For genotypic detection, a variety of ESBL genes were determined by PCR. Moreover, multilocus sequence typing (MLST) analysis was performed on internal portions of seven housekeeping genes for the diversity and phylogenetic relatedness of E. coli clonal group. Results Of the 285 ESBL-producing E. coli, most were susceptible to carbapenems. These strains showed a high resistance rate to ciprofloxacin (85.26%). The most frequently detected gene was blaCTX-M1 group at about 71.23% followed by blaCTX-M9 group (38.95%). The blaTEM, blaPER, blaGES, blaVEB, and blaSHV genes were identified in 31.93%, 5.96%, 4.56%, 3.51%, and 0.70% of ESBL-producing isolates, respectively. The bla OXA-10 gene was detected in only one strain. ESBL-producing E. coli isolates with high antimicrobial resistance were further investigated. Among those, E. coli sequence type ST38 was mostly found, followed by ST405, ST410, and ST131. It is noteworthy that the blaCTX-M gene was mainly detected in all four ST-type E. coli clones (ST38, ST405, ST410, and ST131). Conclusion This study provided a recent evidence of the genetic diversity of ESBL-producing E. coli in Thailand. In addition, the profile related to antimicrobial resistance pattern in this region was also demonstrated.
Collapse
Affiliation(s)
- Jiranun Bubpamala
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,
| | | | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mullika T Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,
| |
Collapse
|
37
|
Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4:e000197. [PMID: 30035710 PMCID: PMC6113871 DOI: 10.1099/mgen.0.000197] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.
Collapse
Affiliation(s)
- Hayley Wilson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| |
Collapse
|