1
|
Asad A, Nayeem MAJ, Mostafa MG, Begum R, Faruque SN, Nusrin S, Jahan I, Hayat S, Islam Z. Resistome phylodynamics of multidrug-resistant Shigella isolated from diarrheal patients. Microbiol Spectr 2025; 13:e0163524. [PMID: 39612215 PMCID: PMC11705805 DOI: 10.1128/spectrum.01635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Multi-drug resistance (MDR) in Shigella continues to pose a significant public health challenge, particularly in developing countries. Recent advances in genomics strengthen the surveillance of MDR-pathogens and antimicrobial resistance (AMR) mediators. However, genome-based investigations into resistome dynamics in Shigella are limited, specifically in Bangladesh. Therefore, we investigated MDR-Shigella resistomes to evaluate their AMR transmission and phylodynamics. Clinical Shigella strains were screened for MDR phenotypes through susceptibility tests against 28 antibiotics from 10 different classes. Whole-genome sequencing (WGS) and bioinformatics approaches were performed to unveil the resistome dynamics: >500 global plasmid entities and >1,000 plasmid-mediated resistance gene clusters from global databases were included in this study. We identified 28 distinct antimicrobial resistance genes (ARGs) from nine antibiotic classes, with 75% originating from plasmids. Notably, two conjugative MDR plasmids included nearly all potential ARGs, conferring resistance to first-line drugs for shigellosis. Two third-generation cephalosporin-resistant [wubC-blaCTX-M-15-ISEcp1 and blaTEM-1] and two macrolide-resistant mobile genomic islands (GIs) [mphA-mrx-mph(R)A-IS6100 and mphE-msrE-IS482-IS6] had emerged in Shigella in Bangladesh. In addition, trimethoprim-aminoglycoside-streptothricin-sulfonamide-resistant dfrA1-sat1-aadA1 and aph3-dfrA14-aph6-sul2 were in conjugative plasmids in Bangladesh. The MDR plasmids and resistant GIs were phylogenetically relevant to Europe, USA, or China-derived isolates, indicating carry-over of the emerging ARGs from heavily industrialized countries and MSM-burdened (men who have sex with men) populations. The global burden of resistance GIs has increased sharply, especially after 2014. Emerging resistance mediators were most frequent (>80%) in human-associated Escherichia coli and Klebsiella pneumoniae. We infer ARGs horizontally propagate among Enteropathogens: informing treatment strategies and supporting policymakers in strengthening AMR-containment efforts utilizing the phylodynamics network.IMPORTANCEThe world is suffering from a high burden of MDR enteropathogens. Healthcare providers in low- and middle-income countries (LMICs) often face trouble finding effective drugs among the many antibiotics introduced in diarrheal treatment. Resistance-mediated drug inactivation is more rapid than the advent of new antimicrobials, leaving enteritis treatment on the edge. In Bangladesh, where one-third of users are self-prescribing antibiotics and thousands are dying due to resistance-related treatment failure, phylogenomic evidence of AMR transmission root is scarce. Therefore, investigating the resistomes of MDR-Shigella, the leading cause of diarrheal deaths in Bangladesh, is crucial. We identified several emerging resistance mediators and their phylogenetic links to global entities, which is significant for improving shigellosis treatment and enhancing AMR containment strategies. Understanding the MDR mechanism in Shigella will help physicians choose effective drugs and anticipate resistance-mediated changes in treatment approaches; the spatiotemporal phylodynamics of AMR mediators aid policymakers in setting effective checkpoints in the AMR transmission network.
Collapse
Affiliation(s)
- Asaduzzaman Asad
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Md. Abu Jaher Nayeem
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Md. Golam Mostafa
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Ruma Begum
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Shah Nayeem Faruque
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Suraia Nusrin
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, Bangladesh
| | - Israt Jahan
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Shoma Hayat
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| | - Zhahirul Islam
- Gut-Brain Axis Laboratory, Infectious Diseases Division (IDD), icddr, b, Dhaka, Bangladesh
| |
Collapse
|
2
|
Ayele B, Mihret A, Mekonnen Z, Sisay Tessema T, Melaku K, Nassir MF, Ayele A, Alemayehu DH, Beyene G. Whole genome sequencing and antimicrobial resistance among clinical isolates of Shigella sonnei in Addis Ababa, Ethiopia. PLoS One 2024; 19:e0313310. [PMID: 39531464 PMCID: PMC11556702 DOI: 10.1371/journal.pone.0313310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Shigellosis is an acute gastroenteritis infection and one of Ethiopia's most common causes of morbidity and mortality, especially in children under five. Antimicrobial resistance (AMR) has spread quickly among Shigella species due to inappropriate antibiotic use, inadequacies of diagnostic facilities, and unhygienic conditions. This study aimed to characterize Shigella sonnei (S. sonnei) using whole genome sequence (WGS) analysis in Addis Ababa, Ethiopia. METHODS The raw reads were quality-filtered and trimmed, and a minimum length of 50bp was retained and taxonomically classified using MiniKraken version 1. The whole genome data were aligned with Antibiotic Resistance Gene (ARG) sequences of the Comprehensive Antibiotic Resistance Database (CARD) by Resistance Gene Identifier (RGI). Plasmids were analyzed using the PlasmidFinder tool version 2.1. Additionally, AMR and virulence genes were screened at the Centre for Genomic Epidemiology (CGE) web-based server. RESULTS All isolates in our investigation contained genes encoding blaEC-8 and blaZEG-1. Here, 60.7% of the isolates were phenotypically sensitive to cefoxitin among the blaEC-8 genes detected in the genotyping analysis, whereas all isolates were completely resistant to amoxicillin and erythromycin phenotypically. The study also identified genes that conferred resistance to trimethoprim (dfrA). Plasmid Col156 and Col (BS512) types were found in all isolates, while IncFII and Col (MG828) plasmids were only identified in one isolate. CONCLUSION This study found that many resistant genes were present, confirming the high variety in S. sonnei strains and hence a divergence in phylogenetic relationships. Thus, combining WGS methods for AMR prediction and strain identification into active surveillance may be beneficial for monitoring the spread of AMR in S. sonnei and detecting the potential emergence of novel variations.
Collapse
Affiliation(s)
- Basha Ayele
- Department of Medical Laboratory Science, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
- School of Medical Laboratory Sciences, Institution of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Institution of Health Sciences, Jimma University, Jimma, Ethiopia
| | | | | | | | - Abaysew Ayele
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Getenet Beyene
- School of Medical Laboratory Sciences, Institution of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
3
|
Charles H, Sinka K, Simms I, Baker KS, Godbole G, Jenkins C. Trends in shigellosis notifications in England, January 2016 to March 2023. Epidemiol Infect 2024; 152:e115. [PMID: 39363593 PMCID: PMC11450503 DOI: 10.1017/s0950268824001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 10/05/2024] Open
Abstract
We reviewed all diagnoses of Shigella species notified to the UK Health Security Agency from January 2016 to March 2023. An overall increase in notifications of shigellosis was seen between 2016 (n = 415/quarter) and 2023 (n = 1 029/quarter). However, notifications dramatically declined between March 2020 and September 2021 during the COVID-19 pandemic (n = 208/quarter) highlighting the impact of travel and social distancing restrictions on transmission. S. sonnei diagnoses were more affected by lockdown restrictions than S. flexneri, most likely due to a combination of species-specific characteristics and host attributes. Azithromycin resistance continued to be associated with epidemics of sexually transmissible S. flexneri (adult males = 45.6% vs. adult females = 8.7%) and S. sonnei (adult males = 59.5% vs. adult females = 14.6%). We detected resistance to ciprofloxacin in S. sonnei from adult male cases not reporting travel at a higher frequency (79.4%) than in travel-associated cases (61.7%). Extensively drug-resistant Shigella species associated with sexual transmission among men almost exclusively had ESBL encoded by blaCTX-M-27, whereas those associated with returning travellers had blaCTX-M-15. Given the increasing incidence of infections and AMR, we recommend that enhanced surveillance is used to better understand the impact of travel and sexual transmission on the acquisition and spread of MDR and XDR Shigella species.
Collapse
Affiliation(s)
| | | | - Ian Simms
- UK Health Security Agency, London, UK
| | - Kate S. Baker
- Department of Genetics, University of Cambridge, Cambridge, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Claire Jenkins
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Zhang K, Potter RF, Marino J, Muenks CE, Lammers MG, Dien Bard J, Dingle TC, Humphries R, Westblade LF, Burnham CAD, Dantas G. Comparative genomics reveals the correlations of stress response genes and bacteriophages in developing antibiotic resistance of Staphylococcus saprophyticus. mSystems 2023; 8:e0069723. [PMID: 38051037 PMCID: PMC10734486 DOI: 10.1128/msystems.00697-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Staphylococcus saprophyticus is the second most common bacteria associated with urinary tract infections (UTIs) in women. The antimicrobial treatment regimen for uncomplicated UTI is normally nitrofurantoin, trimethoprim-sulfamethoxazole (TMP-SMX), or a fluoroquinolone without routine susceptibility testing of S. saprophyticus recovered from urine specimens. However, TMP-SMX-resistant S. saprophyticus has been detected recently in UTI patients, as well as in our cohort. Herein, we investigated the understudied resistance patterns of this pathogenic species by linking genomic antibiotic resistance gene (ARG) content to susceptibility phenotypes. We describe ARG associations with known and novel SCCmec configurations as well as phage elements in S. saprophyticus, which may serve as intervention or diagnostic targets to limit resistance transmission. Our analyses yielded a comprehensive database of phenotypic data associated with the ARG sequence in clinical S. saprophyticus isolates, which will be crucial for resistance surveillance and prediction to enable precise diagnosis and effective treatment of S. saprophyticus UTIs.
Collapse
Affiliation(s)
- Kailun Zhang
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Robert F. Potter
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jamie Marino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Carol E. Muenks
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew G. Lammers
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tanis C. Dingle
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Romney Humphries
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Kong M, Liu C, Xu Y, Wang J, Jin D. Concordance between Genotypic and Phenotypic Drug-Resistant Profiles of Shigella Isolates from Taiyuan City, Shanxi Province, China, 2005 to 2016. Microbiol Spectr 2023; 11:e0011923. [PMID: 37249442 PMCID: PMC10269460 DOI: 10.1128/spectrum.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance in Shigella spp. is a global public health concern. In this study, the AMR phenotypic profiles of 10 kinds of antibiotics were compared with the genotypic profiles using genomic analysis of 218 Shigella isolates from Taiyuan City, Shanxi Province, China, 2005 to 2016. Core genome Multilocus Sequence Typing (cgMLST) based on the EnteroBase Escherichia/Shigella scheme was used to obtain the genetic relatedness of Shigella isolates. Multiple-drug resistance was observed in 96.79% Shigella spp., and the resistance to antimicrobial agents varied between S. flexneri and S. sonnei. The genotypic results correlated well with the phenotypic profiles with concordance rates of 96.42% and 94.50% in S. flexneri and S. sonnei isolates, respectively, from Taiyuan City, Shanxi Province. The sensitivity and specificity of the genotypic antimicrobial susceptibility testing (AST) were 97.56% and 95.34% for S. flexneri, and 95.65% and 93.31% for S. sonnei isolates, respectively. A discrepancy of genotypic and phenotypic AST results existed in some cephalosporin- and azithromycin-resistant Shigella isolates; there were no clear resistance patterns to predict ciprofloxacin resistance. There were major discrepancies between genotypic and phenotypic AST in the genotypically resistant but phenotypically susceptible isolates. The drug-resistance patterns and essential drug-resistance genes to predict the phenotypic drug-resistant profiles were the discrepancies between S. flexneri and S. sonnei isolates. Phylogenetic analysis showed that isolates of the same cluster but with different antibiotic-resistance gene patterns occurred because of the loss or gain of antibiotic-resistance genes located in the plasmids and multidrug-resistance islands. IMPORTANCE Antimicrobial resistance in Shigella spp. has become a global public health concern. In this study, we identified the antimicrobial susceptibility testing (AST) characteristics based on genomic sequences of 218 Shigella isolates and analyzed the correlation between genotypic and phenotypic antibiotic resistance profiles of Shigella spp., especially for fluoroquinolone, macrolides, and third-generation cephalosporins. Our results show that the genotypic results correlated with the phenotypic profiles with concordance rates of 96.42% and 94.50% in S. flexneri and S. sonnei isolates, respectively. The drug-resistance patterns and essential drug-resistance genes to predict the phenotypic drug-resistant profiles of S. flexneri and S. sonnei isolates in Taiyuan city were distinct. The discrepancy between genotypic and phenotypic AST was considerable in the genotypically resistant but phenotypically susceptible isolates. The information on drug resistance and resistance genes in this study can offer more details on the prevalence of drug resistance of Shigella spp.
Collapse
Affiliation(s)
- Mimi Kong
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Chunmei Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Yang Xu
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Jitao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Dong Jin
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
6
|
Tansarli GS, Long DR, Waalkes A, Bourassa LA, Libby SJ, Penewit K, Almazan J, Matsumoto J, Bryson-Cahn C, Rietberg K, Dell BM, Hatley NV, Salipante SJ, Fang FC. Genomic reconstruction and directed interventions in a multidrug-resistant Shigellosis outbreak in Seattle, WA, USA: a genomic surveillance study. THE LANCET. INFECTIOUS DISEASES 2023; 23:740-750. [PMID: 36731480 PMCID: PMC10726761 DOI: 10.1016/s1473-3099(22)00879-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 12/09/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Shigella spp have been associated with community-wide outbreaks in urban settings. We analysed a sustained shigellosis outbreak in Seattle, WA, USA, to understand its origins and mechanisms of antimicrobial resistance, define ongoing transmission patterns, and optimise strategies for treatment and infection control. METHODS We did a retrospective study of all Shigella isolates identified from stool samples at the clinical laboratories at Harborview Medical Center and University of Washington Medical Center (Seattle, WA, USA) from May 1, 2017, to Feb 28, 2022. We characterised isolates by species identification, phenotypic susceptibility testing, and whole-genome sequencing. Demographic characteristics and clinical outcomes of the patients were retrospectively examined. FINDINGS 171 cases of shigellosis were included. 78 (46%) patients were men who have sex with men (MSM), and 88 (52%) were people experiencing homelessness (PEH). Although 84 (51%) isolates were multidrug resistant, 100 (70%) of 143 patients with data on antimicrobial therapy received appropriate empirical therapy. Phylogenomic analysis identified sequential outbreaks of multiple distinct lineages of Shigella flexneri and Shigella sonnei. Discrete clonal lineages (ten in S flexneri and nine in S sonnei) and resistance traits were responsible for infection in different at-risk populations (ie, MSM, PEH), enabling development of effective guidelines for empirical treatment. The most prevalent lineage in Seattle was probably introduced to Washington State via international travel, with subsequent domestic transmission between at-risk groups. INTERPRETATION An outbreak in Seattle was driven by parallel emergence of multidrug-resistant strains involving international transmission networks and domestic transmission between at-risk populations. Genomic analysis elucidated not only outbreak origin, but directed optimal approaches to testing, treatment, and public health response. Rapid diagnostics combined with detailed knowledge of local epidemiology can enable high rates of appropriate empirical therapy even in multidrug-resistant infection. FUNDING None.
Collapse
Affiliation(s)
- Giannoula S Tansarli
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Dustin R Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lori A Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen J Libby
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jason Matsumoto
- Clinical Microbiology Laboratory, Harborview Medical Center, Seattle, WA, USA
| | - Chloe Bryson-Cahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Infection Prevention and Control, Harborview Medical Center, Seattle, WA, USA
| | - Krista Rietberg
- Infection Prevention and Control, Harborview Medical Center, Seattle, WA, USA
| | - BreeAnna M Dell
- Public Health-Seattle & King County, Communicable Diseases, Epidemiology, and Immunizations, Seattle, WA, USA
| | - Noël V Hatley
- Public Health-Seattle & King County, Communicable Diseases, Epidemiology, and Immunizations, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ferric C Fang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA; Clinical Microbiology Laboratory, Harborview Medical Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Jenkins C, Griffith P, Hoban A, Brown C, Garner J, Bardsley M, Willis C, Jorgensen F, Bird M, Greig DR, Edmunds M, Beck C, Larkins L. Foodborne outbreak of extended spectrum beta lactamase producing Shigella sonnei associated with contaminated spring onions in the United Kingdom. J Food Prot 2023; 86:100074. [PMID: 37030629 DOI: 10.1016/j.jfp.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Globalization of the food supply chain has created conditions favourable for emergence and spread of multidrug resistant (MDR) foodborne pathogens. In November 2021, the UK Health Security Agency detected an outbreak of 17 cases infected with the same strain of MDR extended spectrum beta-lactamase (ESBL)-producing Shigella sonnei. Phylogenetic analysis of whole genome sequencing data revealed the outbreak was closely related to strains of S. sonnei isolated from travellers returning to the UK from Egypt. None of the outbreak cases reported travel and all 17 cases reported eating food from a restaurant/food outlet in the week prior to symptom onset, of which 11/17 (64.7%) ate at branches of the same national restaurant franchise. All 17 cases were adults and 14/17 (82.4%) were female. Ingredient-level analyses of the meals consumed by the cases identified spring onions as the common ingredient. Food chain investigations revealed that the spring onions served at the implicated restaurants could be traced back to a single Egyptian producer. The foodborne transmission of ESBL-producing bacteria is an emerging global health concern, and concerted action from all stakeholders is required to ensure an effective response to mitigate the risks to public health.
Collapse
Affiliation(s)
- Claire Jenkins
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT.
| | | | - Anne Hoban
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| | - Claire Brown
- Field Service South West, UK Health Security Agency
| | | | | | - Caroline Willis
- Food Water and Environmental Microbiology Laboratory Porton, UK Health Security Agency, Salisbury SP4 0JG, UK
| | - Frieda Jorgensen
- Food Water and Environmental Microbiology Laboratory Porton, UK Health Security Agency, Salisbury SP4 0JG, UK
| | - Matthew Bird
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| | - David R Greig
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| | - Matt Edmunds
- Field Service South West, UK Health Security Agency
| | - Charles Beck
- Field Service South West, UK Health Security Agency
| | - Lesley Larkins
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| |
Collapse
|
8
|
Greig DR, Bird MT, Chattaway MA, Langridge GC, Waters EV, Ribeca P, Jenkins C, Nair S. Characterization of a P1-bacteriophage-like plasmid (phage-plasmid) harbouring bla CTX-M-15 in Salmonella enterica serovar Typhi. Microb Genom 2022; 8:mgen000913. [PMID: 36748517 PMCID: PMC9837566 DOI: 10.1099/mgen.0.000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial-resistance (AMR) genes can be transferred between microbial cells via horizontal gene transfer (HGT), which involves mobile and integrative elements such as plasmids, bacteriophages, transposons, integrons and pathogenicity islands. Bacteriophages are found in abundance in the microbial world, but their role in virulence and AMR has not fully been elucidated in the Enterobacterales. With short-read sequencing paving the way to systematic high-throughput AMR gene detection, long-read sequencing technologies now enable us to establish how such genes are structurally connected into meaningful genomic units, raising questions about how they might cooperate to achieve their biological function. Here, we describe a novel ~98 kbp circular P1-bacteriophage-like plasmid termed ph681355 isolated from a clinical Salmonella enterica serovar Typhi isolate. It carries bla CTX-M-15, an IncY plasmid replicon (repY gene) and the ISEcP1 mobile element and is, to our knowledge, the first reported P1-bacteriophage-like plasmid (phage-plasmid) in S. enterica Typhi. We compared ph681355 to two previously described phage-plasmids, pSJ46 from S. enterica serovar Indiana and pMCR-1-P3 from Escherichia coli, and found high nucleotide similarity across the backbone. However, we saw low ph681355 backbone similarity to plasmid p60006 associated with the extensively drug-resistant S. enterica Typhi outbreak isolate in Pakistan, providing evidence of an alternative route for bla CTX-M-15 transmission. Our discovery highlights the importance of utilizing long-read sequencing in interrogating bacterial genomic architecture to fully understand AMR mechanisms and their clinical relevance. It also raises questions regarding how widespread bacteriophage-mediated HGT might be, suggesting that the resulting genomic plasticity might be higher than previously thought.
Collapse
Affiliation(s)
- David R. Greig
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Gastrointestinal Pathogens, Liverpool, UK,Division of Infection and Immunity, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Matthew T. Bird
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Oxford, UK
| | | | | | - Emma V. Waters
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paolo Ribeca
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Genomics and Enabling Data, Warwick, UK
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,NIHR Health Protection Research Unit in Gastrointestinal Pathogens, Liverpool, UK
| | - Satheesh Nair
- National Infection Service, UK Health Security Agency, London NW9 5EQ, UK,*Correspondence: Satheesh Nair,
| |
Collapse
|
9
|
Yee R, Simner PJ. Next-Generation Sequencing Approaches to Predicting Antimicrobial Susceptibility Testing Results. Clin Lab Med 2022; 42:557-572. [PMID: 36368782 DOI: 10.1016/j.cll.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rebecca Yee
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B1-193, 600 North Wolfe Street, Baltimore, MD 21287-7093, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B1-193, 600 North Wolfe Street, Baltimore, MD 21287-7093, USA.
| |
Collapse
|
10
|
The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022; 10:microorganisms10051040. [PMID: 35630482 PMCID: PMC9148168 DOI: 10.3390/microorganisms10051040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout the entirety of human history, bacterial pathogens have played an important role and even shaped the fate of civilizations. The application of genomics within the last 27 years has radically changed the way we understand the biology and evolution of these pathogens. In this review, we discuss how the short- (Illumina) and long-read (PacBio, Oxford Nanopore) sequencing technologies have shaped the discipline of bacterial pathogen genomics, in terms of fundamental research (i.e., evolution of pathogenicity), forensics, food safety, and routine clinical microbiology. We have mined and discuss some of the most prominent data/bioinformatics resources such as NCBI pathogens, PATRIC, and Pathogenwatch. Based on this mining, we present some of the most popular sequencing technologies, hybrid approaches, assemblers, and annotation pipelines. A small number of bacterial pathogens are of very high importance, and we also present the wealth of the genomic data for these species (i.e., which ones they are, the number of antimicrobial resistance genes per genome, the number of virulence factors). Finally, we discuss how this discipline will probably be transformed in the near future, especially by transitioning into metagenome-assembled genomes (MAGs), thanks to long-read sequencing.
Collapse
|
11
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2022; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain “live” (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines’ implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
12
|
Toro CS, Salazar JC, Montero DA, Ugalde JA, Díaz J, Cádiz LA, Henríquez T, García C, Díaz P, Camponovo R, Hermosilla G, Ulloa MT. Antimicrobial Resistance Dynamics in Chilean Shigella sonnei Strains Within Two Decades: Role of Shigella Resistance Locus Pathogenicity Island and Class 1 and Class 2 Integrons. Front Microbiol 2022; 12:794470. [PMID: 35185820 PMCID: PMC8854971 DOI: 10.3389/fmicb.2021.794470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is an enteric infectious disease in which antibiotic treatment is effective, shortening the duration of symptoms and reducing the excretion of the pathogen into the environment. Shigella spp., the etiologic agent, are considered emerging pathogens with a high public health impact due to the increase and global spread of multidrug-resistant (MDR) strains. Since Shigella resistance phenotype varies worldwide, we present an overview of the resistance phenotypes and associated genetic determinants present in 349 Chilean S. sonnei strains isolated during the periods 1995–1997, 2002–2004, 2008–2009, and 2010–2013. We detected a great variability in antibiotic susceptibility patterns, finding 300 (86%) MDR strains. Mobile genetic elements (MGE), such as plasmids, integrons, and genomic islands, have been associated with the MDR phenotypes. The Shigella resistance locus pathogenicity island (SRL PAI), which encodes for ampicillin, streptomycin, chloramphenicol, and tetracycline resistance genes, was detected by PCR in 100% of the strains isolated in 2008–2009 but was less frequent in isolates from other periods. The presence or absence of SRL PAI was also differentiated by pulsed-field gel electrophoresis. An atypical class 1 integron which harbors the blaOXA–1-aadA1-IS1 organization was detected as part of SRL PAI. The dfrA14 gene conferring trimethoprim resistance was present in 98.8% of the 2008–2009 isolates, distinguishing them from the SRL-positive strains isolated before that. Thus, it seems an SRL-dfrA14 S. sonnei clone spread during the 2008–2009 period and declined thereafter. Besides these, SRL-negative strains harboring class 2 integrons with or without resistance to nalidixic acid were detected from 2011 onward, suggesting the circulation of another clone. Whole-genome sequencing of selected strains confirmed the results obtained by PCR and phenotypic analysis. It is highlighted that 70.8% of the MDR strains harbored one or more of the MGE evaluated, while 15.2% lacked both SRL PAI and integrons. These results underscore the temporal dynamics of antimicrobial resistance in S. sonnei strains circulating in Chile, mainly determined by the spread of MGE conferring MDR phenotypes. Since shigellosis is endemic in Chile, constant surveillance of antimicrobial resistance phenotypes and their genetic basis is a priority to contribute to public health policies.
Collapse
Affiliation(s)
- Cecilia S. Toro
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
- *Correspondence: Cecilia S. Toro,
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Juan Antonio Ugalde
- C+, Research Center in Technologies for Society, School of Engineering, Universidad del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance, Santiago, Chile
| | - Janepsy Díaz
- Departamento de Estudios Científicos, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Leandro A. Cádiz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Tania Henríquez
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Camila García
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Díaz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | - Germán Hermosilla
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 2022; 7:251-261. [PMID: 35102306 PMCID: PMC8813619 DOI: 10.1038/s41564-021-01054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
| | - Adam J Simpkin
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
- Gastrointestinal Infections and Food Safety (One Health), United Kingdom Health Security Agency, London, UK
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Rigden
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
14
|
Mai SNT, Bodhidatta L, Turner P, Wangchuk S, Ha Thanh T, Voong Vinh P, Pham DT, Rabaa MA, Thwaites GE, Thomson NR, Baker S, Chung The H. The evolutionary history of Shigella flexneri serotype 6 in Asia. Microb Genom 2021; 7. [PMID: 34904947 PMCID: PMC8767353 DOI: 10.1099/mgen.0.000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Shigella flexneri serotype 6 is an understudied cause of diarrhoeal diseases in developing countries, and has been proposed as one of the major targets for vaccine development against shigellosis. Despite being named as S. flexneri, Shigella flexneri serotype 6 is phylogenetically distinct from other S. flexneri serotypes and more closely related to S. boydii. This unique phylogenetic relationship and its low sampling frequency have hampered genomic research on this pathogen. Herein, by utilizing whole genome sequencing (WGS) and analyses of Shigella flexneri serotype 6 collected from epidemiological studies (1987–2013) in four Asian countries, we revealed its population structure and evolutionary history in the region. Phylogenetic analyses supported the delineation of Asian Shigella flexneri serotype 6 into two phylogenetic groups (PG-1 and −2). Notably, temporal phylogenetic approaches showed that extant Asian S. flexneri serotype 6 could be traced back to an inferred common ancestor arising in the 18th century. The dominant lineage PG-1 likely emerged in the 1970s, which coincided with the times to most recent common ancestors (tMRCAs) inferred from other major Southeast Asian S. flexneri serotypes. Similar to other S. flexneri serotypes in the same period in Asia, genomic analyses showed that resistance to first-generation antimicrobials was widespread, while resistance to more recent first-line antimicrobials was rare. These data also showed a number of gene inactivation and gene loss events, particularly on genes related to metabolism and synthesis of cellular appendages, emphasizing the continuing role of reductive evolution in the adaptation of the pathogen to an intracellular lifestyle. Together, our findings reveal insights into the genomic evolution of the understudied Shigella flexneri serotype 6, providing a new piece in the puzzle of Shigella epidemiology and evolution.
Collapse
Affiliation(s)
- Si-Nguyen T Mai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sonam Wangchuk
- Royal Centre for Disease Control, Ministry of Health, Thimphu, Bhutan
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phat Voong Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,London School of Hygiene and Tropical Medicine, Bloomsbury, London WC1E 7HT, UK
| | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Diseases (CITIID), University of Cambridge, Cambridge, UK
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Sia CM, Baines SL, Valcanis M, Lee DYJ, Gonçalves da Silva A, Ballard SA, Easton M, Seemann T, Howden BP, Ingle DJ, Williamson DA. Genomic diversity of antimicrobial resistance in non-typhoidal Salmonella in Victoria, Australia. Microb Genom 2021; 7:000725. [PMID: 34907895 PMCID: PMC8767345 DOI: 10.1099/mgen.0.000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is the second most common cause of foodborne bacterial gastroenteritis in Australia with antimicrobial resistance (AMR) increasing in recent years. Whole-genome sequencing (WGS) provides opportunities for in silico detection of AMR determinants. The objectives of this study were two-fold: (1) establish the utility of WGS analyses for inferring phenotypic resistance in NTS, and (2) explore clinically relevant genotypic AMR profiles to third generation cephalosporins (3GC) in NTS lineages. The concordance of 2490 NTS isolates with matched WGS and phenotypic susceptibility data against 13 clinically relevant antimicrobials was explored. In silico serovar prediction and typing was performed on assembled reads and interrogated for known AMR determinants. The surrounding genomic context, plasmid determinants and co-occurring AMR patterns were further investigated for multidrug resistant serovars harbouring bla CMY-2, bla CTX-M-55 or bla CTX-M-65. Our data demonstrated a high correlation between WGS and phenotypic susceptibility testing. Phenotypic-genotypic concordance was observed between 2440/2490 (98.0 %) isolates, with overall sensitivity and specificity rates >98 % and positive and negative predictive values >97 %. The most common AMR determinants were bla TEM-1, sul2 , tet (A), strA-strB and floR . Phenotypic resistance to cefotaxime and azithromycin was low and observed in 6.2 % (151/2486) and 0.9 % (16/1834) of the isolates, respectively. Several multi-drug resistant NTS lineages were resistant to 3GC due to different genetic mechanisms including bla CMY-2, bla CTX-M-55 or bla CTX-M-65. This study shows WGS can enhance existing AMR surveillance in NTS datasets routinely produced in public health laboratories to identify emerging AMR in NTS. These approaches will be critical for developing capacity to detect emerging public health threats such as resistance to 3GC.
Collapse
Affiliation(s)
- Cheryll M. Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Darren Y. J. Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan A. Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
16
|
Dallman TJ, Charles H, Prochazka M, Sinka K, Hughes G, Godbole G, Jenkins C. Emergence of novel strains of Shigella flexneri associated with sexual transmission in adult men in England, 2019-2020. J Med Microbiol 2021; 70. [PMID: 34665107 PMCID: PMC8604172 DOI: 10.1099/jmm.0.001437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
National surveillance of shigellosis in England revealed an increase in sexually transmitted Shigella flexneri in adult males in 2019 that persisted throughout 2020. We observed a resurgence of azithromycin-resistant S. flexneri serotype 3a, and the emergence of two novel multidrug-resistant clades of S. flexneri 2a and S. flexneri 1b.
Collapse
Affiliation(s)
- Timothy J Dallman
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Hannah Charles
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Mateo Prochazka
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Katy Sinka
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Gwenda Hughes
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Gauri Godbole
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Claire Jenkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| |
Collapse
|
17
|
Lee WWY, Mattock J, Greig DR, Langridge GC, Baker D, Bloomfield S, Mather AE, Wain JR, Edwards AM, Hartman H, Dallman TJ, Chattaway MA, Nair S. Characterization of a pESI-like plasmid and analysis of multidrug-resistant Salmonella enterica Infantis isolates in England and Wales. Microb Genom 2021; 7:000658. [PMID: 34647862 PMCID: PMC8627215 DOI: 10.1099/mgen.0.000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Infantis is the fifth most common Salmonella serovar isolated in England and Wales. Epidemiological, genotyping and antimicrobial-resistance data for S . enterica Infantis isolates were used to analyse English and Welsh demographics over a 5 year period. Travel cases associated with S . enterica Infantis were mainly from Asia, followed by cases from Europe and North America. Since 2000, increasing numbers of S . enterica Infantis had multidrug resistance determinants harboured on a large plasmid termed ‘plasmid of emerging S . enterica Infantis’ (pESI). Between 2013 and 2018, 42 S . enterica Infantis isolates were isolated from humans and food that harboured resistance determinants to multiple antimicrobial classes present on a pESI-like plasmid, including extended-spectrum β-lactamases (ESBLs; bla CTX-M-65). Nanopore sequencing of an ESBL-producing human S . enterica Infantis isolate indicated the presence of two regions on an IncFIB pESI-like plasmid harbouring multiple resistance genes. Phylogenetic analysis of the English and Welsh S . enterica Infantis population indicated that the majority of multidrug-resistant isolates harbouring the pESI-like plasmid belonged to a single clade maintained within the population. The bla CTX-M-65 ESBL isolates first isolated in 2013 comprise a lineage within this clade, which was mainly associated with South America. Our data, therefore, show the emergence of a stable resistant clone that has been in circulation for some time in the human population in England and Wales, highlighting the necessity of monitoring resistance in this serovar.
Collapse
Affiliation(s)
- Winnie W. Y. Lee
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - David R. Greig
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - David Baker
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Samuel Bloomfield
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Alison E. Mather
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | - John R. Wain
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hassan Hartman
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| | - Timothy J. Dallman
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Marie A. Chattaway
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| | - Satheesh Nair
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| |
Collapse
|
18
|
Locke RK, Greig DR, Jenkins C, Dallman TJ, Cowley LA. Acquisition and loss of CTX-M plasmids in Shigella species associated with MSM transmission in the UK. Microb Genom 2021; 7. [PMID: 34427554 PMCID: PMC8549364 DOI: 10.1099/mgen.0.000644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigellosis in men who have sex with men (MSM) is caused by multidrug resistant Shigellae, exhibiting resistance to antimicrobials including azithromycin, ciprofloxacin and more recently the third-generation cephalosporins. We sequenced four blaCTX-M-27-positive MSM Shigella isolates (2018–20) using Oxford Nanopore Technologies; three S. sonnei (identified as two MSM clade 2, one MSM clade 5) and one S. flexneri 3a, to explore AMR context. All S. sonnei isolates harboured Tn7/Int2 chromosomal integrons, whereas S. flexneri 3a contained the Shigella Resistance Locus. All strains harboured IncFII pKSR100-like plasmids (67-83kbp); where present blaCTX-M-27 was located on these plasmids flanked by IS26 and IS903B, however blaCTX-M-27 was lost in S. flexneri 3a during storage between Illumina and Nanopore sequencing. IncFII AMR regions were mosaic and likely reorganised by IS26; three of the four plasmids contained azithromycin-resistance genes erm(B) and mph(A) and one harboured the pKSR100 integron. Additionally, all S. sonnei isolates possessed a large IncB/O/K/Z plasmid, two of which carried aph(3’)-Ib/aph(6)-Id/sul2 and tet(A). Monitoring the transmission of mobile genetic elements with co-located AMR determinants is necessary to inform empirical treatment guidance and clinical management of MSM-associated shigellosis.
Collapse
Affiliation(s)
| | - David R Greig
- Gastrointestinal Reference Services, Public Health England, London, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Claire Jenkins
- Gastrointestinal Reference Services, Public Health England, London, UK
| | - Tim J Dallman
- Gastrointestinal Reference Services, Public Health England, London, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | | |
Collapse
|
19
|
Hawkey J, Paranagama K, Baker KS, Bengtsson RJ, Weill FX, Thomson NR, Baker S, Cerdeira L, Iqbal Z, Hunt M, Ingle DJ, Dallman TJ, Jenkins C, Williamson DA, Holt KE. Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei. Nat Commun 2021; 12:2684. [PMID: 33976138 PMCID: PMC8113504 DOI: 10.1038/s41467-021-22700-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Kalani Paranagama
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kate S Baker
- Department of Clinical Infection, Microbiology, and Immunology, Institute for Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bengtsson
- Department of Clinical Infection, Microbiology, and Immunology, Institute for Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool, UK
| | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Dept Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Louise Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zamin Iqbal
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Martin Hunt
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Danielle J Ingle
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | | | - Claire Jenkins
- National Infection Service, Public Health England, London, UK
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Dept Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
20
|
Chung The H, Bodhidatta L, Pham DT, Mason CJ, Ha Thanh T, Voong Vinh P, Turner P, Hem S, Dance DAB, Newton PN, Phetsouvanh R, Davong V, Thwaites GE, Thomson NR, Baker S, Rabaa MA. Evolutionary histories and antimicrobial resistance in Shigella flexneri and Shigella sonnei in Southeast Asia. Commun Biol 2021; 4:353. [PMID: 33742111 PMCID: PMC7979695 DOI: 10.1038/s42003-021-01905-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Conventional disease surveillance for shigellosis in developing country settings relies on serotyping and low-resolution molecular typing, which fails to contextualise the evolutionary history of the genus. Here, we interrogated a collection of 1,804 Shigella whole genome sequences from organisms isolated in four continental Southeast Asian countries (Thailand, Vietnam, Laos, and Cambodia) over three decades to characterise the evolution of both S. flexneri and S. sonnei. We show that S. sonnei and each major S. flexneri serotype are comprised of genetically diverse populations, the majority of which were likely introduced into Southeast Asia in the 1970s-1990s. Intranational and regional dissemination allowed widespread propagation of both species across the region. Our data indicate that the epidemiology of S. sonnei and the major S. flexneri serotypes were characterised by frequent clonal replacement events, coinciding with changing susceptibility patterns against contemporaneous antimicrobials. We conclude that adaptation to antimicrobial pressure was pivotal to the recent evolutionary trajectory of Shigella in Southeast Asia.
Collapse
Affiliation(s)
- Hao Chung The
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ladaporn Bodhidatta
- grid.413910.e0000 0004 0419 1772Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Duy Thanh Pham
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Carl J. Mason
- grid.413910.e0000 0004 0419 1772Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Tuyen Ha Thanh
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phat Voong Vinh
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Paul Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Sopheak Hem
- grid.418537.cMedical Biology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - David A. B. Dance
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK ,grid.416302.20000 0004 0484 3312Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos ,grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK
| | - Paul N. Newton
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK ,grid.416302.20000 0004 0484 3312Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos ,grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK
| | - Rattanaphone Phetsouvanh
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK ,grid.416302.20000 0004 0484 3312Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Viengmon Davong
- grid.416302.20000 0004 0484 3312Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Guy E. Thwaites
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas R. Thomson
- grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK ,grid.10306.340000 0004 0606 5382The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen Baker
- grid.5335.00000000121885934The Department of Medicine, University of Cambridge, Cambridge, UK
| | - Maia A. Rabaa
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Utility of whole-genome sequencing during an investigation of multiple foodborne outbreaks of Shigella sonnei. Epidemiol Infect 2021; 149:e71. [PMID: 33641696 PMCID: PMC8060841 DOI: 10.1017/s0950268821000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In April 2018, Public Health England was notified of cases of Shigella sonnei who had eaten food from three different catering outlets in England. The outbreaks were initially investigated as separate events, but whole-genome sequencing (WGS) showed they were caused by the same strain. The investigation included analyses of epidemiological data, the food chain and microbiological examination of food samples. WGS was used to determine the phylogenetic relatedness and antimicrobial resistance profile of the outbreak strain. Ultimately, 33 cases were linked to this outbreak; the majority had eaten food from seven outlets specialising in Indian or Middle Eastern cuisine. Five outlets were linked to two or more cases, all of which used fresh coriander although a shared supplier was not identified. An investigation at one of the venues recorded that 86% of cases reported eating dishes with coriander as an ingredient or garnish. Four cases were admitted to hospital and one had evidence of treatment failure with ciprofloxacin. Phylogenetic analysis showed that the outbreak strain was part of a wider multidrug-resistant clade associated with travel to Pakistan. Poor hygiene practices during cultivation, distribution or preparation of fresh produce are likely contributing factors.
Collapse
|
22
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2021; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 10/31/2024] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
23
|
Bokhary H, Pangesti KNA, Rashid H, Abd El Ghany M, Hill-Cawthorne GA. Travel-Related Antimicrobial Resistance: A Systematic Review. Trop Med Infect Dis 2021; 6:11. [PMID: 33467065 PMCID: PMC7838817 DOI: 10.3390/tropicalmed6010011] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that human movement facilitates the global spread of resistant bacteria and antimicrobial resistance (AMR) genes. We systematically reviewed the literature on the impact of travel on the dissemination of AMR. We searched the databases Medline, EMBASE and SCOPUS from database inception until the end of June 2019. Of the 3052 titles identified, 2253 articles passed the initial screening, of which 238 met the inclusion criteria. The studies covered 30,060 drug-resistant isolates from 26 identified bacterial species. Most were enteric, accounting for 65% of the identified species and 92% of all documented isolates. High-income countries were more likely to be recipient nations for AMR originating from middle- and low-income countries. The most common origin of travellers with resistant bacteria was Asia, covering 36% of the total isolates. Beta-lactams and quinolones were the most documented drug-resistant organisms, accounting for 35% and 31% of the overall drug resistance, respectively. Medical tourism was twice as likely to be associated with multidrug-resistant organisms than general travel. International travel is a vehicle for the transmission of antimicrobial resistance globally. Health systems should identify recent travellers to ensure that adequate precautions are taken.
Collapse
Affiliation(s)
- Hamid Bokhary
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- University Medical Center, Umm Al-Qura University, Al Jamiah, Makkah, Makkah Region 24243, Saudi Arabia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Krisna N. A. Pangesti
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Harunor Rashid
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- National Centre for Immunisation Research and Surveillance (NCIRS), Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Moataz Abd El Ghany
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Grant A. Hill-Cawthorne
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| |
Collapse
|
24
|
Liu Y, Shen W, Sun Y, Lv N, Sun K, Hu L, Ye Y, Gao Y, Li J. Virulence-Related Gene Distribution Among Shigella Isolates in Anhui, China: The Association with Antimicrobial Resistance. Infect Drug Resist 2020; 13:3637-3647. [PMID: 33116683 PMCID: PMC7585282 DOI: 10.2147/idr.s274862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 12/27/2022] Open
Abstract
Objective The aim of this study was to investigate the antimicrobial resistance profiles and distribution of virulence-related genes (VRGs) among Shigella isolates in Anhui, China, and to identify the correlation between the VRGs and antimicrobial resistance. Materials and Methods A total of 525 non-duplicate Shigella isolates (449 S. flexneri, 68 S. sonnei, 3 S. boydii, and 5 S. dysenteriae) were collected in Anhui Province, China between September 2011 and September 2015. The antimicrobial resistance of the strains was determined by the agar dilution method according to CLSI guidelines. The presence of 16 VRGs, including ipaH, ipaA-D, ial, virB, virF, set, sen, icsA, icsB, sigA, sat, pic, and sepA, was evaluated using PCR amplification and sequencing. Results Shigella flexneri was the most abundant (85.5%), followed by S. sonnei (13.0%). The proportion of males with S. flexneri was higher than that of females (57% vs 43%; P<0.0001). The most common resistance pattern was the combination of ampicillin, nalidixic acid, and tetracycline for S. flexneri (90.2%) and S. sonnei (94.1%). Resistance to ciprofloxacin and levofloxacin was more common among S. flexneri than among S. sonnei (49.7% vs.19.1%, P<0.0001; 30.5% vs 10.3%, P=0.001, respectively). All the isolates were positive for the ipaH gene, while the set, sat, pic, and sepA genes were not detected among the S. sonnei isolates. Except for sigA and sen, resistance to chloramphenicol and ciprofloxacin was more common among VRG-positive S. flexneri than among VRG-negative S. flexneri (P<0.05). Furthermore, resistance to ceftriaxone and ceftazidime was more frequently detected among sat- and set-positive S. flexneri than among sat- and set-negative S. flexneri (P<0.05). However, gentamicin resistance was more prevalent among VRG-negative (ial, virF, set, sat, pic, and sepA) S. flexneri than among VRG-positive S. flexneri (P<0.05). Conclusion Shigella flexneri remains the predominant species in Anhui, China, and the resistance to fluoroquinolones was more widespread among S. flexneri than among S. sonnei. Shigella flexneri strains harboring specific VRGs were associated with antimicrobial resistance. To the best of our knowledge, this is the first report of the correlation between the VRGs and antimicrobial resistance in Anhui, China.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Weihua Shen
- Department of Special Clinic, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yating Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Na Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Kaili Sun
- Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ying Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
25
|
van den Beld MJC, Reubsaet FAG, Pijnacker R, Harpal A, Kuiling S, Heerkens EM, Hoeve-Bakker BJA(D, Noomen RCEA, Hendriks ACA, Borst D, van der Heide H, Kooistra-Smid AMD(M, Rossen JWA. A Multifactorial Approach for Surveillance of Shigella spp. and Entero-Invasive Escherichia coli Is Important for Detecting (Inter)national Clusters. Front Microbiol 2020; 11:564103. [PMID: 33193150 PMCID: PMC7604320 DOI: 10.3389/fmicb.2020.564103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches.
Collapse
Affiliation(s)
- Maaike J. C. van den Beld
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Frans A. G. Reubsaet
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Roan Pijnacker
- Infectious Diseases, Epidemiology and Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Airien Harpal
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Sjoerd Kuiling
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Evy M. Heerkens
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - B. J. A. (Dieneke) Hoeve-Bakker
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ramón C. E. A. Noomen
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Amber C. A. Hendriks
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Dyogo Borst
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Han van der Heide
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - A. M. D. (Mirjam) Kooistra-Smid
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, Certe, Groningen, Netherlands
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
McDermott PF, Davis JJ. Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. J Vet Pharmacol Ther 2020; 44:223-237. [PMID: 33010049 DOI: 10.1111/jvp.12913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
The laboratory identification of antibacterial resistance is a cornerstone of infectious disease medicine. In vitro antimicrobial susceptibility testing has long been based on the growth response of organisms in pure culture to a defined concentration of antimicrobial agents. By comparing individual isolates to wild-type susceptibility patterns, strains with acquired resistance can be identified. Acquired resistance can also be detected genetically. After many decades of research, the inventory of genes underlying antimicrobial resistance is well known for several pathogenic genera including zoonotic enteric organisms such as Salmonella and Campylobacter and continues to grow substantially for others. With the decline in costs for large scale DNA sequencing, it is now practicable to characterize bacteria using whole genome sequencing, including the carriage of resistance genes in individual microorganisms and those present in complex biological samples. With genomics, we can generate comprehensive, detailed information on the bacterium, the mechanisms of antibiotic resistance, clues to its source, and the nature of mobile DNA elements by which resistance spreads. These developments point to a new paradigm for antimicrobial resistance detection and tracking for both clinical and public health purposes.
Collapse
Affiliation(s)
- Patrick F McDermott
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - James J Davis
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA.,University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Antony L, Fenske G, Kaushik RS, Nagaraja TG, Thomas M, Scaria J. Population structure of Salmonella enterica serotype Mbandaka reveals similar virulence potential irrespective of source and phylogenomic stratification. F1000Res 2020; 9:1142. [PMID: 33214877 PMCID: PMC7653644 DOI: 10.12688/f1000research.25540.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Salmonella enterica serotype Mbandaka ( Salmonella ser. Mbandaka) is a multi-host adapted Non-typhoidal Salmonella (NTS) that can cause foodborne illnesses in human. Outbreaks of Salmonella ser. Mbandaka contributed to the economic stress caused by NTS due to hospitalizations. Whole genome sequencing (WGS)-based phylogenomic analysis facilitates better understanding of the genomic features that may expedite the foodborne spread of Salmonella ser. Mbandaka. Methods: In the present study, we define the population structure, antimicrobial resistance (AMR), and virulence profile of Salmonella ser. Mbandaka using WGS data of more than 400 isolates collected from different parts of the world. We validated the genotypic prediction of AMR and virulence phenotypically using an available set of representative isolates. Results: Phylogenetic analysis of Salmonella ser. Mbandaka using Bayesian approaches revealed clustering of the population into two major groups; however, clustering of these groups and their subgroups showed no pattern based on the host or geographical origin. Instead, we found a uniform virulence gene repertoire in all isolates. Phenotypic analysis on a representative set of isolates showed a similar trend in cell invasion behavior and adaptation to a low pH environment. Both genotypic and phenotypic analysis revealed the carriage of multidrug resistance (MDR) genes in Salmonella ser. Mbandaka. Conclusions: Overall, our results show that the presence of multidrug resistance along with adaptation to broad range of hosts and uniformity in the virulence potential, isolates of Salmonella ser. Mbandaka from any source could have the potential to cause foodborne outbreaks as well as AMR dissemination.
Collapse
Affiliation(s)
- Linto Antony
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD, USA
| | - Gavin Fenske
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD, USA
| | - Radhey S Kaushik
- Department of Biology & Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Milton Thomas
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Joy Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD, USA
| |
Collapse
|
28
|
Ingle DJ, Easton M, Valcanis M, Seemann T, Kwong JC, Stephens N, Carter GP, Gonçalves da Silva A, Adamopoulos J, Baines SL, Holt KE, Chow EPF, Fairley CK, Chen MY, Kirk MD, Howden BP, Williamson DA. Co-circulation of Multidrug-resistant Shigella Among Men Who Have Sex With Men in Australia. Clin Infect Dis 2020; 69:1535-1544. [PMID: 30615105 DOI: 10.1093/cid/ciz005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In urban Australia, the burden of shigellosis is either in returning travelers from shigellosis-endemic regions or in men who have sex with men (MSM). Here, we combine genomic data with comprehensive epidemiological data on sexual exposure and travel to describe the spread of multidrug-resistant Shigella lineages. METHODS A population-level study of all cultured Shigella isolates in the state of Victoria, Australia, was undertaken from 1 January 2016 through 31 March 2018. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses of 545 Shigella isolates were performed at the Microbiological Diagnostic Unit Public Health Laboratory. Risk factor data on travel and sexual exposure were collected through enhanced surveillance forms or by interviews. RESULTS Rates of antimicrobial resistance were high, with 17.6% (95/541) and 50.6% (274/541) resistance to ciprofloxacin and azithromycin, respectively. There were strong associations between antimicrobial resistance, phylogeny, and epidemiology. Specifically, 2 major MSM-associated lineages were identified: a Shigellasonnei lineage (n = 159) and a Shigella flexneri 2a lineage (n = 105). Of concern, 147/159 (92.4%) of isolates within the S. sonnei MSM-associated lineage harbored mutations associated with reduced susceptibility to recommended oral antimicrobials: namely, azithromycin, trimethoprim-sulfamethoxazole, and ciprofloxacin. Long-read sequencing demonstrated global dissemination of multidrug-resistant plasmids across Shigella species and lineages, but predominantly associated with MSM isolates. CONCLUSIONS Our contemporary data highlight the ongoing public health threat posed by resistant Shigella, both in Australia and globally. Urgent multidisciplinary public health measures are required to interrupt transmission and prevent infection.
Collapse
Affiliation(s)
- Danielle J Ingle
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,National Centre for Epidemiology and Population Health, The Australian National University, Canberra
| | - Marion Easton
- Victorian Department of Health and Human Services, Melbourne
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Melbourne Bioinformatics Group, Victoria, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Jason C Kwong
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Nicola Stephens
- Victorian Department of Health and Human Services, Melbourne
| | - Glen P Carter
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne
| | | | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.,London School of Hygiene and Tropical Medicine, United Kingdom
| | - Eric P F Chow
- Melbourne Sexual Health Centre, Alfred Health, Carlton.,Central Clinical School, Monash University, Melbourne, Australia
| | - Christopher K Fairley
- Melbourne Sexual Health Centre, Alfred Health, Carlton.,Central Clinical School, Monash University, Melbourne, Australia
| | - Marcus Y Chen
- Melbourne Sexual Health Centre, Alfred Health, Carlton.,Central Clinical School, Monash University, Melbourne, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| |
Collapse
|
29
|
Snyder ER, Savitske BJ, Credille BC. Concordance of disk diffusion, broth microdilution, and whole-genome sequencing for determination of in vitro antimicrobial susceptibility of Mannheimia haemolytica. J Vet Intern Med 2020; 34:2158-2168. [PMID: 32893911 PMCID: PMC7517867 DOI: 10.1111/jvim.15883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Extensive drug resistance (XDR) is an emerging concern with Mannheimia haemolytica, and a variety of testing methods are available for characterizing in vitro antimicrobial susceptibility. Objectives To compare the concordance among disk diffusion, broth microdilution, and whole genome sequencing (WGS) for susceptibility testing of M. haemolytica before and after mass treatment using tulathromycin. Animals Forty‐eight M. haemolytica isolates collected from high‐risk beef stocker calves before and after mass treatment (metaphylaxis) using tulathromycin (Draxxin, Zoetis, Parsippany, NJ) given at the label dosage of 2.5 mg/kg body weight SC in the neck. Methods In vitro antimicrobial susceptibility was determined for all 48 isolates using disk diffusion, broth microdilution, and WGS. Concordance was calculated between pairs of susceptibility testing methods as follows: number of isolates classified identically by the 2 testing methods for each timepoint, divided by the number of isolates tested at that timepoint. Discordance was calculated as follows: number of isolates classified differently by the 2 testing methods for each timepoint, divided by the number of isolates tested at that timepoint. Results Concordance between testing methods ranged from 42.3% to 100%, depending on antimicrobial evaluated, timing of sample collection, and testing method used. Very major errors were identified in up to 7.7% of classifications whereas minor errors were seen in up to 50% of classifications depending on antimicrobial evaluated, timing of sample collection, and testing method used. Conclusions and Clinical Importance Our results show that discrepancies in the results of different susceptibility testing methods occur and suggest a need for greater harmonization of susceptibility testing methods.
Collapse
Affiliation(s)
- Emily R Snyder
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bridget J Savitske
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Brent C Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
30
|
Kweon OJ, Lim YK, Kim HR, Kim TH, Ha SM, Lee MK. Isolation of a novel species in the genus Cupriavidus from a patient with sepsis using whole genome sequencing. PLoS One 2020; 15:e0232850. [PMID: 32401765 PMCID: PMC7219751 DOI: 10.1371/journal.pone.0232850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 11/20/2022] Open
Abstract
Whole genome sequencing (WGS) has become an accessible tool in clinical microbiology, and it allowed us to identify a novel Cupriavidus species. We isolated Gram-negative bacillus from the blood of an immunocompromised patient, and phenotypical and molecular identifications were performed. Phenotypic identification discrepancies were noted between the Vitek 2 (bioMérieux, Marcy-l'Étoile, France) and Vitek MS systems (bioMérieux). Using 16S rRNA gene sequencing, it was impossible to identify the pathogen to the species levels. WGS was performed using the Illumina MiSeq platform (Illumina, San Diego, CA), and genomic sequence database searching with a TrueBacTM ID-Genome system (ChunLab, Inc., Seoul, Republic of Korea) showed no strains with average nucleotide identity values higher than 95.0%, which is the cut-off for species-level identification. Phylogenetic analysis indicated that the bacteria was a new Cupriavidus species that formed a subcluster with Cupriavidus gilardii. WGS holds great promise for accurate molecular identification beyond 16S rRNA gene sequencing in clinical microbiology.
Collapse
Affiliation(s)
- Oh Joo Kweon
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | | | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Gentle A, Day MR, Hopkins KL, Godbole G, Jenkins C. Antimicrobial resistance in Shiga toxin-producing Escherichia coli other than serotype O157 : H7 in England, 2014-2016. J Med Microbiol 2020; 69:379-386. [PMID: 32101158 DOI: 10.1099/jmm.0.001146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction. Despite many ongoing surveillance projects and the recent focus on the veterinary and clinical 'One Health' aspects of antimicrobial resistance (AMR), evidence of the extent of any public health risk posed by animal reservoirs with respect to the transmission of resistant strains of Escherichia coli to humans remains varied and contentious. In the UK, the main zoonotic reservoir for the foodborne pathogen Shiga toxin-producing E. coli (STEC) is cattle and sheep. In this study, we adopt an alternative approach to the risk assessment of transmission of AMR E. coli from animals to humans, involving monitoring AMR in isolates of STEC, an established zoonotic, foodborne pathogen, from human cases of gastrointestinal disease.Aim. The aim of this study was to determine the genome-derived AMR profiles for STEC from human cases to assess the risk of transmission of multidrug-resistant STEC from ruminants to humans.Methodology. STEC belonging to 10 different clonal complexes (CCs) (n=457) isolated from human faecal specimens were sequenced and genome-derived AMR profiles were determined. Phenotypic susceptibility testing was undertaken on all isolates (n=100) predicted to be resistant to at least one class of antimicrobial.Results. Of the 457 isolates, 332 (72.7 %) lacked identifiable resistance genes and were predicted to be fully susceptible to 11 classes of antimicrobials; 125/332 (27.3 %) carried 1 or more resistance genes, of which 83/125 (66.4 %) were resistant to 3 or more classes of antibiotic. The percentage of isolates harbouring AMR determinants varied between CCs, from 4% in CC25 to 100% in CC504. Forty-six different AMR genes were detected, which conferred resistance to eight different antibiotic classes. Resistance to ampicillin, streptomycin, tetracyclines and sulphonamides was most commonly detected. Four isolates were identified as extended-spectrum β-lactamase producers. An overall concordance of 97.7 % (n=1075/1100) was demonstrated between the phenotypic and genotypic methods.Conclusion. This analysis provided an indirect assessment of the risk of transmission of AMR gastrointestinal pathogens from animals to humans, and revealed a subset of human isolates of the zoonotic pathogen STEC were resistant to the antimicrobials used in animal husbandry. However, this proportion has not increased over the last three decades, and thismay provide evidence that guidancepromoting responsible practice has been effective.
Collapse
Affiliation(s)
- Amy Gentle
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Martin R Day
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Katie L Hopkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Gauri Godbole
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Jenkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
32
|
Persistent Transmission of Shigellosis in England Is Associated with a Recently Emerged Multidrug-Resistant Strain of Shigella sonnei. J Clin Microbiol 2020; 58:JCM.01692-19. [PMID: 31969425 DOI: 10.1128/jcm.01692-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing has enhanced surveillance and facilitated detailed monitoring of the transmission of Shigella species in England. We undertook an epidemiological and phylogenetic analysis of isolates from all cases of shigellosis referred to Public Health England between 2015 and 2018 to explore recent strain characteristics and the transmission dynamics of Shigella species. Of the 4,950 confirmed cases of shigellosis identified during this period, the highest proportion of isolates was Shigella sonnei (54.4%), followed by S. flexneri (39.2%), S. boydii (4.1%), and S. dysenteriae (2.2%). Most cases were adults (82.9%) and male (59.5%), and 34.9% cases reported recent travel outside the United Kingdom. Throughout the study period, diagnoses of S. flexneri and S. sonnei infections were most common in men with no history of recent travel abroad. The species prevalence was not static, with cases of S. flexneri infection in men decreasing between 2015 and 2016 and the number of cases of S. sonnei infection increasing from 2017. Phylogenetic analysis showed this recent increase in S. sonnei infections was attributed to a novel clade that emerged from a Central Asia sublineage exhibiting resistance to ciprofloxacin and azithromycin. Despite changes in species prevalence, diagnoses of Shigella infections in England are persistently most common in adult males without a reported travel history, consistent with sexual transmission among men who have sex with men. The trend toward increasing rates of ciprofloxacin resistance in S. sonnei, in addition to plasmid-mediated azithromycin resistance, is of significant public health concern with respect to the transmission of multidrug-resistant gastrointestinal pathogens and the risk of treatment failures.
Collapse
|
33
|
Innovative and rapid antimicrobial susceptibility testing systems. Nat Rev Microbiol 2020; 18:299-311. [PMID: 32055026 DOI: 10.1038/s41579-020-0327-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance (AMR) is a major threat to human health worldwide, and the rapid detection and quantification of resistance, combined with antimicrobial stewardship, are key interventions to combat the spread and emergence of AMR. Antimicrobial susceptibility testing (AST) systems are the collective set of diagnostic processes that facilitate the phenotypic and genotypic assessment of AMR and antibiotic susceptibility. Over the past 30 years, only a few high-throughput AST methods have been developed and widely implemented. By contrast, several studies have established proof of principle for various innovative AST methods, including both molecular-based and genome-based methods, which await clinical trials and regulatory review. In this Review, we discuss the current state of AST systems in the broadest technical, translational and implementation-related scope.
Collapse
|
34
|
Nair S, Day M, Godbole G, Saluja T, Langridge GC, Dallman TJ, Chattaway M. Genomic surveillance detects Salmonella enterica serovar Paratyphi A harbouring blaCTX-M-15 from a traveller returning from Bangladesh. PLoS One 2020; 15:e0228250. [PMID: 32000262 PMCID: PMC6992414 DOI: 10.1371/journal.pone.0228250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/11/2020] [Indexed: 12/01/2022] Open
Abstract
Whole genome sequencing (WGS) has been used routinely by Public Health England (PHE) for identification, surveillance and monitoring of resistance determinants in referred Salmonella isolates since 2015. We report the first identified case of extended-spectrum-β-lactamase (ESBL) Salmonella enterica serovar Paratyphi A (S. Paratyphi A) isolated from a traveller returning to England from Bangladesh in November 2017. The isolate (440915) was resistant to ciprofloxacin and harboured both the mobile element ISEcp9 –blaCTX-M-15-hp-tnpA and blaTEM-191, associated with ESBL production. Phenotypic resistance was subsequently confirmed by Antimicrobial Susceptibility Testing (AST). S. Paratyphi A 440915 harboured an IncI1 plasmid previously reported to encode ESBL elements in Enterobacteriaceae and recently described in a S. Typhi isolate from Bangladesh. Results from this study indicate the importance of monitoring imported drug resistance for typhoidal salmonellae as ceftriaxone is the first line antibiotic treatment for complicated enteric fever in England. We conclude that WGS provides a rapid, accurate method for surveillance of drug resistance genes in Salmonella, leading to the first reported case of ESBL producing S. Paratyphi A and continues to inform the national treatment guidelines for management of enteric fever.
Collapse
Affiliation(s)
- Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
- * E-mail:
| | - Martin Day
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Gauri Godbole
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Tranprit Saluja
- Department of Microbiology, City Hospital, Birmingham, United Kingdom
| | - Gemma C. Langridge
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
- National Institute for Health Research Health Protection Research Unit, Gastrointestinal Infections, University of Liverpool, Liverpool, England
| | - Marie Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| |
Collapse
|
35
|
McGuire E, Mikhail A, Day M, Serafino-Wani R, Godbole G. Shigellosis in adults: A retrospective study of clinical and epidemiological features in East London. Int J STD AIDS 2019; 30:1373-1381. [PMID: 31739750 DOI: 10.1177/0956462419871851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shigella is a leading cause of gastroenteritis worldwide; however, data on clinical outcomes amongst adults are lacking. All adult cases (>16 years) of Shigella gastroenteritis diagnosed between January 2014 to December 2017 at an East London NHS Trust in the United Kingdom were included. Demographic, clinical, microbiological and whole genome sequencing (WGS) data were retrospectively collected. Shigella spp isolates from 169 cases were identified: S. flexneri 90 (53.3%), S. sonnei 75 (44.9%) and S. boydii 4 (2.0%). The median age was 34 years (IQR 29–45), and 127 (75.1%) were male. S. flexneri cases were more likely to attend accident and emergency (46.7% vs. 25.3%, p = 0.005), be admitted to hospital (26.7% vs. 10.7%, p = 0.01), and receive antibiotics (51.1% vs. 28.0%, p = 0.003) compared to S. sonnei cases. Thirty-two (18.9%) patients were admitted to hospital for a median of five days (IQR 3–8). Where recorded 42/84 (50.0%) reported recent travel. Seventeen (10.1%) patients experienced complications. There were no deaths within one year of diagnosis. Seventy-nine isolates were characterised by WGS. Fifty-seven (72.2%) belonged to known national clusters; 44 (55.7%) involving adult males and 11 (13.9%) travel-associated clusters. We demonstrate the development of severe complications of shigellosis among adults and highlight the changing epidemiology and antibiotic resistance patterns.
Collapse
Affiliation(s)
- Emma McGuire
- Division of Infection, Barts Health NHS Trust, London, UK
| | - Amy Mikhail
- Gastrointestinal Department, National Infection Service, Public Health England, London, UK
| | - Martin Day
- Gastrointestinal Bacteria Reference Unit, National infection Service, Public Health England, London, UK
| | | | - Gauri Godbole
- Gastrointestinal Department, National Infection Service, Public Health England, London, UK.,Gastrointestinal Bacteria Reference Unit, National infection Service, Public Health England, London, UK
| |
Collapse
|
36
|
Chung The H, Boinett C, Pham Thanh D, Jenkins C, Weill FX, Howden BP, Valcanis M, De Lappe N, Cormican M, Wangchuk S, Bodhidatta L, Mason CJ, Nguyen TNT, Ha Thanh T, Voong VP, Duong VT, Nguyen PHL, Turner P, Wick R, Ceyssens PJ, Thwaites G, Holt KE, Thomson NR, Rabaa MA, Baker S. Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun 2019; 10:4828. [PMID: 31645551 PMCID: PMC6811581 DOI: 10.1038/s41467-019-12823-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Shigella sonnei increasingly dominates the international epidemiological landscape of shigellosis. Treatment options for S. sonnei are dwindling due to resistance to several key antimicrobials, including the fluoroquinolones. Here we analyse nearly 400 S. sonnei whole genome sequences from both endemic and non-endemic regions to delineate the evolutionary history of the recently emergent fluoroquinolone-resistant S. sonnei. We reaffirm that extant resistant organisms belong to a single clonal expansion event. Our results indicate that sequential accumulation of defining mutations (gyrA-S83L, parC-S80I, and gyrA-D87G) led to the emergence of the fluoroquinolone-resistant S. sonnei population around 2007 in South Asia. This clone was then transmitted globally, resulting in establishments in Southeast Asia and Europe. Mutation analysis suggests that the clone became dominant through enhanced adaptation to oxidative stress. Experimental evolution reveals that under fluoroquinolone exposure in vitro, resistant S. sonnei develops further intolerance to the antimicrobial while the susceptible counterpart fails to attain complete resistance.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Christine Boinett
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Claire Jenkins
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Niall De Lappe
- National Salmonella, Shigella, and Listeria monocytogenes Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - To Nguyen Thi Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Phat Voong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thuy Duong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phu Huong Lan Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Maia A Rabaa
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, The Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: a clinical perspective. Clin Microbiol Infect 2019; 26:643.e1-643.e7. [PMID: 31586657 DOI: 10.1016/j.cmi.2019.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Predicting the antibiotic susceptibility phenotype from genomic data is challenging, especially for some specific antibiotics in the order Enterobacterales. Here we aimed to assess the performance of whole genomic sequencing (WGS) for predicting the antibiotic susceptibility in various Enterobacterales species using the detection of antibiotic resistance genes (ARGs), specific mutations and a knowledge-based decision algorithm. METHODS We sequenced (Illumina MiSeq, 2×250 bp) 187 clinical isolates from species possessing (n = 98) or not (n = 89) an intrinsic AmpC-type cephalosporinase. Phenotypic antibiotic susceptibility was performed by the disc diffusion method. Reads were assembled by A5-miseq and ARGs were identified from the ResFinder database using Diamond. Mutations on GyrA and ParC topoisomerases were studied. Piperacillin, piperacillin-tazobactam, ceftazidime, cefepime, meropenem, amikacin, gentamicin and ciprofloxacin were considered for prediction. RESULTS A total of 1496 isolate/antibiotic combinations (187 isolates × 8 antibiotics) were considered. In 230 cases (15.4%), no attempt of prediction was made because it could not be supported by current knowledge. Among the 1266 attempts, 1220 (96.4%) were correct (963 for predicting susceptibility and 257 for predicting resistance), 24 (1.9%) were major errors (MEs) and 22 (1.7%) were very major errors (VMEs). Concordance were similar between non-AmpC and AmpC-producing Enterobacterales (754/784 (96.2%) vs 466/482 (96.7%), chi-square test p 0.15), but more VMEs were observed in non-AmpC producing strains than in those producing an AmpC (19/784 (2.4%) vs 3/466 (0.6%), chi-square test p 0.02). The majority of VMEs were putatively due to the overexpression of chromosomal genes. CONCLUSIONS In conclusion, the inference of antibiotic susceptibility from genomic data showed good performances for non-AmpC and AmpC-producing Enterobacterales species. However, more knowledge about the mechanisms underlying the derepression of AmpC are needed.
Collapse
|
38
|
Palmeiro JK, de Souza RF, Schörner MA, Passarelli-Araujo H, Grazziotin AL, Vidal NM, Venancio TM, Dalla-Costa LM. Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Isolates in a Brazilian Tertiary Hospital. Front Microbiol 2019; 10:1669. [PMID: 31396186 PMCID: PMC6664048 DOI: 10.3389/fmicb.2019.01669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae (Kp) is a major bacterial pathogen responsible for hospital outbreaks worldwide, mainly via the spread of high-risk clones and epidemic resistance plasmids. In this study, we evaluated the molecular epidemiology and β-lactam resistance mechanisms of MDR-Kp strains isolated in a Brazilian academic care hospital. We used whole-genome sequencing to study drug resistance mechanisms and their relationships with a K. pneumoniae carbapenemase-producing (KPC) Kp outbreak. Forty-three Kp strains were collected between 2003 and 2012. Antimicrobial susceptibility testing was performed for 15 antimicrobial agents, and polymerase chain reaction (PCR) was used to detect 32 resistance genes. Mutations in ompk35, ompk36, and ompk37 were evaluated by PCR and DNA sequencing. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were carried out to differentiate the strains. Based on distinct epidemiological periods, six Kp strains were subjected to whole-genome sequencing. β-lactamase coding genes were widely distributed among isolates. Almost all isolates had mutations in porin genes, particularly ompk35. The presence of blaKPC promoted a very high increase in carbapenem minimum inhibitory concentration only when ompk35 and ompk36 were interrupted by insertion sequences. A major cluster was identified by PFGE analysis and all isolates from this cluster belonged to clonal group (CG) 258. We have also identified a large repertoire of resistance genes in the sequenced isolates. A blaKPC–2-bearing plasmid (pUFPRA2) was also identified, which was very similar to a plasmid previously described in the first Brazilian KPC-Kp (2005). We found high-risk clones (CG258) and an epidemic resistance plasmid throughout the duration of the study (2003 to 2012), emphasizing a persistent presence of MDR-Kp strains in the hospital setting. Finally, we found that horizontal transfer of resistance genes between clones may have played a key role in the evolution of the outbreak.
Collapse
Affiliation(s)
- Jussara Kasuko Palmeiro
- Laboratório de Bacteriologia e Biologia Molecular, Unidade do Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Robson Francisco de Souza
- Laboratório de Estrutura e Evolução de Proteínas, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos André Schörner
- Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Laura Grazziotin
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Newton Medeiros Vidal
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | |
Collapse
|
39
|
Aerts M, Battisti A, Hendriksen R, Kempf I, Teale C, Tenhagen BA, Veldman K, Wasyl D, Guerra B, Liébana E, Thomas-López D, Belœil PA. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J 2019; 17:e05709. [PMID: 32626332 PMCID: PMC7009308 DOI: 10.2903/j.efsa.2019.5709] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proposals to update the harmonised monitoring and reporting of antimicrobial resistance (AMR) from a public health perspective in Salmonella, Campylobacter coli, Campylobacter jejuni, Escherichia coli, Enterococcus faecalis, Enterococcus faecium and methicillin-resistant Staphylococcus aureus (MRSA) from food-producing animals and derived meat in the EU are presented in this report, accounting for recent trends in AMR, data collection needs and new scientific developments. Phenotypic monitoring of AMR in bacterial isolates, using microdilution methods for testing susceptibility and interpreting resistance using epidemiological cut-off values is reinforced, including further characterisation of those isolates of E. coli and Salmonella showing resistance to extended-spectrum cephalosporins and carbapenems, as well as the specific monitoring of ESBL/AmpC/carbapenemase-producing E. coli. Combinations of bacterial species, food-producing animals and meat, as well as antimicrobial panels have been reviewed and adapted, where deemed necessary. Considering differing sample sizes, numerical simulations have been performed to evaluate the related statistical power available for assessing occurrence and temporal trends in resistance, with a predetermined accuracy, to support the choice of harmonised sample size. Randomised sampling procedures, based on a generic proportionate stratified sampling process, have been reviewed and reinforced. Proposals to improve the harmonisation of monitoring of prevalence, genetic diversity and AMR in MRSA are presented. It is suggested to complement routine monitoring with specific cross-sectional surveys on MRSA in pigs and on AMR in bacteria from seafood and the environment. Whole genome sequencing (WGS) of isolates obtained from the specific monitoring of ESBL/AmpC/carbapenemase-producing E. coli is strongly advocated to be implemented, on a voluntary basis, over the validity period of the next legislation, with possible mandatory implementation by the end of the period; the gene sequences encoding for ESBL/AmpC/carbapenemases being reported to EFSA. Harmonised protocols for WGS analysis/interpretation and external quality assurance programmes are planned to be provided by the EU-Reference Laboratory on AMR.
Collapse
|
40
|
Abelman RL, M'ikanatha NM, Figler HM, Dudley EG. Use of whole genome sequencing in surveillance for antimicrobial-resistant Shigella sonnei infections acquired from domestic and international sources. Microb Genom 2019; 5. [PMID: 31099740 PMCID: PMC6562246 DOI: 10.1099/mgen.0.000270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Shigella species are a major cause of gastroenteritis worldwide, and Shigella sonnei is the most common species isolated within the United States. Previous surveillance work in Pennsylvania documented increased antimicrobial resistance (AMR) in S. sonnei associated with reported illnesses. The present study examined a subset of these isolates by whole genome sequencing (WGS) to determine the relationship between domestic and international isolates, to identify genes that may be useful for identifying specific Global Lineages of S. sonnei and to test the accuracy of WGS for predicting AMR phenotype. A collection of 22 antimicrobial-resistant isolates from patients infected within the United States or while travelling internationally between 2009 and 2014 was chosen for WGS. Phylogenetic analysis revealed both international and domestic isolates were one of two previously defined Global Lineages of S. sonnei, designated Lineage II and Lineage III. Twelve of 17 alleles tested distinguish these two lineages. Lastly, genome analysis was used to identify AMR determinants. Genotypic analysis was concordant with phenotypic resistance for six of eight antibiotic classes. For aminoglycosides and trimethoprim, resistance genes were identified in two and three phenotypically sensitive isolates, respectively. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Rebecca L Abelman
- 1 Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Hillary M Figler
- 3 Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Edward G Dudley
- 1 Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA.,4 E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
41
|
Su M, Satola SW, Read TD. Genome-Based Prediction of Bacterial Antibiotic Resistance. J Clin Microbiol 2019; 57:e01405-18. [PMID: 30381421 PMCID: PMC6425178 DOI: 10.1128/jcm.01405-18] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Clinical microbiology has long relied on growing bacteria in culture to determine antimicrobial susceptibility profiles, but the use of whole-genome sequencing for antibiotic susceptibility testing (WGS-AST) is now a powerful alternative. This review discusses the technologies that made this possible and presents results from recent studies to predict resistance based on genome sequences. We examine differences between calling antibiotic resistance profiles by the simple presence or absence of previously known genes and single-nucleotide polymorphisms (SNPs) against approaches that deploy machine learning and statistical models. Often, the limitations to genome-based prediction arise from limitations of accuracy of culture-based AST in addition to an incomplete knowledge of the genetic basis of resistance. However, we need to maintain phenotypic testing even as genome-based prediction becomes more widespread to ensure that the results do not diverge over time. We argue that standardization of WGS-AST by challenge with consistently phenotyped strain sets of defined genetic diversity is necessary to compare the efficacy of methods of prediction of antibiotic resistance based on genome sequences.
Collapse
Affiliation(s)
- Michelle Su
- Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Antimicrobial Resistance and Therapeutic Discovery Training Program, Emory University, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| | - Sarah W Satola
- Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Emory Investigational Clinical Microbiology Laboratory, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Emory Investigational Clinical Microbiology Laboratory, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Day MR, Doumith M, Do Nascimento V, Nair S, Ashton PM, Jenkins C, Dallman TJ, Stevens FJ, Freedman J, Hopkins KL, Woodford N, De Pinna EM, Godbole G. Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Salmonella enterica serovars Typhi and Paratyphi. J Antimicrob Chemother 2019; 73:365-372. [PMID: 29216342 DOI: 10.1093/jac/dkx379] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023] Open
Abstract
Objectives Surveillance of antimicrobial resistance (AMR) in Salmonella enterica serovars Typhi and Paratyphi is essential to provide an evidence base for empirical treatment protocols and to monitor emerging AMR. We sought to compare phenotypic and WGS-based genotypic methods for the detection of AMR in Salmonella Typhi and Salmonella Paratyphi. Methods WGS data from 603 isolates of Salmonella Typhi (n = 332) and Salmonella Paratyphi (n = 271) were mapped to genes or chromosomal mutations known to be associated with phenotypic AMR and compared with phenotypic susceptibility data interpreted using breakpoints recommended by EUCAST. Results There were two (0.03%) discordant interpretations out of a possible 6030 isolate/antimicrobial class combinations. MDR (resistant to three or more classes of antimicrobial) was detected in 83/332 (25.0%) Salmonella Typhi isolates, but was not detected in Salmonella Paratyphi. Thirty-six (10.8%) isolates of Salmonella Typhi were resistant to ciprofloxacin (MIC >0.5 mg/L), with 33 (9.9%) of 332 exhibiting mutations in gyrA and parC, and 244 (73.5%) isolates had reduced susceptibility to ciprofloxacin (MIC 0.06-0.25 mg/L). In comparison, 209/227 (92.1%) isolates of Salmonella Paratyphi A exhibited resistance to ciprofloxacin (MIC >0.5 mg/L). No resistance to azithromycin or the third-generation cephalosporins was detected. Conclusions WGS data provided a robust and informative approach for monitoring MDR and emerging resistance to ciprofloxacin in Salmonella Typhi and Salmonella Paratyphi. Phenotypic antimicrobial susceptibility testing continues to be performed to guide targeted individual patient treatment, but inferred AMR profiles from WGS data may be used for surveillance and to guide empirical therapy.
Collapse
Affiliation(s)
- Martin R Day
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Michel Doumith
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Vivienne Do Nascimento
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Satheesh Nair
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Philip M Ashton
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Jenkins
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Timothy J Dallman
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Flora J Stevens
- Travel and Migrant Health Section, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Joanne Freedman
- Travel and Migrant Health Section, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Katie L Hopkins
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Elizabeth M De Pinna
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Gauri Godbole
- Bacteriology Reference Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
43
|
Setup, Validation, and Quality Control of a Centralized Whole-Genome-Sequencing Laboratory: Lessons Learned. J Clin Microbiol 2018; 56:JCM.00261-18. [PMID: 29695528 DOI: 10.1128/jcm.00261-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Routine use of whole-genome analysis for infectious diseases can be used to enlighten various scenarios pertaining to public health, including identification of microbial pathogens, relating individual cases to an outbreak of infectious disease, establishing an association between an outbreak of food poisoning and a specific food vehicle, inferring drug susceptibility, source tracing of contaminants, and study of variations in the genome that affect pathogenicity/virulence. We describe the setup, validation, and ongoing verification of a centralized whole-genome-sequencing (WGS) laboratory to carry out sequencing for these public health functions for the National Infection Services, Public Health England, in the United Kingdom. The performance characteristics and quality control metrics measured during validation and verification of the entire end-to-end process (accuracy, precision, reproducibility, and repeatability) are described and include information regarding the automated pass and release of data to service users without intervention.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The rise in antimicrobial resistance is an urgent public health threat which, in the absence of intervention, may result in a post-antibiotic era limiting the effectiveness of antibiotics to treat both common and serious infections. Globalization and human migration have profoundly contributed to the spread of drug-resistant bacteria. In this review, we summarize the recent literature on the importance of travelers in the spread of drug-resistant bacterial organisms. Our goal was to describe the importance of travel on a variety of clinically relevant drug-resistant bacterial organisms including extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, methicillin-resistant Staphylococcus aureus, Salmonella species, as well as other enteric infections. RECENT FINDINGS Travelers from high income countries, visiting low and middle income countries, frequently acquire drug-resistant bacteria, particularly extended-spectrum β-lactamase-producing Enterobacteriaceae. The highest risk is associated with travel to the Indian subcontinent. Multidrug-resistant enteric infections in travelers from Salmonella spp., Campylobacter spp., and Shigella spp. are increasing. Refugees, pilgrimages, and medical tourists are associated with considerable risk of multiple forms of drug resistance. This review highlights the importance of antimicrobial stewardship, infection control, and surveillance; particularly in low and middle income countries. International leadership with global coordination is vital in the battle against antimicrobial resistance.
Collapse
Affiliation(s)
- Kevin L Schwartz
- Public Health Ontario, 480 University Ave, suite 300, Toronto, Ontario, M5G 1V2, Canada. .,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. .,St. Joseph's Health Centre, Toronto, Ontario, Canada.
| | - Shaun K Morris
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Terry LM, Barker CR, Day MR, Greig DR, Dallman TJ, Jenkins C. Antimicrobial resistance profiles of Shigella dysenteriae isolated from travellers returning to the UK, 2004-2017. J Med Microbiol 2018; 67:1022-1030. [PMID: 29957175 DOI: 10.1099/jmm.0.000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Antimicrobial resistance (AMR) profiles of 754 strains of Shigella dysenteriae isolated between 2004 and 2017 from UK travellers reporting symptoms of gastrointestinal (GI) disease were reviewed to look for evidence of emerging AMR associated with travellers' diarrhoea. METHODOLOGY A travel history was provided for 72.7 % (548/754) of cases, of which 90.9 % (498/548) reported travel outside the UK within 7 days of onset of symptoms, and 9.1 % (50/498) reported no travel in that time frame. During the course of this study, whole genome sequencing (WGS) was implemented for GI disease surveillance, and we compared phenotypic AMR profiles with those derived from WGS data (n=133).Results/Key findings. The phenotypic and genotypic AMR results correlated well, with 90.1 % (121/133) isolates having concordant results to 10 classes of antimicrobials. Resistance to the first-line drugs commonly used in the treatment of shigellosis was observed throughout the study (ampicillin, 54.1%; chloramphenicol, 33.7 %; sulphonamides, 76.0 %; trimethoprim, 80.0%). Between 2004 and 2017, resistance to all classes of antimicrobials (except the phenicols) increased. The proportion of isolates exhibiting reduced susceptibility to ciprofloxacin increased from 3.8 % in 2004 to 75.7 % in 2017, and this was significantly associated with cases reporting travel to Asia compared to Africa (P<0.001). Of the 201 sequenced isolates, 3.0 % (20/201) had either blaCTX-M-15 or blaCMY-4. CONCLUSIONS Increasing MDR, along with resistance to the fluroquinolones and the third generation cephalosporins, in Shigella dysenteriae causing travellers' diarrhoea provides further evidence for the need to regulatethe use of antimicrobial agents and continuous monitoring of emerging AMR.
Collapse
Affiliation(s)
- Lauren M Terry
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Clare R Barker
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Martin R Day
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - David R Greig
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Timothy J Dallman
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK
| |
Collapse
|
46
|
Chung The H, Baker S. Out of Asia: the independent rise and global spread of fluoroquinolone-resistant Shigella. Microb Genom 2018; 4. [PMID: 29595412 PMCID: PMC5989582 DOI: 10.1099/mgen.0.000171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shigella are ranked among the most prevalent aetiologies of diarrhoeal disease worldwide, disproportionately affecting young children in developing countries and high-risk communities in developed settings. Antimicrobial treatment, most commonly with fluoroquinolones, is currently recommended for Shigella infections to alleviate symptoms and control disease transmission. Resistance to fluoroquinolones has emerged in differing Shigella species (S. dysenteriae, flexneri and sonnei) since the turn of the 21st century, originating in endemic areas, and latterly spreading into non-endemic regions. Despite occurring independently, the emergence of fluoroquinolone resistance in these different Shigella species shares striking similarities regarding their epidemiology and resistance mechanisms. Here, we review and discuss the current epidemiology of fluoroquinolone-resistant Shigella species, particularly in the light of recent genomic insights.
Collapse
Affiliation(s)
- Hao Chung The
- Enteric Infections, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Enteric Infections, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Neuert S, Nair S, Day MR, Doumith M, Ashton PM, Mellor KC, Jenkins C, Hopkins KL, Woodford N, de Pinna E, Godbole G, Dallman TJ. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica. Front Microbiol 2018; 9:592. [PMID: 29636749 PMCID: PMC5880904 DOI: 10.3389/fmicb.2018.00592] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England’s Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile (n = 231; 27.24%). For isolates with this profile, all but one were S. Typhimurium and 94.81% (n = 219) had the resistance determinants blaTEM-1,strA-strB, sul2 and tet(A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.
Collapse
Affiliation(s)
- Saskia Neuert
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Satheesh Nair
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Martin R Day
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Michel Doumith
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Philip M Ashton
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Kate C Mellor
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom.,London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Claire Jenkins
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Katie L Hopkins
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Neil Woodford
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Elizabeth de Pinna
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Gauri Godbole
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Timothy J Dallman
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| |
Collapse
|
48
|
Do Nascimento V, Day MR, Doumith M, Hopkins KL, Woodford N, Godbole G, Jenkins C. Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of enteroaggregative Escherichia coli isolated from cases of diarrhoeal disease in England, 2015–16. J Antimicrob Chemother 2017; 72:3288-3297. [DOI: 10.1093/jac/dkx301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
|