1
|
Rathod M, Shukla S, Sanapala P, Rajni E, Maheshwari G, Gajjar D. Genetic Diversity in Antimicrobial Resistance Determinants Among Pathogenic Pseudomonas aeruginosa in India. Curr Microbiol 2025; 82:189. [PMID: 40080202 DOI: 10.1007/s00284-025-04174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The drastic rise in antibiotic resistance has become a global challenge, including India, due to high morbidity. The delayed identification and lack of treatment are the major causes of death. However, there is a shortage of precise information on the specific resistance pattern and sequence types of Pseudomonas aeruginosa from India that can help in diagnostics and therapy. A total of 16 clinical isolates were collected from the western region of India, along with 181 P. aeruginosa genomes of India from public database were retrieved and thoroughly analysed for antibiotics resistance determinants for associated sequence types and O-serotypes using different bioinformatics tools. Of all collected isolates (n = 16), 9 were extensively drug-resistant (XDR), 6 were multidrug-resistant (MDR), and only 1 isolate was susceptible to selected antibiotics. ST357 (n = 23; 11.6%) was the most frequent, followed by ST308, and ST1203. In serotyping, O11 (n = 85; 43%) was most prevalent. A novel ST4937 was reported and submitted to PubMLST. blaNDM-1 carbapenemase was found in (n = 45; 22.8%) isolates, whereas class D blaOXA-488 was present in (n = 38; 19.2%) isolates, further, several variants were found for class C blaPDC genes, where blaPDC-3 and blaPDC-19a were found to be predominant. We discovered that the amounts of carbapenemases and extended spectrum beta-lactamases (ESBL) genes were lower in India. This can be a relief sometimes, but a rise in high-risk clones could lead to longer hospital stays and more deaths. Therefore, ongoing surveillance of these strains is essential for effective infection management and containment of their spread.
Collapse
Affiliation(s)
- Milan Rathod
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Suraj Shukla
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Paparaidu Sanapala
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ekadashi Rajni
- Department of Microbiology, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, Rajasthan, 302022, India
| | | | - Devarshi Gajjar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
2
|
Wang L, Zhou X, Lu Y, Zhang X, Jiang J, Sun Z, Yin M, Doi Y, Wang M, Guo Q, Yang F. Levofloxacin-induced MexS mutation triggers imipenem-relebactam resistance in a KPC-producing Pseudomonas aeruginosa. Int J Antimicrob Agents 2024; 63:107119. [PMID: 38417706 DOI: 10.1016/j.ijantimicag.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES Imipenem-relebactam (IMR), a novel β-lactam/β-lactamase inhibitor combination, is recommended for infections caused by difficult-to-treat Pseudomonas aeruginosa. This study aimed to investigate the evolution trajectory of IMR resistance under the selection of levofloxacin in P. aeruginosa. METHODS Antimicrobial susceptibility testing, complete genome sequencing and gene manipulation experiments were performed. Quantitative reverse transcription PCR for specific genes and porin levels were detected. Evolution trajectory was simulated in vitro by induction assay. RESULTS P. aeruginosa HS347 and HS355 were isolated from abdominal drainage of two neighbouring patients (S and Z) undergoing surgery of colon carcinoma in Shanghai, China, with the latter patient having received levofloxacin. They were closely related ST16 strains, and both carried blaKPC-2 plasmids highly similar to those of P. aeruginosa endemic clones from Zhejiang province, where patient Z had received enteroscopy before this admission. Acquisition of resistance was observed for both IMR and fluoroquinolones in HS355, likely prompted by treatment with levofloxacin. The T274I substitution in MexS (putative oxidoreductase), upregulated efflux pump operon mexEF-oprN and decreased production of porin OprD leading to cross-resistance to fluoroquinolones and IMR, which was also verified by in vitro mutant selection under levofloxacin selection. CONCLUSIONS The emergence of a rare blaKPC-2-plasmid-bearing ST16 clone implies the horizonal spread and inter-regional dissemination of a high-risk plasmid-clone combination, representing a public health challenge. Levofloxacin exposure can select for mexS inactivating mutation, which in turn leads to IMR resistance phenotype, implicating the role of an unrelated, widely used antimicrobial agent in insidiously triggering the development of cross resistance to a latest β-lactam/β-lactamase inhibitor combination.
Collapse
Affiliation(s)
- Leilei Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyan Lu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuefei Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianping Jiang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhewei Sun
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengyun Yin
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Pan S, Underhill SAM, Hamm CW, Stover MA, Butler DR, Shults CA, Manjarrez JR, Cabeen MT. Glycerol metabolism impacts biofilm phenotypes and virulence in Pseudomonas aeruginosa via the Entner-Doudoroff pathway. mSphere 2024; 9:e0078623. [PMID: 38501832 PMCID: PMC11036800 DOI: 10.1128/msphere.00786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium and a notorious opportunistic pathogen that forms biofilm structures in response to many environmental cues. Biofilm formation includes attachment to surfaces and the production of the exopolysaccharide Pel, which is present in both the PAO1 and PA14 laboratory strains of P. aeruginosa. Biofilms help protect bacterial cells from host defenses and antibiotics and abet infection. The carbon source used by the cells also influences biofilm, but these effects have not been deeply studied. We show here that glycerol, which can be liberated from host surfactants during infection, encourages surface attachment and magnifies colony morphology differences. We find that glycerol kinase is important but not essential for glycerol utilization and relatively unimportant for biofilm behaviors. Among downstream enzymes predicted to take part in glycerol utilization, Edd stood out as being important for glycerol utilization and for enhanced biofilm phenotypes in the presence of glycerol. Thus, gluconeogenesis and catabolism of anabolically produced glucose appear to impact not only the utilization of glycerol but also glycerol-stimulated biofilm phenotypes. Finally, waxworm moth larvae and nematode infection models reveal that interruption of the Entner-Doudoroff pathway, but not abrogation of glycerol phosphorylation, unexpectedly increases P. aeruginosa lethality in both acute and chronic infections, even while stimulating a stronger immune response by Caenorhabditis elegans.IMPORTANCEPseudomonas aeruginosa, the ubiquitous environmental bacterium and human pathogen, forms multicellular communities known as biofilms in response to various stimuli. We find that glycerol, a common carbon source that bacteria can use for energy and biosynthesis, encourages biofilm behaviors such as surface attachment and colony wrinkling by P. aeruginosa. Glycerol can be derived from surfactants that are present in the human lungs, a common infection site. Glycerol-stimulated biofilm phenotypes do not depend on phosphorylation of glycerol but are surprisingly impacted by a glucose breakdown pathway, suggesting that it is glycerol utilization, and not its mere presence or cellular import, that stimulates biofilm phenotypes. Moreover, the same mutations that block glycerol-stimulated biofilm phenotypes also impact P. aeruginosa virulence in both acute and chronic animal models. Notably, a glucose-breakdown mutant (Δedd) counteracts biofilm phenotypes but shows enhanced virulence and stimulates a stronger immune response in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Somalisa Pan
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Christopher W. Hamm
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mylissa A. Stover
- Department of Biochemistry and Microbiology, OSU Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Daxton R. Butler
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Crystal A. Shults
- Department of Biochemistry and Microbiology, OSU Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Jacob R. Manjarrez
- Department of Biochemistry and Microbiology, OSU Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Shen Y, Cao J, Hu T, Yang X, Zhao Y, Shen Y, Ye B, Yu Y, Wu D. Successful Treatment of an AML Patient Infected with Hypervirulent ST463 Pseudomonas Aeruginosa Harboring Rare Carbapenem-Resistant Genes blaAFM-1 and blaKPC-2 Following Allogeneic Hematopoietic Stem Cell Transplantation. Infect Drug Resist 2024; 17:1357-1365. [PMID: 38600953 PMCID: PMC11005936 DOI: 10.2147/idr.s455746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Background Carbapenem-resistant P. aeruginosa (CRPA) is a common hospital-acquired bacterium. It exhibits high resistance to many antibiotics, including ceftazidime/avibactam and cefteolozane/tazobactam. The presence of carbapenem-resistant genes and co-existence Klebsiella pneumoniae carbapenemase (KPC) and metallo-β-lactamases (MBLs) further inactivated all β-lactams. Understanding the resistance genes of CRPA can help in uncovering the resistance mechanism and guiding anti-infective treatment. Herein, we reported a case of perianal infection with hypervirulent ST463 Pseudomonas aeruginosa. Case Presentation The case is a 32-year-old acute myeloid leukemia (AML) patient with fever and septic shock during hematopoietic stem cell transplantation (HSCT), and the pathogen was finally identified as a highly virulent sequence type 463 (ST463) P. aeruginosa harboring carbapenem-resistant genes blaAFM-1 and blaKPC-2, which was detected in the bloodstream and originated from a perianal infection. The strain was resistant to ceftazidime/avibactam but successfully treated with polymyxin B, surgical debridement, and granulocyte engraftment after HSCT. The AML was cured during the 19-month follow-up. Conclusion This case emphasizes the importance of metagenomic next-generation sequencing (mNGS) and whole-genome sequencing (WGS) in identifying microbes with rare resistant genes, and managing CRPA, especially in immunocompromised patients. Polymyxin B may be the least resistant option.
Collapse
Affiliation(s)
- Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Junmin Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Tonglin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Xiawan Yang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Sun Z, Lin H, Hu L, Neetu N, Sankaran B, Wang J, Prasad BVV, Palzkill T. Klebsiella pneumoniae carbapenemase variant 44 acquires ceftazidime-avibactam resistance by altering the conformation of active-site loops. J Biol Chem 2024; 300:105493. [PMID: 38000656 PMCID: PMC10716778 DOI: 10.1016/j.jbc.2023.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all β-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.
Collapse
Affiliation(s)
- Zhizeng Sun
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
7
|
Giovagnorio F, De Vito A, Madeddu G, Parisi SG, Geremia N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics (Basel) 2023; 12:1621. [PMID: 37998823 PMCID: PMC10669487 DOI: 10.3390/antibiotics12111621] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium renowned for its resilience and adaptability across diverse environments, including clinical settings, where it emerges as a formidable pathogen. Notorious for causing nosocomial infections, P. aeruginosa presents a significant challenge due to its intrinsic and acquired resistance mechanisms. This comprehensive review aims to delve into the intricate resistance mechanisms employed by P. aeruginosa and to discern how these mechanisms can be inferred by analyzing sensitivity patterns displayed in antibiograms, emphasizing the complexities encountered in clinical management. Traditional monotherapies are increasingly overshadowed by the emergence of multidrug-resistant strains, necessitating a paradigm shift towards innovative combination therapies and the exploration of novel antibiotics. The review accentuates the critical role of accurate antibiogram interpretation in guiding judicious antibiotic use, optimizing therapeutic outcomes, and mitigating the propagation of antibiotic resistance. Misinterpretations, it cautions, can inadvertently foster resistance, jeopardizing patient health and amplifying global antibiotic resistance challenges. This paper advocates for enhanced clinician proficiency in interpreting antibiograms, facilitating informed and strategic antibiotic deployment, thereby improving patient prognosis and contributing to global antibiotic stewardship efforts.
Collapse
Affiliation(s)
- Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | | | - Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| |
Collapse
|
8
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
9
|
Forero-Hurtado D, Corredor-Rozo ZL, Ruiz-Castellanos JS, Márquez-Ortiz RA, Abril D, Vanegas N, Lafaurie GI, Chambrone L, Escobar-Pérez J. Worldwide Dissemination of blaKPC Gene by Novel Mobilization Platforms in Pseudomonas aeruginosa: A Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12040658. [PMID: 37107020 PMCID: PMC10134989 DOI: 10.3390/antibiotics12040658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
The dissemination of blaKPC-harboring Pseudomonas aeruginosa (KPC-Pa) is considered a serious public health problem. This study provides an overview of the epidemiology of these isolates to try to elucidate novel mobilization platforms that could contribute to their worldwide spread. A systematic review in PubMed and EMBASE was performed to find articles published up to June 2022. In addition, a search algorithm using NCBI databases was developed to identify sequences that contain possible mobilization platforms. After that, the sequences were filtered and pair-aligned to describe the blaKPC genetic environment. We found 691 KPC-Pa isolates belonging to 41 different sequence types and recovered from 14 countries. Although the blaKPC gene is still mobilized by the transposon Tn4401, the non-Tn4401 elements (NTEKPC) were the most frequent. Our analysis allowed us to identify 25 different NTEKPC, mainly belonging to the NTEKPC-I, and a new type (proposed as IVa) was also observed. This is the first systematic review that consolidates information about the behavior of the blaKPC acquisition in P. aeruginosa and the genetic platforms implied in its successful worldwide spread. Our results show high NTEKPC prevalence in P. aeruginosa and an accelerated dynamic of unrelated clones. All information collected in this review was used to build an interactive online map.
Collapse
|
10
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
11
|
Zhang P, Wang J, Shi W, Wang N, Jiang Y, Chen H, Yang Q, Qu T. In vivo acquisition of bla KPC-2 with low biological cost in bla AFM-1-harboring ST463 hypervirulent Pseudomonas aeruginosa from a patient with hematologic malignancy. J Glob Antimicrob Resist 2022; 31:189-195. [PMID: 36182079 DOI: 10.1016/j.jgar.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae carbapenemase (KPC)-producing sequence type (ST) 463 Pseudomonas aeruginosa are increasingly prevalent in China. This study aims to investigate how blaKPC-2 is acquired in ST463 P. aeruginosa during antimicrobial therapy. METHODS Two extensively drug-resistant P. aeruginosa strains, B1122 and U1121, were respectively isolated from blood and urine of a patient during carbapenem therapy. Whole-genome sequences were obtained, and minimum inhibitory concentrations (MICs) were determined. Plasmid transferability and stability were examined. Bacterial growth kinetics, biofilm formation, and virulence level was assessed. RESULTS U1121 and B1122 were only susceptible to amikacin and intermediately susceptible to colistin. They were isogenic ST463 P. aeruginosa strains and shared the same chromosome-encoded resistance genes, including blaAFM-1. This is the first report of chromosomal integration of blaAFM-1 in P. aeruginosa mediated by ISCR29. pU1121 and pB1122, which shared almost identical backbone, were the sole plasmids in U1121 and B1122, respectively, differing by an insertion region containing two copies of blaKPC-2 genes observed on pU1121. Sequence alignment revealed that pU1121 might evolve in vivo from pB1122 via IS26-mediated continuous genetic rearrangement in response to selective challenge from carbapenem. pU1121 was not self-transmissible and could be stably maintained in the host in the absence of antibiotic. Both U1121 and B1122 were hypervirulent, and no differences on virulence were recorded between them. However, U1121 exhibited significant impaired growth in comparison with B1122. CONCLUSION ST463 P. aeruginosa can capture blaKPC-2 through horizontal transfer of insertion sequence under antibiotic selection pressure, which does decrease the fitness but does not impair the virulence of the ancestor.
Collapse
Affiliation(s)
- Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences
| | - Jie Wang
- Respiratory Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences
| | - Nanfei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences; Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences.
| |
Collapse
|
12
|
Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC's Emerging Infections Program, United States, 2016-2018. Antimicrob Agents Chemother 2022; 66:e0049622. [PMID: 36066241 PMCID: PMC9487505 DOI: 10.1128/aac.00496-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase β-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase β-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.
Collapse
|
13
|
Hu H, Zhang Y, Zhang P, Wang J, Yuan Q, Shi W, Zhang S, Feng H, Chen Y, Yu M, Chen H, Jiang Y, Yang Q, Qu T. Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing P. aeruginosa Sequence Type 463, Associated With High Mortality Rates in China: A Retrospective Cohort Study. Front Cell Infect Microbiol 2021; 11:756782. [PMID: 34790589 PMCID: PMC8592259 DOI: 10.3389/fcimb.2021.756782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Objectives Recently, KPC-producing P. aeruginosa has rapidly emerged and expanded in East China. Here we described the clinical impact and characteristics of bloodstream infections (BSIs) from the dominant KPC-producing CRPA belonging to Sequence Type (ST) 463. Methods Retrospective cohort study was performed with CRPA BSI cases from 2019 to 2020 in a hospital in East China. Clinical characteristics, risk factors, and all-course mortality were evaluated. All CRPA isolates had whole-genome sequencing, antimicrobial susceptibility testing, and serum resistance assay. Representative isolates were tested for virulence in a Galleria mellonella infection model. Results Among the 50 CRPA BSI cases, ST463 predominated (48.0%). In multivariate analysis, we found three independent risk factors for fatal outcome: KPC carriage (OR 4.8; CI95% 1.0-23.7; P = 0.05), Pitt bacteremia score (OR 1.3; CI95% 1.0-1.6; P = 0.02), and underlying hematological disease (OR 8.5; CI95% 1.6-46.4; P = 0.01). The baseline clinical variables were not statistically different across STs, however the 28-day mortality was significantly higher in ST463 cases than that in non-ST463 cases (66.7% vs 33.3%, P = 0.03). ExoU and exoS virulence genes coexisted in all ST463 isolates, and the carbapenem resistant gene bla KPC were produced in almost all ST463 isolates, significantly higher than in the non-ST463 group(95.8% vs 7.7%, P<0.001). ST463 CRPA isolates also showed higher resistance rates to antipseudomonal cephalosporins, monobactam, and fluoroquinolones. And ST463 CRPA was confirmed hypervirulence in the larvae model. The genome of one ST463 CRPA strain showed that the bla KPC-2 gene was the sole resistance gene located on a 41,104bp plasmid pZYPA01, carried on a 7-kb composite transposon-like element flanked by two IS26 elements (IS26-Tn3-tnpA-ISKpn27-bla KPC-2-ISKpn6-IS26). Plasmid from various species presented core bla KPC-2 was franked by mobile genetic element ISKpn27 and ISKpn6. Conclusions In the ST463 CRPA BSI cohort, the mortality rates were higher than those in the non-ST463 CRPA BSI. The ST463 CRPA clone coharboring the bla KPC and exoU/exoS genes emerged and spread in East China, which might develop to a new threat in the clinic. Our results suggest that the surveillance of the new high-risk clone, ST463 CRPA, should be strengthened in China, even worldwide in the future.
Collapse
Affiliation(s)
- Hangbin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jie Wang
- Respiratory Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Sheng Zhang
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiting Feng
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Meihong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Hongchao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Emergence of Ceftazidime- and Avibactam-Resistant Klebsiella pneumoniae Carbapenemase-Producing Pseudomonas aeruginosa in China. mSystems 2021; 6:e0078721. [PMID: 34726488 PMCID: PMC8562488 DOI: 10.1128/msystems.00787-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing Pseudomonas aeruginosa (KPC-PA) has been reported sporadically. However, epidemiological and antimicrobial susceptibility data specific for KPC-PA are lacking. We collected 374 carbapenem-resistant P. aeruginosa (CRPA) isolates from seven hospitals in China from June 2016 to February 2019 and identified the blaKPC-2 gene in 40.4% (n = 151/374) of the isolates. Approximately one-half of all KPC-PA isolates (n = 76/151; 50.3%) were resistant to ceftazidime-avibactam (CAZ-AVI). Combining Kraken2 taxonomy identification and Nanopore sequencing, we identified eight plasmid types, five of which carried blaKPC-2, and 13 combination patterns of these plasmid types. In addition, we identified IS26-ΔTn6296 and Tn1403-like–ΔTn6296 as the two mobile genetic elements that mediated blaKPC-2 transmission. blaKPC-2 plasmid curing in 28 strains restored CAZ-AVI susceptibility, suggesting that blaKPC-2 was the mediator of CAZ-AVI resistance. Furthermore, the blaKPC-2 copy number was found to correlate with KPC expression and, therefore, CAZ-AVI resistance. Taken together, our results suggest that KPC-PA is becoming a clinical threat and that using CAZ-AVI to treat this specific pathogen should be done with caution. IMPORTANCE Previous research has reported several cases of KPC-PA strains and three KPC-encoding P. aeruginosa plasmid types in China. However, the prevalence and clinical significance of KPC-PA are not available. In addition, the susceptibility of the strains to CAZ-AVI remains unknown. Samples in this study were collected from seven tertiary hospitals prior to CAZ-AVI clinical approval in China. Therefore, our results represent a retrospective study establishing the baseline efficacy of the novel β-lactam/β-lactamase combination agent for treating KPC-PA infections. The observed correlation between the blaKPC copy number and CAZ-AVI resistance suggests that close monitoring of the susceptibility of the strain during treatment is required. It would also be beneficial to screen for the blaKPC gene in CRPA strains for antimicrobial surveillance purposes.
Collapse
|
15
|
Characterization of blaKPC-2-Carrying Plasmid pR31-KPC from a Pseudomonas aeruginosa Strain Isolated in China. Antibiotics (Basel) 2021; 10:antibiotics10101234. [PMID: 34680814 PMCID: PMC8532800 DOI: 10.3390/antibiotics10101234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to characterize a 29-kb blaKPC-2-carrying plasmid, pR31-KPC, from a multidrug resistant strain of Pseudomonas aeruginosa isolated from the sputum of an elderly patient with multiple chronic conditions in China. The backbone of pR31-KPC is closely related to four other blaKPC-2-carrying plasmids, YLH6_p3, p1011-KPC2, p14057A, and pP23-KPC, none of which have been assigned to any of the known incompatibility groups. Two accessory modules, the IS26-blaKPC-2-IS26 unit and IS26-ΔTn6376-IS26 region, separated by a 5.9-kb backbone region, were identified in pR31-KPC, which was also shown to carry the unique resistance marker blaKPC-2. A comparative study of the above five plasmids showed that p1011-KPC2 may be the most complete plasmid of this group to be reported, while pR31-KPC is the smallest plasmid having lost most of its conjugative region. Regions between the iterons and orf207 in the backbone may be hot spots for the acquisition of exogenous resistance entities. The accessory regions of these plasmids have all undergone several biological events when compared with Tn6296. The further transfer of blaKPC-2 in these plasmids may be initiated by either the Tn3 family or IS26-associated transposition or homologous recombination. The data presented here will contribute to a deeper understanding of blaKPC-2 carrying plasmids in Pseudomonas.
Collapse
|
16
|
Yan R, Lu Y, Zhu Y, Lan P, Jiang S, Lu J, Shen P, Yu Y, Zhou J, Jiang Y. A Sequence Type 23 Hypervirulent Klebsiella pneumoniae Strain Presenting Carbapenem Resistance by Acquiring an IncP1 bla KPC-2 Plasmid. Front Cell Infect Microbiol 2021; 11:641830. [PMID: 34141626 PMCID: PMC8204043 DOI: 10.3389/fcimb.2021.641830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae strains are typically associated with severe infections and susceptible to most antimicrobial agents. In 2017, a carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strain was isolated from the sputum of a chronic obstructive pulmonary disease (COPD) patient in Zhejiang, China. The goal of the present study was to characterize the molecular features of the CR-hvKP isolate ZJ27003 and its bla KPC-2-harboring plasmid p27003_KPC. Antimicrobial susceptibility was evaluated using the broth microdilution and agar dilution methods. String tests, serum-killing and mouse survival assays were performed to assess virulence, and plasmid conjugation was performed by filter mating. The complete genome sequence of ZJ27003 was acquired using a hybrid assembly of Illumina and Nanopore platform data. The sequence type (ST) of this CR-hvKP isolate was identified as ST23, which exhibits hypervirulence with high serum resistance and murine infection model. The strain is also resistant to carbapenems (imipenem, meropenem and ertapenem), aztreonam and cephalosporins. Additionally, the CR-hvKP isolate carries a 36,708-bp bla KPC-2-harboring plasmid, named p27003_KPC, belonging to the P1 incompatibility (Inc) group. The backbone of p27003_KPC is similar to that of a bla GES-5-harboring Pseudomonas aeruginosa plasmid, in which the bla GES-5 and its surrounding regions were replaced by a bla KPC-2-containing translocatable unit derived from Enterobacteriaceae. The results of a conjugation assay revealed that p27003_KPC can be transferred from K. pneumoniae to P. aeruginosa PAO1 and make the recipient resistant against carbapenem. The identification of a carbapenem-resistant hypervirulent K. pneumoniae isolate carrying and disseminating the bla KPC-2 gene highlights a severe threat to public health.
Collapse
Affiliation(s)
- Rushuang Yan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Lu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwei Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Retrospective Data Insight into the Global Distribution of Carbapenemase-Producing Pseudomonas aeruginosa. ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10050548. [PMID: 34065054 PMCID: PMC8151531 DOI: 10.3390/antibiotics10050548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to determine the global distribution and molecular characteristics of carbapenemase-producing Pseudomonas aeruginosa isolates. A total of 328 (11.1%, 328/2953) carbapenemase-producing P. aeruginosa isolates from humans were obtained from public databases as of October 2019. Of which, the blaVIM and blaIMP genes were the most prevalent carbapenemases in the P. aeruginosa isolates. These carbapenemase-producing P. aeruginosa isolates possessed 34 distinct sequence types (STs) and six predominated: ST357, ST823, ST308, ST233, ST175 and ST111. The ST357 and ST823 isolates were primarily found detected in Asia and all ST175 isolates were found in Europe. The ST308, ST233 and ST111 isolates were spread worldwide. Further, all ST823 isolates and the majority of ST111, ST233 and ST175 isolates carried blaVIM but ST357 isolates primarily carried blaIMP. ST308 isolates provide a key reservoir for the spread of blaVIM, blaIMP and blaNDM. WGS analysis revealed that ST111 carried a great diversity of ARG types (n = 23), followed by ST357 (n = 21), ST308 (n = 19), ST233 (n = 18), ST175 (n = 14) and ST823 (n = 10). The ST175 isolates carried a more diversity and frequent of aminoglycoside ARGs, and ST233 isolates harbored more tetracycline ARGs. Our findings revealed that different carbapenem resistance genes were distributed primarily in variant STs of P. aeruginosa isolates, these isolates also possessed an extensive geographical distribution that highlights the need for surveillance studies that detect carbapenemase-producing P. aeruginosa isolates in humans.
Collapse
|
18
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Tooke CL, Hinchliffe P, Bonomo RA, Schofield CJ, Mulholland AJ, Spencer J. Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance. J Biol Chem 2021; 296:100126. [PMID: 33257320 PMCID: PMC7949053 DOI: 10.1074/jbc.ra120.016461] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Class A serine β-lactamases (SBLs) are key antibiotic resistance determinants in Gram-negative bacteria. SBLs neutralize β-lactams via a hydrolytically labile covalent acyl-enzyme intermediate. Klebsiella pneumoniae carbapenemase (KPC) is a widespread SBL that hydrolyzes carbapenems, the most potent β-lactams; known KPC variants differ in turnover of expanded-spectrum oxyimino-cephalosporins (ESOCs), for example, cefotaxime and ceftazidime. Here, we compare ESOC hydrolysis by the parent enzyme KPC-2 and its clinically observed double variant (P104R/V240G) KPC-4. Kinetic analyses show that KPC-2 hydrolyzes cefotaxime more efficiently than the bulkier ceftazidime, with improved ESOC turnover by KPC-4 resulting from enhanced turnover (kcat), rather than altered KM values. High-resolution crystal structures of ESOC acyl-enzyme complexes with deacylation-deficient (E166Q) KPC-2 and KPC-4 mutants show that ceftazidime acylation causes rearrangement of three loops; the Ω, 240, and 270 loops, which border the active site. However, these rearrangements are less pronounced in the KPC-4 than the KPC-2 ceftazidime acyl-enzyme and are not observed in the KPC-2:cefotaxime acyl-enzyme. Molecular dynamics simulations of KPC:ceftazidime acyl-enyzmes reveal that the deacylation general base E166, located on the Ω loop, adopts two distinct conformations in KPC-2, either pointing "in" or "out" of the active site; with only the "in" form compatible with deacylation. The "out" conformation was not sampled in the KPC-4 acyl-enzyme, indicating that efficient ESOC breakdown is dependent upon the ordering and conformation of the KPC Ω loop. The results explain how point mutations expand the activity spectrum of the clinically important KPC SBLs to include ESOCs through their effects on the conformational dynamics of the acyl-enzyme intermediate.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, Ohio, USA
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
20
|
RAMOS GLDPA, NASCIMENTO JDS. Pseudomonas SP. in uninspected raw goat’s milk in Rio de Janeiro, Brazil. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.21719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Walkty A, Alexander DC, Karlowsky JA, Nichol K, Embil J. Report of a KPC-producing Pseudomonas aeruginosa isolate in Canada. J Antimicrob Chemother 2020; 74:1748-1749. [PMID: 30783655 DOI: 10.1093/jac/dkz064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Shared Health, Winnipeg, Manitoba, Canada.,Section of Infectious Diseases, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David C Alexander
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Cadham Provincial Laboratory, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Shared Health, Winnipeg, Manitoba, Canada
| | - Kim Nichol
- Shared Health, Winnipeg, Manitoba, Canada
| | - John Embil
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Section of Infectious Diseases, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Comparative analysis of multidrug resistance plasmids and genetic background of CTX-M-producing Escherichia coli recovered from captive wild animals. Appl Microbiol Biotechnol 2020; 104:6707-6717. [PMID: 32488312 DOI: 10.1007/s00253-020-10670-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022]
Abstract
Multiple interlinked factors are associated with the global resistome, whereas multidrug-resistant (MDR) pathogens have been related to increased mortality rates in humans and animals. CTX-M-type is the most prevalent extended-spectrum β-lactamase (ESBL) among Enterobacteriaceae, which raises concern worldwide. Zoological gardens have a high density of animals that live very close to each other and to humans. Therefore, this study aimed to investigate through the whole-genome sequencing (WGS) MDR Escherichia coli lineages obtained from captivity wild animals in a zoo. Genetic background showed a wide resistome for antimicrobials (e.g., blaCTX-M-65, blaCTX-M-8, blaCMY-2, qnrB19), metals (e.g., pcoABCDERS, silABCEP, merACDEPRT), and antibacterial biocides (e.g., sugE, mdfA) among MDR CTX-M-producing E. coli belonging to CC155 and CC156. Mobilome analysis revealed several plasmids, and eight of them were completely characterized, which showed different backbone-encoding genes. Comparative analysis of plasmids blaCTX-M-65/IncHI2-ST3, blaCTX-M-8/IncI1-ST113, and IncQ1 showed a high identity among plasmids obtained from humans and animals worldwide distributed. Besides, several virulence genes, CRISPR, and prophage-related sequences were also detected. The occurrence of MDR E. coli belonging to CCs closely related to humans and food-producing animals and the high similarity among the plasmids from MDR E. coli carrying clinically significant antimicrobial resistance genes may indicate intercontinental dissemination of these lineages and plasmids. Therefore, these findings contribute to the monitoring of antimicrobial resistance and the human-animal-environment interface worldwide. Key Points • Wide resistome for antimicrobials, metals, and antibacterial biocides. • Multidrug resistance plasmids (blaCTX-M-65/IncHI2-ST3, blaCTX-M-8/IncI1-ST113). • Co-occurrence of plasmid-mediated resistance and virulence genes.
Collapse
|
23
|
PÉrez-VÁzquez M, Sola-Campoy PJ, Zurita ÁM, Ávila A, GÓmez-Bertomeu F, SolÍs S, LÓpez-Urrutia L, GÓnzalez-BarberÁ EM, Cercenado E, Bautista V, Lara N, Aracil B, Oliver A, Campos J, Oteo-Iglesias J. Carbapenemase-producing Pseudomonas aeruginosa in Spain: interregional dissemination of the high-risk clones ST175 and ST244 carrying bla VIM-2, bla VIM-1, bla IMP-8, bla VIM-20 and bla KPC-2. Int J Antimicrob Agents 2020; 56:106026. [PMID: 32450200 DOI: 10.1016/j.ijantimicag.2020.106026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Carbapenemase-producing (CP) Pseudomonas aeruginosa is rare compared with mutation-driven carbapenem-resistance, but this situation may be changing. A collection of CP P. aeruginosa isolates was characterized in this study. In 2016, 232 unduplicated carbapenem-resistant P. aeruginosa isolates, of which 71 (30.6%) carried carbapenemase genes, were submitted to the Spanish antibiotic reference laboratory and were further analysed by whole-genome sequencing (WGS). Of the 71 CP P. aeruginosa, 39 (54.9%) carried blaVIM-2, 14 (19.7%) blaVIM-1, 8 (11.3%) blaIMP-8, 6 (8.5%) blaVIM-20, 2 (2.8%) blaVIM-2 plus blaKPC-2, one (1.4%) blaIMP-13 and one (1.4%) blaVIM-1 plus blaIMP-18. Four sequence types (ST175, ST244, ST815 and ST155) encompassed 83.1% of the 71 CP P. aeruginosa; ST175 was detected in hospitals from seven provinces. Using core genome multilocus sequence typing (cgMLST), four clusters were detected: Cluster 1 included nine ST815/VIM-2 isolates; Cluster 2 included five ST175/VIM-2 isolates; Cluster 3 included seven ST244 isolates (five VIM-2 and two VIM-2 plus KPC-2); and Cluster 4 included 11 ST175 isolates (seven VIM-2 and four IMP-8). The average number of acquired resistance genes was significantly higher in the blaVIM-1-carying isolates (7.1 ± 0.94) than in the blaVIM-2-carrying isolates (4.5 ± 0.20). CP P. aeruginosa isolates are spreading in Spain, mainly due to the dissemination of high-risk clones such as ST175 and ST244 producing VIM and IMP carbapenemases. Emergence of CP P. aeruginosa is a cause of clinical and epidemiological concern.
Collapse
Affiliation(s)
- María PÉrez-VÁzquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro J Sola-Campoy
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Ángela María Zurita
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Alicia Ávila
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | | | - Sonia SolÍs
- Microbiology Department, Hospital Universitario de Guadalajara, Spain
| | - Luis LÓpez-Urrutia
- Microbiology Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | | | - Emilia Cercenado
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Verónica Bautista
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - José Campos
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
24
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
25
|
Groß R, Bauer R, Krüger F, Rücker-Braun E, Olari LR, Ständker L, Preising N, Rodríguez AA, Conzelmann C, Gerbl F, Sauter D, Kirchhoff F, Hagemann B, Gačanin J, Weil T, Ruiz-Blanco YB, Sanchez-Garcia E, Forssmann WG, Mankertz A, Santibanez S, Stenger S, Walther P, Wiese S, Spellerberg B, Münch J. A Placenta Derived C-Terminal Fragment of β-Hemoglobin With Combined Antibacterial and Antiviral Activity. Front Microbiol 2020; 11:508. [PMID: 32328038 PMCID: PMC7153485 DOI: 10.3389/fmicb.2020.00508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
The placenta acts as physical and immunological barrier against the transmission of viruses and bacteria from mother to fetus. However, the specific mechanisms by which the placenta protects the developing fetus from viral and bacterial pathogens are poorly understood. To identify placental peptides and small proteins protecting from viral and bacterial infections, we generated a peptide library from 10 kg placenta by chromatographic means. Screening the resulting 250 fractions against Herpes-Simplex-Virus 2 (HSV-2), which is rarely transmitted through the placenta, in a cell-based system identified two adjacent fractions with significant antiviral activity. Further rounds of chromatographic purification and anti-HSV-2 testing allowed to purify the bioactive peptide. Mass spectrometry revealed the presence of a 36-mer derived from the C-terminal region of the hemoglobin β subunit. The purified and corresponding chemically synthesized peptide, termed HBB(112–147), inhibited HSV-2 infection in a dose-dependent manner, with a mean IC50 in the median μg/ml range. Full-length hemoglobin tetramer had no antiviral activity. HBB(112–147) did not impair infectivity by direct targeting of the virions but prevented HSV-2 infection at the cell entry level. The peptide was inactive against Human Immunodeficiency Virus Type 1, Rubella and Zika virus infection, suggesting a specific anti-HSV-2 mechanism. Notably, HBB(112–147) has previously been identified as broad-spectrum antibacterial agent. It is abundant in placenta, reaching concentrations between 280 and 740 μg/ml, that are well sufficient to inhibit HSV-2 and prototype Gram-positive and -negative bacteria. We here additionally show, that HBB(112–147) also acts potently against Pseudomonas aeruginosa strains (including a multi-drug resistant strain) in a dose dependent manner, while full-length hemoglobin is inactive. Interestingly, the antibacterial activity of HBB(112–147) was increased under acidic conditions, a hallmark of infection and inflammatory conditions. Indeed, we found that HBB(112–147) is released from the hemoglobin precursor by Cathepsin D and Napsin A, acidic proteases highly expressed in placental and other tissues. We propose that upon viral or bacterial infection, the abundant hemoglobin precursor is proteolytically processed to release HBB(112–147), a broadly active antimicrobial innate immune defense peptide.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elke Rücker-Braun
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
| | - Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Armando A Rodríguez
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany.,Core Unit of Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Benjamin Hagemann
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jasmina Gačanin
- Max Planck Institute for Polymer Research, Mainz, Germany.,Institute of Inorganic Chemistry I, University of Ulm, Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Mainz, Germany.,Institute of Inorganic Chemistry I, University of Ulm, Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institute, Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institute, Berlin, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
26
|
Asempa TE, Motos A, Abdelraouf K, Bissantz C, Zampaloni C, Nicolau DP. Meropenem-nacubactam activity against AmpC-overproducing and KPC-expressing Pseudomonas aeruginosa in a neutropenic murine lung infection model. Int J Antimicrob Agents 2019; 55:105838. [PMID: 31705960 DOI: 10.1016/j.ijantimicag.2019.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 10/25/2022]
Abstract
Nacubactam is a novel non-β-lactam diazabicyclooctane β-lactamase inhibitor under development for the treatment of serious Gram-negative infections. This study assessed the efficacy of human-simulated epithelial lining fluid (ELF) exposure of nacubactam in combination with meropenem against AmpC-overproducing (n=4) and Klebsiella pneumoniae carbapenemase (KPC)-expressing (n=3) Pseudomonas aeruginosa isolates in the neutropenic murine lung infection model. Meropenem, nacubactam and meropenem-nacubactam (1:1 concentration ratio) minimum inhibitory concentrations (MICs) were determined in triplicate using broth microdilution. Regimens that provided ELF profiles mimicking those observed in humans given nacubactam 2 g q8h (1.5-h infusion) alone and in combination with a subtherapeutic ELF exposure of meropenem were administered 2 h after inoculation. Efficacy was assessed as the change in log10 colony-forming units (CFU)/lung at 24 h compared with 24-h meropenem monotherapy. Meropenem, nacubactam and meropenem-nacubactam MICs were 8->64, 128->256 and 2-16 mg/L, respectively. Meropenem and nacubactam monotherapy groups demonstrated bacterial growth over 24 h for each isolate. Against AmpC-overproducing and KPC-expressing P. aeruginosa isolates, meropenem-nacubactam resulted in -2.73±0.93 and -4.35±1.90 log10CFU/lung reduction, respectively, relative to meropenem monotherapy. Meropenem-nacubactam showed promising in-vivo activity against meropenem-resistant P. aeruginosa, indicative of a potential role for the treatment of infections caused by these challenging pathogens.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Ana Motos
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Caterina Bissantz
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Claudia Zampaloni
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA; Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA.
| |
Collapse
|
27
|
Evaluation of the Immunochromatographic NG-Test Carba 5 for Rapid Identification of Carbapenemase in Nonfermenters. Antimicrob Agents Chemother 2019; 63:AAC.00968-19. [PMID: 31285233 DOI: 10.1128/aac.00968-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
The immunochromatographic assay NG-Test Carba 5 (NG-Biotech) was evaluated with a collection of 107 carbapenemase-producing nonfermenters (CP-NF) (55 Pseudomonas spp., 51 Acinetobacter spp., and 1 Achromobacter xylosoxidans isolate) and 61 carbapenemase-negative isolates. All KPC, VIM, and NDM carbapenemase producers tested were accurately detected. Of the 16 IMP variants tested, 6 (37.5%) variants were not detected. Considering the epidemiology of CP-NFs in France, the NG-Test Carba 5 would detect 89.4% of CP Pseudomonas spp. but only 12.9% of CP Acinetobacter spp.
Collapse
|
28
|
Osawa K, Shigemura K, Kitagawa K, Fukuda T, Takasaka A, Wakabayashi S, Sato K, Yamamichi F, Shirakawa T, Fujisawa M. Molecular characteristics of carbapenem-resistant Pseudomonas aeruginosa isolated from urine in Hyogo, Japan. Int J Urol 2018; 26:127-133. [PMID: 30308701 DOI: 10.1111/iju.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the molecular characteristics and epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa from urine of urinary tract infection patients in Hyogo Prefecture, Japan. METHODS Carbapenem-resistant P. aeruginosa isolated from the urine of 21 urinary tract infection patients in three general hospitals in Hyogo Prefecture (Japan) were collected between 2007 and 2014. Their antibiotic susceptibilities, metallo-β-lactamase screening test, metallo-β-lactamase gene sequencing, multilocus sequence typing and repetitive-sequence-based polymerase chain reaction were determined for epidemiological analyses to investigate the genetic characteristics. RESULTS Out of 21 isolates, 13 (61.9%) were positive for metallo-β-lactamase. There were 11 (52.4%) isolates with IMP-1 in them, one (4.5%) isolate with IMP-7 and one (4.5%) isolate with VIM-1. Metallo-β-lactamase-positive isolates were mainly identified as ST235, and metallo-β-lactamase-negative isolates were STs 357, 277, 234, 439 and 639. Repetitive-sequence-based polymerase chain reaction showed metallo-β-lactamase-positive isolates were grouped in eight clusters, and ST235 isolates with IMP-1 from three hospitals belonging to the identical group I, the other ST235 isolates with IMP-7 and VIM-1 were from two hospitals belonging to group II. CONCLUSIONS Metallo-β-lactamase-positive P. aeruginosa of ST235 isolates with IPM-1 were mainly identified from the urine of urinary tract infection patients in Hyogo, Japan. A ST235 isolate with VIM-1 was found for the first time. Further investigation is necessary to follow the spread of metallo-β-lactamase-positive isolates.
Collapse
Affiliation(s)
- Kayo Osawa
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Katsumi Shigemura
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koichi Kitagawa
- Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Teruo Fukuda
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayaka Takasaka
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Sakie Wakabayashi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kanako Sato
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | | | - Toshiro Shirakawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
29
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|