1
|
Parker EM, Mollenkopf DF, Ballash GA, Li C, Wittum TE. Transcontinental Dissemination of Enterobacterales Harboring blaNDM-1 in Retail Frozen Shrimp. Foodborne Pathog Dis 2025; 22:332-338. [PMID: 38563789 DOI: 10.1089/fpd.2023.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored blaNDM-1 genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The blaNDM-1 genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the blaNDM-1 AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- Elizabeth M Parker
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Dixie F Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Gregory A Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cong Li
- Center for Veterinary Medicine, Office of Applied Science, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Thomas E Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Bourdonnais E, Briet A, Brauge T, Debuiche S, Helsens N, Granier SA, Midelet G. Antimicrobial susceptibility profile and molecular characterization of Vibrio parahaemolyticus strains isolated from imported shrimps. Microbiol Spectr 2024; 12:e0017524. [PMID: 38832768 PMCID: PMC11218469 DOI: 10.1128/spectrum.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
Vibrio parahaemolyticus is a threat to human health and one of the leading bacterial causes of seafood-borne infection worldwide. This pathogen is autochtonous in the marine environment and is able to acquire antimicrobial resistance (AMR) mechanisms, which is a global concern. However, the emergence of AMR V. parahaemolyticus strains in seafood is still understudied, as interpretation criteria for this species for antimicrobial susceptibility tests are limited in the literature. In this study, we investigated the susceptibility profiles to clinically important antibiotics and the associated genetic determinants of V. parahaemolyticus isolates cultured from imported shrimps. Based on the analysis of the resistance phenotypes of 304 V. parahaemolyticus isolates, we have defined experimental epidemiological cutoff values (COWT) for 14/15 antibiotics tested. We observed that 19.1% of the bacterial isolates had acquired resistance to at least one antibiotic class. The highest number of resistance was associated with tetracycline (14.5% of the strains) and trimethoprim-sulfamethoxazole (3.6%). Moreover, seven strains were multidrug-resistant (MDR, resistant to at least three antibiotic classes). The most frequently identified genes in these strains were aph(3″)-Ib/aph(6)-Id (aminoglycoside resistance), sul2 (sulfonamide), tet(59) (tetracycline), and floR (chloramphenicol). The SXT/R391 family ICE and class 1 integron-integrase genes were detected by PCR in three and one MDR V. parahaemolyticus strains, respectively. Consequently, V. parahaemolyticus in seafood can act as a reservoir of AMR, constituting a health risk for the consumer.IMPORTANCEOur study on "Antimicrobial Resistance Profiles and Genetic Determinants of Vibrio parahaemolyticus Isolates from Imported Shrimps" addresses a critical gap in understanding the emergence of antimicrobial resistance (AMR) in this seafood-associated pathogen. Vibrio parahaemolyticus is a major cause of global seafood-borne infections, and our research reveals that 19.1% of isolates from imported shrimps display resistance to at least one antibiotic class, with multidrug resistance observed in seven strains. Importantly, we establish experimental epidemiological cutoff values for antibiotic susceptibility, providing valuable criteria specific to V. parahaemolyticus. Our findings underscore the potential risk to consumers, emphasizing the need for vigilant monitoring and intervention strategies. This study significantly contributes to the comprehension of AMR dynamics in V. parahaemolyticus, offering crucial insights for global public health. The dissemination of our research through Microbiology Spectrum ensures broad accessibility and impact within the scientific community and beyond.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Arnaud Briet
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Thomas Brauge
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Sabine Debuiche
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Nicolas Helsens
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Sophie A Granier
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Maisons-Alfort, France
| | - Graziella Midelet
- French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Boulogne-sur-Mer, France
| |
Collapse
|
3
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
4
|
Anyaegbunam ZKG, Mba IE, Doowuese Y, Anyaegbunam NJ, Mba T, Aina FA, Chigor VN, Nweze EI, Eze EA. Antimicrobial resistance containment in Africa: Moving beyond surveillance. BIOSAFETY AND HEALTH 2024; 6:50-58. [PMID: 40078303 PMCID: PMC11894975 DOI: 10.1016/j.bsheal.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 09/10/2024] Open
Abstract
Worldwide, infections caused by drug-resistant pathogens constitute a significant challenge threatening therapeutic efforts. According to the World Health Organization (WHO), antimicrobial resistance (AMR) ranks among the top 10 global public health threats. Organisms with a high rate of multiple host adaptivity, significant genetic diversity (multiple lineages), high virulence factors, and genetic exchange have been isolated from various sources (humans, animals, and the environment) even without exposure to prior antibiotics. Till now, the source of AMR and how resistant clones are selected in the environment remain largely elusive, and potential anthropogenic transmission has been reported in different studies. Various drug-resistant pathogens, lineages, resistant clones, outbreak clusters, plasmid replicates, and genes that play a critical role in resistance dissemination have been identified. Maintenance of certain multidrug-resistant (MDR) determinants has also been shown to enhance or support the propagation of MDR. So far, significant advances have been made in understanding the burden of AMR. However, overcoming AMR requires a holistic approach, as there is no single approach with sufficient precision to curb the threat. While strengthening AMR surveillance efforts is essential, as we have shown, there is also a need to intensify efforts to strengthen therapeutic interventions, especially in priority regions such as Africa. Herein, we discussed the burden of AMR and the dissemination of AMR in humans, animals, and the environment (non-medical drivers). We further delved into the big questions on Africa and discussed how therapeutic interventions involving vaccines and other viable biomaterials could be pivotal in reducing the burden of AMR to the barest minimum.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka Campus, Enugu 410001, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan 200005, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo 970001, Nigeria
| | - Ngozi J. Anyaegbunam
- Measurement and Evaluation Unit, Science Education Department, University of Nigeria Nsukka, Enugu 410001, Nigeria
| | - Toluwalase Mba
- Sumy State University, Medical Institute, Sumy Oblast 40000, Ukraine
- Lead City University Hospital, Lead City, Ibadan 200255, Nigeria
| | - Fetuata Aminat Aina
- Department of Microbiology, College of Natural Sciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Vincent Nnamdigadi Chigor
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka Campus, Enugu 410001, Nigeria
| | - Emeka Innocent Nweze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka Campus, Enugu 410001, Nigeria
| | - Emmanuel A. Eze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka Campus, Enugu 410001, Nigeria
| |
Collapse
|
5
|
Yamaguchi T, Yokota M, Jinnai M, Minh DTN, Hoang ON, Le Thi H, Thanh PN, Hoang Hoai P, Nguyen Do P, Van CD, Motooka D, Nakamura S, Kawahara R, Kumeda Y, Hase A, Nakayama T. Detection of chromosome-mediated bla NDM-1-carrying Aeromonas spp. in the intestinal contents of fresh water river fish in Ho Chi Minh City, Vietnam. MARINE POLLUTION BULLETIN 2024; 198:115812. [PMID: 38043208 DOI: 10.1016/j.marpolbul.2023.115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
The spread of antibiotic-resistant bacteria is a global problem that should be addressed through the perspective of the "one health" concept. The purpose of this study was to determine the contamination rate of antibiotic-resistant Aeromonas spp. in fresh water river fish purchased from a fish market in Vietnam. We then defined the pattern of antibiotic resistance to assess antibiotic-resistant contamination. Antibiotic-resistant Aeromonas spp. were detected in the intestinal contents of 32 of 80 fish. blaNDM-1 was detected in seven strains. Extended-spectrum β-lactamase and AmpC β-lactamase-related genes were detected in 28 strains, including blaCTX-M-55, blaCTX-M-15, blaCTX-M-1, and blaDHA,blaFOX, and blaMOX. The blaNDM-1 detected in the seven Aeromonas spp. strains were found chromosomally. This finding suggests that the blaNDM gene is stable in the natural environment and may spread widely into animals and humans via Aeromonas spp. with a transposon. Our results suggest the importance of continuing to monitor carbapenemase genes in Aeromonas spp. to evaluate the possibility that they may spread in other Enterobacterales, and to elucidate the mechanism of spread.
Collapse
Affiliation(s)
| | - Masaharu Yokota
- Division of Microbiology Osaka Institute of Public Health, Osaka, Japan
| | - Michio Jinnai
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | - Hien Le Thi
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | | | | | | | | | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryuji Kawahara
- Division of Microbiology Osaka Institute of Public Health, Osaka, Japan
| | | | | | - Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
6
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
7
|
Ramírez-Castillo FY, Guerrero-Barrera AL, Avelar-González FJ. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front Vet Sci 2023; 10:1158588. [PMID: 37397005 PMCID: PMC10311504 DOI: 10.3389/fvets.2023.1158588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| |
Collapse
|
8
|
Mancini ME, Alessiani A, Donatiello A, Didonna A, D’Attoli L, Faleo S, Occhiochiuso G, Carella F, Di Taranto P, Pace L, Rondinone V, Damato AM, Coppola R, Pedarra C, Goffredo E. Systematic Survey of Vibrio spp. and Salmonella spp. in Bivalve Shellfish in Apulia Region (Italy): Prevalence and Antimicrobial Resistance. Microorganisms 2023; 11:microorganisms11020450. [PMID: 36838415 PMCID: PMC9966029 DOI: 10.3390/microorganisms11020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is increasingly common across the globe and aquatic ecosystems could be considered a reservoir of antibiotic-resistant bacteria. This study aimed to determine prevalence and antibiotic susceptibility of the potential pathogenic bacteria Salmonella spp. and Vibrio spp. in bivalve molluscs intended for human consumption, collected over a period of 19 months along the northern coast of Apulia region. The AMR profile was also determined in non-pathogenic Vibrio species, common natural inhabitants of seawater and a useful indicator for the surveillance of AMR in the environment. The current study presents data on the AMR of 5 Salmonella and 126 Vibrio isolates by broth microdilution MIC. Multidrug resistance (MDR) was observed in one S. Typhimurium strain towards sulfamethoxazole, trimethoprim, tetracycline, gentamicin, and ampicillin and in 41.3% of the Vibrio strains, mostly towards sulphonamides, penicillin, and cephems. All Vibrio isolates were sensitive to azithromycin, chloramphenicol, tetracycline, amoxicillin/clavulanic acid, gentamicin, streptomycin, amikacin, and levofloxacin. The AMR phenomenon in the investigated area is not highly worrying but not entirely negligible; therefore, in-depth continuous monitoring is suggested. Results concerning the antibiotic agents without available specific clinical breakpoints could be useful to upgrade the MIC distribution for Vibrio spp. but, also, the establishment of interpretative criteria for environmental species is necessary to obtain a more complete view of this issue.
Collapse
|
9
|
He Y, Luo K, Hu X, Liu J, Hao M, Li Y, Xia X, Lü X, Shi C. Antibacterial Mechanism of Shikonin Against Vibrio vulnificus and Its Healing Potential on Infected Mice with Full-Thickness Excised Skin. Foodborne Pathog Dis 2023; 20:67-79. [PMID: 36779943 DOI: 10.1089/fpd.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Shikonin has anticancer, anti-inflammatory, and wound healing activities. Vibrio vulnificus is an important marine foodborne pathogen with a high fatality rate and rapid pathogenesis that can infect humans through ingestion and wounds. In this study, the antibacterial activity and possible antibacterial mechanism of shikonin against V. vulnificus were investigated. In addition, the ability of shikonin to control V. vulnificus infection in both pathways was assessed by artificially contaminated oysters and full-thickness excised skin-infected mice. Shikonin treatment can cause abnormal cell membrane function, as evidenced by hyperpolarization of the cell membrane, significant decreased intracellular ATP concentration (p < 0.05), significant increased intracellular reactive oxygen species and malondialdehyde content (p < 0.05), decreased cell membrane integrity, and changes in cell morphology. Shikonin at 40 and 80 μg/mL reduced bacterial numbers in shikonin-contaminated oysters by 3.58 and 2.18 log colony-forming unit (CFU)/mL. Shikonin can promote wound healing in mice infected with V. vulnificus by promoting the formation of granulation tissue, hair follicles, and sebaceous glands, promoting epithelial cell regeneration and epidermal growth factor production. These findings suggest that shikonin has a strong inactivation effect on V. vulnificus and can be used in food production and wound healing to effectively control V. vulnificus and reduce the number of diseases associated with it.
Collapse
Affiliation(s)
- Yifei He
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinquan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengru Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yulu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Liu T, Wu M, Tian Y, Liu X, Liu C, Xu Q, Liu Q. Detection of trh + Vibrio parahaemolyticus in seafood by lac dye coloration-based label-free lateral flow immunoassay strip. JOURNAL OF FISH DISEASES 2022; 45:1699-1709. [PMID: 35920381 DOI: 10.1111/jfd.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is an important foodborne pathogen known to cause severe enteric disease. Thus, timely detection of V. parahaemolyticus in seafood is crucial to prevent food poisoning and reduce economic losses. Traditional lateral flow immunoassay strips (LFIS) required good labelling materials and pairing of two antibodies, which made them costly and difficult to manufacture. In this study, a label-free and lac dye coloration-based LFIS (LD-LFIS) to detect trh+ V. parahaemolyticus was developed for the first time. Lac dye was used to stain V. parahaemolyticus, and LFIS was used to detect stained bacteria. Dimethyl sulphoxide (DMSO) and simultaneous mordanting were chosen as the best solvent and the best staining method for lac dye. In addition, three mordants [KAl(SO4 )2 ·12H2 O, NH4 Fe(SO4 )2 ·12H2 O, and AlCl3 ·6H2 O] were selected to improve dyeing efficiency. The detection limit of LD-LFIS was 3.9 × 105 CFU/ml when NH4 Fe(SO4 )2 ·12H2 O was used as mordant. Feasibility of the LD-LFIS method was verified by detecting trh+ V. parahaemolyticus in true and spiked seafood samples. The method developed in this study is expected to reduce restrictions on labelling materials and pairing of two antibodies on LFIS, and proposes a novel idea for the rapid detection of V. parahaemolyticus in seafood.
Collapse
Affiliation(s)
- Tao Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Meijiao Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yachen Tian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaoting Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingqiang Xu
- Department of Chemical Defense Medicine, The Second Military Medical University, Shanghai, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Zheng Z, Xu Y, Ye L, Chan EWC, Chen S. Genomic insights into the emergence and spread of NDM-1-producing Vibrio spp. isolates in China. J Antimicrob Chemother 2022; 77:3039-3049. [PMID: 35978475 DOI: 10.1093/jac/dkac276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carbapenemase-producing Vibrio spp., which exhibit an XDR phenotype, have become increasingly prevalent and pose a severe threat to public health. OBJECTIVES To investigate the genetic characteristics of NDM-1-producing Vibrio spp. isolates and the dissemination mechanisms of blaNDM-1 in Vibrio. METHODS A total of 1363 non-duplicate Vibrio spp. isolates collected from shrimp samples in China were subjected to antimicrobial susceptibility tests and screened for blaNDM-1. The blaNDM-1-positive isolates were further characterized by PFGE, MLST, conjugation and WGS using Illumina and Nanopore platforms. Plasmid stability and fitness cost were assessed using Escherichia coli J53, Klebsiella pneumoniae Kpt80 and Salmonella spp. SA2051 as recipient strains. RESULTS In total, 13 blaNDM-1-positive isolates were identified, all exhibiting MDR. WGS analysis revealed that the 13 blaNDM-1 genes were all associated with a derivative of Tn125. Plasmid analysis revealed that six blaNDM-1 genes were located in IncC plasmids and the other seven were carried by plasmids of two different novel types. Conjugation and plasmid stability assays showed that only the IncC plasmids could be transferred to all the recipient strains and could be stably maintained in the hosts. CONCLUSIONS The emergence of the novel plasmids has contributed to the variable genetic contexts of blaNDM-1 in Vibrio spp. and IncC plasmids harbouring the blaNDM-1 gene could facilitate the spread of such genes between Vibrio spp. and other zoonotic pathogens, leading to a rapid dissemination of blaNDM-1 in bacterial pathogens worldwide.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hum Hung, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
12
|
Loest D, Uhland FC, Young KM, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Carson CA. Carbapenem-resistant Escherichia coli from shrimp and salmon available for purchase by consumers in Canada: a risk profile using the Codex framework. Epidemiol Infect 2022; 150:e148. [PMID: 35968840 PMCID: PMC9386791 DOI: 10.1017/s0950268822001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
Abstract
Resistance to carbapenems in human pathogens is a growing clinical and public health concern. The carbapenems are in an antimicrobial class considered last-resort, they are used to treat human infections caused by multidrug-resistant Enterobacterales, and they are classified by the World Health Organization as 'High Priority Critically Important Antimicrobials'. The presence of carbapenem-resistant Enterobacterales (CREs) of animal-origin is of concern because targeted studies of Canadian retail seafood revealed the presence of carbapenem resistance in a small number of Enterobacterales isolates. To further investigate this issue, a risk profile was developed examining shrimp and salmon, the two most important seafood commodities consumed by Canadians and Escherichia coli, a member of the Enterobacterales order. Carbapenem-resistant E. coli (CREc) isolates have been identified in shrimp and other seafood products. Although carbapenem use in aquaculture has not been reported, several classes of antimicrobials are utilised globally and co-selection of antimicrobial-resistant microorganisms in an aquaculture setting is also of concern. CREs have been identified in retail seafood purchased in Canada and are currently thought to be uncommon. However, data concerning CRE or CREc occurrence and distribution in seafood are limited, and argue for implementation of ongoing or periodic surveillance.
Collapse
Affiliation(s)
- Daleen Loest
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - F. Carl Uhland
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kaitlin M. Young
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Richard Reid-Smith
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lauren M. Sherk
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Carolee A. Carson
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Bourdonnais E, Colcanap D, Le Bris C, Brauge T, Midelet G. Occurrence of Indicator Genes of Antimicrobial Resistance Contamination in the English Channel and North Sea Sectors and Interactions With Environmental Variables. Front Microbiol 2022; 13:883081. [PMID: 35651498 PMCID: PMC9150721 DOI: 10.3389/fmicb.2022.883081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The marine environment is a potential natural reservoir of antimicrobial resistance genes (ARGs), subject to anthropogenic effluents (wastewater, industrial, and domestic), and known as a final receiving system. The aim of this study was to investigate the abundance and geographical distribution of the three blaTEM , sul1, and intI1 genes, proposed as indicators of contamination to assess the state of antimicrobial resistance in environmental settings, added to the tetA gene and the microbial population (tuf gene) in the English Channel and North Sea areas. Bacterial DNA was extracted from 36 seawater samples. The abundance of these genes was determined by quantitative PCR (qPCR) and was analyzed in association with environmental variables and geographical locations to determine potential correlations. The blaTEM and tetA genes were quantified in 0% and 2.8% of samples, respectively. The sul1 and intI1 genes were detected in 42% and 31% of samples, respectively, with an apparent co-occurrence in 19% of the samples confirmed by a correlation analysis. The absolute abundance of these genes was correlated with the microbial population, with results similar to the relative abundance. We showed that the sul1 and intI1 genes were positively correlated with dissolved oxygen and turbidity, while the microbial population was correlated with pH, temperature and salinity in addition to dissolved oxygen and turbidity. The three tetA, sul1, and intI1 genes were quantified in the same sample with high abundances, and this sample was collected in the West Netherlands coast (WN) area. For the first time, we have shown the impact of anthropogenic inputs (rivers, man-made offshore structures, and maritime activities) and environmental variables on the occurrence of three indicators of environmental contamination by antimicrobial resistance in the North Sea and English Channel seawaters.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France.,Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Darina Colcanap
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
14
|
Abstract
Antimicrobial resistance is one of the most serious threats to medical science. Food supply is recognized as a potential source of resistant bacteria, leading to the development of surveillance programs targeting primarily poultry, pork, and beef. These programs are limited in scope, not only in the commodities tested, but also in the organisms targeted (Escherichia coli, Salmonella, and Campylobacter); consequently, neither the breadth of food products available nor the organisms that may harbour clinically relevant and (or) mobile resistance genes are identified. Furthermore, there is an inadequate understanding of how international trade in food products contributes to the global dissemination of resistance. This is despite the recognized role of international travel in disseminating antimicrobial-resistant organisms, notably New Delhi metallo-beta-lactamase. An increasing number of studies describing antimicrobial-resistant organisms in a variety of imported foods are summarized in this review.
Collapse
Affiliation(s)
- Dongyun Jung
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Quebec, Canada
| | - Beverly J Morrison
- Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Chen K, Ma B, Li J, Chen E, Xu Y, Yu X, Sun C, Zhang M. A Rapid and Sensitive Europium Nanoparticle-Based Lateral Flow Immunoassay Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Three Food-Borne Pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094574. [PMID: 33925871 PMCID: PMC8123443 DOI: 10.3390/ijerph18094574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
Food-borne pathogens have become an important public threat to human health. There are many kinds of pathogenic bacteria in food consumed daily. A rapid and sensitive testing method for multiple food-borne pathogens is essential. Europium nanoparticles (EuNPs) are used as fluorescent probes in lateral flow immunoassays (LFIAs) to improve sensitivity. Here, recombinase polymerase amplification (RPA) combined with fluorescent LFIA was established for the simultaneous and quantitative detection of Listeria monocytogenes, Vibrio parahaemolyticus, and Escherichia coliO157:H7. In this work, the entire experimental process could be completed in 20 min at 37 °C. The limits of detection (LODs) of EuNP-based LFIA–RPA were 9.0 colony-forming units (CFU)/mL for Listeria monocytogenes, 7.0 CFU/mL for Vibrio parahaemolyticus, and 4.0 CFU/mL for Escherichia coliO157:H7. No cross-reaction could be observed in 22 bacterial strains. The fluorescent LFIA–RPA assay exhibits high sensitivity and good specificity. Moreover, the average recovery of the three food-borne pathogens spiked in food samples was 90.9–114.2%. The experiments indicate the accuracy and reliability of the multiple fluorescent test strips. Our developed EuNP-based LFIA–RPA assay is a promising analytical tool for the rapid and simultaneous detection of multiple low concentrations of food-borne pathogens.
Collapse
Affiliation(s)
- Kai Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Jiali Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Erjing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, EuSwedish University of Agricultural Science (SLU), P.O. Box 7080, SE-75007 Uppsala, Sweden;
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
- Correspondence: ; Tel.: +86-571-8691-4476; Fax: +86-571-8691-4510
| |
Collapse
|
16
|
Zheng Z, Ye L, Chan EWC, Chen S. Identification and characterization of a conjugative blaVIM-1-bearing plasmid in Vibrio alginolyticus of food origin. J Antimicrob Chemother 2020; 74:1842-1847. [PMID: 30993329 DOI: 10.1093/jac/dkz140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the genetic features of the blaVIM-1 gene first detected in a cephalosporin-resistant Vibrio alginolyticus isolate, Vb1978. METHODS The MICs of V. alginolyticus strain Vb1978 were determined, and the β-lactamases produced were screened and analysed using conjugation, S1-PFGE and Southern blotting. The complete sequence of the blaVIM-1-encoding plasmid was also obtained using the Illumina and MinION sequencing platforms. RESULTS V. alginolyticus strain Vb1978, isolated from a retail shrimp sample, was resistant to cephalosporins and exhibited reduced susceptibility to carbapenems. A novel blaVIM-1-carrying conjugative plasmid, designated pVb1978, was identified in this strain. Plasmid pVb1978 had 50 001 bp and comprised 59 predicted coding sequences (CDSs). The plasmid backbone of pVb1978 was homologous to those of IncP-type plasmids, while its replication region was structurally similar to non-IncP plasmids. The blaVIM-1 gene was found to be carried by the class 1 integron In70 and associated with a defective Tn402-like transposon. CONCLUSIONS A novel blaVIM-1-carrying conjugative plasmid, pVb1978, was reported for the first time in V. alginolyticus, which warrants further investigation in view of its potential pathogenicity towards humans and widespread occurrence in the environment.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
17
|
Yang X, Zhao P, Dong Y, Shen X, Shen H, Li J, Jiang G, Wang W, Dai H, Dong J, Gao S, Si X. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J Food Sci 2020; 85:1834-1844. [PMID: 32449955 DOI: 10.1111/1750-3841.15105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Vibrio parahaemolyticus is an important pathogenic bacterium in both food safety management and mariculture. Rapid and accurate detection technologies are critical for effective control of its outbreak and spreading. Conventional technologies and polymerase chain reaction (PCR)-based approaches have limited usage because of the requirement of laboratory instruments and trained personnel. Using the isothermal recombinase polymerase amplification (RPA) technology, several detection assays have been developed with added convenience. Combining the lateral flow strip (LFS) test with RPA can further simplify the detection. In this study, an improved RPA assay using LFS for visual detection of V. parahaemolyticus was developed. Primers were designed targeting the virulence genes and screened for amplification efficiency, nonspecific amplification, and primer-dimer formation. Probes were designed for the best primer pairs, and the weakness of LFS tests, being easily affected by primer-dependent artifacts, was overcome by sequence modifications on primers and probe. The RPA-LFS assay took 25 min at 35 to 45 °C, and showed excellent specificity. It detected as low as one colony forming unit (CFU) of V. parahaemolyticus per reaction without DNA purification, or 10 CFU/10 g spiked food samples with 2 hr of enrichment. The detection limit was better than the currently available RPA-based detection methods. Application of the RPA-LFS assay for simulated samples or real clinical samples showed accurate and consistent detection results compared to bioassay and quantitative PCR. The RPA-LFS assay provided a rapid, accurate, and convenient V. parahaemolyticus detection method suitable for on-site detection in resource-limited conditions. PRACTICAL APPLICATION: This research developed a rapid and visual detection technology for Vibrio parahaemolyticus that is not dependent on complicated equipment. The detection process takes 25 min and the result is read with the naked eye. A detection kit can be developed based on this technology for on-site detection of V. parahaemolyticus in resource-limited regions for food safety management and mariculture.
Collapse
Affiliation(s)
- Xiaohan Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Ge Jiang
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hong Dai
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
18
|
Zheng Z, Li R, Ye L, Wai-Chi Chan E, Xia X, Chen S. Genetic Characterization of bla CTX-M-55 -Bearing Plasmids Harbored by Food-Borne Cephalosporin-Resistant Vibrio parahaemolyticus Strains in China. Front Microbiol 2019; 10:1338. [PMID: 31275270 PMCID: PMC6591265 DOI: 10.3389/fmicb.2019.01338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate and compare the complete nucleotide sequences of the multidrug resistance plasmids pVb0267 and pVb0499, which were recovered from foodborne Vibrio parahaemolyticus isolates, and analyze the genetic environment of blaCTX–M–55 to provide insight into the dissemination mechanisms of this resistance element. Analysis of the sequences of plasmids pVb0267 (166,467 bp) and pVb0499 (192,739 bp) revealed that the backbones of these two plasmids exhibited a high degree of similarity with pR148, a recognized type 1a IncC plasmid recovered from Aeromonas hydrophila (99% identity). The resistance genes, found in both plasmids, included qacH, aadB, arr2, blaOXA–10, aadA1, sul1, tet(A), and blaCTX–M–55, which were mostly arranged in a specific region designated ARI-A. Plasmid pVb0499 was found to possess a larger size of ARI-A than pVb0267, which lacked a mer determination region, a qnr A segment, an aacC3 gene and several mobility-encoding genes. Comparative analysis of resistance island (RI) of these plasmids and others revealed the potential evolution route of these RI sequences. In conclusion, plasmids harboring the blaCTX–M–55 gene has been recovered in Vibrio parahaemolyticus strains of food origin. It is alarming to find that IncC plasmids harboring resistance islands are disseminating in aquatic bacterial strains. The continuous evolution of resistance genes in conjugative plasmid in aquatic bacteria could be due to bacterial adaption to aquaculture environment, where antibiotics were increasingly used.
Collapse
Affiliation(s)
- Zhiwei Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Ruichao Li
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lianwei Ye
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
19
|
Han D, Yu F, Chen X, Zhang R, Li J. Challenges in Vibrio parahaemolyticus infections caused by the pandemic clone. Future Microbiol 2019; 14:437-450. [PMID: 30855189 DOI: 10.2217/fmb-2018-0308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vibrio Parahaemolyticus infections caused by the pandemic clone have become a global public health issue. The pandemic clone includes over ten sequence types and 49 serotypes. Several markers such as toxRS/new, orf8 and genomic islands were considered specific for pandemic strains, but subsequent studies later confirmed a lack of specificity. Thus, identifying stable indicators for the pandemic clone is still an open question. In recent years, several environmental pandemic strains are growing, constituting a new threat to seafood safety and human health. Traditional methods show limited discrimination in studying the microevolution of pandemic strains. For example, multilocus sequence typing divides many pandemic strains into ST3 type, making it difficult to further distinguish the variability within ST3 strains from different contexts. When using a whole genome sequencing-based technique, strains including those with the same sequence type, could be well separated. Whole genome sequencing-based technology also played important roles in dissecting the evolution process and revealing the mechanism underlying rapid serotype conversion within pandemic strains. In addition, the emergence of multiple-antibiotic resistant pandemic strains needs attention. Altogether, we are facing many challenges posed by pandemic V. parahaemolyticus strains, which need to be resolved in future studies.
Collapse
Affiliation(s)
- Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Fei Yu
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao Chen
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| |
Collapse
|
20
|
NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev 2019; 32:32/2/e00115-18. [PMID: 30700432 DOI: 10.1128/cmr.00115-18] [Citation(s) in RCA: 443] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase able to hydrolyze almost all β-lactams. Twenty-four NDM variants have been identified in >60 species of 11 bacterial families, and several variants have enhanced carbapenemase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carriers of bla NDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14, ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-positive strains have been identified worldwide, with the highest prevalence in the Indian subcontinent, the Middle East, and the Balkans. Most bla NDM-carrying plasmids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phenotypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically detect NDM, and molecular approaches remain the reference methods for detecting bla NDM Polymyxins combined with other agents remain the mainstream options of antimicrobial treatment. Compounds able to inhibit NDM have been found, but none have been approved for clinical use. Outbreaks caused by NDM-positive strains have been reported worldwide, attributable to sources such as contaminated devices. Evidence-based guidelines on prevention and control of carbapenem-resistant Gram-negative bacteria are available, although none are specific for NDM-positive strains. NDM will remain a severe challenge in health care settings, and more studies on appropriate countermeasures are required.
Collapse
|
21
|
Oyelade AA, Adelowo OO, Fagade OE. bla NDM-1-producing Vibrio parahaemolyticus and V. vulnificus isolated from recreational beaches in Lagos, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33538-33547. [PMID: 30267350 DOI: 10.1007/s11356-018-3306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Twenty-six strains of Vibrio parahaemolyticus and 14 strains of V. vulnificus isolated from selected beaches in Lagos State, Nigeria, were examined for virulence and antimicrobial resistance genes. The V. parahaemolyticus isolates were further serotyped and subjected to pulsed field gel electrophoresis (PFGE). Five strains of V. vulnificus and one of V. parahaemolyticus carried the New Delhi-metallo-beta-lactamase gene blaNDM-1, seven strains carried blaTEM, and four strains of V. vulnificus and one of V. parahaemolyticus carried blaCMY. Real-time PCR assay for detection of virulence genes tdh and trh in the V. parahaemolyticus isolates showed that five isolates were positive for tdh, two for trh, and one isolate carried both genes. Ten V. parahaemolyticus serogroups and 23 pulsotypes were identified from 26 isolates based on O and K antigens typing and PFGE. Five of the isolates belong to the pandemic strains O1:Kut and O3:K6, and three belonged to the highly virulent O4:Kut serotype. Nineteen of the isolates showed distinct PFGE banding patterns. These results highlighted the importance of Nigerian recreational beaches as reservoirs of antimicrobial resistance genes of global public health interest, such as blaNDM-1.
Collapse
Affiliation(s)
- Abolade A Oyelade
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.
- New Jersey Department of Environmental Protection, Leeds Point Office, Leeds Point, NJ, USA.
| | | | | |
Collapse
|
22
|
Banerjee SK, Farber JM. Trend and Pattern of Antimicrobial Resistance in Molluscan Vibrio Species Sourced to Canadian Estuaries. Antimicrob Agents Chemother 2018; 62:e00799-18. [PMID: 30082294 PMCID: PMC6153815 DOI: 10.1128/aac.00799-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) in foodborne bacteria is a growing concern worldwide. AMR surveillance is a key element in understanding the implications resulting from the use of antibiotics for therapeutic as well as prophylactic needs. The emergence and spread of AMR in foodborne human pathogens are indirect health hazards. This surveillance study reports the trend and pattern of AMR detected in Vibrio species isolated from molluscs harvested in Canada between 2006 and 2012 against 19 commonly used antibiotics. Five common antibiotics, ampicillin, cephalothin, erythromycin, kanamycin, and streptomycin, predominantly contributed to AMR, including multidrug resistance (MDR) in the molluscan Vibrio spp. isolated in 2006. A prospective follow-up analysis of these drugs showed a declining trend in the frequency of MDR/AMR Vibrio spp. in subsequent years until 2012. The observed decline appears to have been influenced by the specific downturn in resistance to the aminoglycosides, kanamycin, and streptomycin. Frequently observed MDR/AMR Vibrio spp. in seafood is a potential health concern associated with seafood consumption. Our surveillance study provides an indication of the antibiotics that challenged the marine bacteria, sourced to Canadian estuaries, during and/or prior to the study period.
Collapse
Affiliation(s)
- Swapan K Banerjee
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jeffrey M Farber
- Department of Food Science, Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|