1
|
Wei C, Wu J, Zhang J, Liang Y, Yu K, Liao M, Liang X, Wang J, Long W, Wang J, Chen S, Yang Y, Gong X, Li J, Zhang X. Clinical characteristics, molecular epidemiology and mechanisms of colistin heteroresistance in Enterobacter cloacae complex. Front Cell Infect Microbiol 2025; 15:1536058. [PMID: 40115074 PMCID: PMC11922889 DOI: 10.3389/fcimb.2025.1536058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction Colistin has emerged as the last resort for treating multidrug-resistant Enterobacter cloacae complex (ECC) infections. The primary purposes of this study were to demonstrate the presence of colistin heteroresistance in ECC and to further investigate their clinical characteristics, molecular epidemiology and mechanisms. Methods Population analysis profiles (PAP) were performed to confirm the heteroresistance phenotype. Average nucleotide identity (ANI) was determined to classify ECC species. Phylogenetic analysis based on core genome single nucleotide polymorphisms (cg-SNPs), multilocus sequence typing (MLST) and core genome MLST (cg-MLST). Risk factors and clinical outcomes of infections were analyzed through a retrospective case-control study. Potential mechanisms of colistin heteroresistance were evaluated using polymerase chain reaction (PCR), efflux pump inhibition assays and reverse transcription quantitative PCR (RT-qPCR). Results A high proportion (24.4%) of the non-resistant strains were colistin-heteroresistant isolates. Among the several ECC species, Enterobacter kobei had the largest percentage (29.4%) of colistin-heteroresistant isolates, followed by Enterobacter hormaechei (20.5%) and Enterobacter bugandensis (20.0%). Notably, only one strain (0.8%; 1/132) of Enterobacter hormaechei was fully resistant to colistin. Different ECC species showed varying heteroresistance levels: Enterobacter roggenkampii, Enterobacter kobei, Enterobacter asburiae and Enterobacter bugandensis displayed high heteroresistance levels (MIC ≥ 128 mg/L). 75% of all ST116 and ST56 strains were heteroresistant to colistin. The infection of ST116 and ST56 strains as well as exposure to cephalosporin antibiotics were independent risk factors for colistin-heteroresistant ECC infections. Mechanistic analysis revealed that heteroresistance strongly correlated with the overexpression of arnA, regulated by the PhoPQ two-component system (TCS). Notably, mgrB had minimal impact. AcrAB-TolC efflux pump genes showed unsynchronized expression; High acrB expression was strongly associated with colistin heteroresistance, while acrA and tolC were not. Discussion Colistin heteroresistance showed species-dependent variations in levels and prevalence rates. The colistin-heteroresistant mechanisms were complex, involving coordinated regulation of multiple genes. These results highlighted the need for tailored antimicrobial stewardship. In addition, the development of direct, reliable and rapid clinical methods for detecting heteroresistance is essential for improving infection management and prevention.
Collapse
Affiliation(s)
- Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jiming Wu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Youtao Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaixin Yu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Basic Medicine of Jiamusi University, Jiamusi, China
| | - Mingjing Liao
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shijian Chen
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Gong
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Halder G, Chaudhury BN, Denny P, Chakraborty M, Mandal S, Dutta S. Emergence of concurrently transmissible mcr-9 and carbapenemase genes in bloodborne colistin-resistant Enterobacter cloacae complex isolated from ICU patients in Kolkata, India. Microbiol Spectr 2025; 13:e0154224. [PMID: 39912656 PMCID: PMC11878022 DOI: 10.1128/spectrum.01542-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/22/2024] [Indexed: 02/07/2025] Open
Abstract
Colistin resistance in carbapenem-resistant Enterobacter cloacae complex (CR-ECC) infections has grown expeditiously but detecting the underlying mechanism of resistance is often challenging in clinical settings. This study, first of its kind from India, determined the resistance mechanisms and characterized colistin-resistant hospital isolates. Twenty-nine bloodborne CR-ECC isolated from ICU patients of eight tertiary care hospitals in Kolkata, India between 2022 and 2023 were screened for colistin resistance. The plasmid-encoded mcr-9 gene, acrAB-tolC efflux pump (EP) & phoP/Q, and pmr A/B two-component system (TCS) involved in colistin resistance were examined. In addition, AMR gene profiling and molecular subtypes of mcr-9-producing CR-ECC isolates were also investigated. All study isolates showed resistance to ≥5 antimicrobial classes and six (21%) of them were colistin-resistant. The mcr-9 gene transferable by IncHI2-HI2A plasmid was detected in both colistin-resistant (67%) and colistin-sensitive (4%) CR-ECC isolates. The blaNDM-5 gene was significantly (P < 0.05) associated with isolates co-harboring mcr-9 genes. A ≥8-fold increase in minimum inhibitory concentration (MIC)colistin was observed in the mcr-9-producing colistin-sensitive strain after induction. Overexpression of acrA, ramA, soxS, phoP/Q, and pmrA/B genes was found in non-mcr-9-producing colistin-resistant isolates. The resistance to colistin in the wild-type appeared to be mediated in part by the mcr-9 gene, an active EP, and regulatory TCS. The mcr-9-producing isolates were typed into ST932, ST270, and ST1997 by MLST. Heterogeneity (29 pulsotypes; 48.40% similarity coefficient) among the circulating CR-ECC isolates was revealed by PFGE. Robust monitoring of mcr genes in both colistin-resistant and -sensitive strains is warranted to curb the menace of AMR in nosocomial pathogens. IMPORTANCE Carbapenem-resistant Enterobacter cloacae complex (CR-ECC) has become a global nosocomial pathogen in last few years. Colistin, the "last resort antibiotic," is being widely used in the treatment of CR-ECC and, consequently, there has been a brisk rise in colistin-resistant CR-ECC isolates. This study was necessitated by the dearth of a comprehensive molecular investigation of colistin-resistant CR-ECC from India. The notorious IncHI2-HI2A plasmid-borne mcr-9 gene along with active acrAB-tolC efflux pump and phoP/Q-pmr A/B two-component system was found to mediate colistin resistance in the study isolates. Interestingly, the mcr-9 gene was also discovered in colistin-sensitive strains and MIC of colistin was found to increase under colistin pressure. Diverse phylogenetic clones along with novel sequence types were detected. This study highlights the necessity for intense monitoring of mcr-9 in conjunction with the existing epidemic clones of CR-ECC strains harboring diverse arrays of transmissible AMR genes.
Collapse
Affiliation(s)
- Gourab Halder
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections formerly ICMR-NICED, Kolkata, West Bengal, India
| | | | - Priyanka Denny
- Collaborative Research Center for Infectious Diseases in India, Okayama University, JICA Building, ICMR-NIRBI, Kolkata, West Bengal, India
| | - Mandira Chakraborty
- Division of Microbiology, Calcutta Medical College, Kolkata, West Bengal, India
| | - Subhranshu Mandal
- Division of Microbiology, CNCI, Rajarhat, Kolkata, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections formerly ICMR-NICED, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Kupke J, Brombach J, Fang Y, Wolf SA, Thrukonda L, Ghazisaeedi F, Kuropka B, Hanke D, Semmler T, Nordholt N, Schreiber F, Tedin K, Lübke-Becker A, Steiner UK, Fulde M. Heteroresistance in Enterobacter cloacae complex caused by variation in transient gene amplification events. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:13. [PMID: 39987221 PMCID: PMC11846870 DOI: 10.1038/s44259-025-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/18/2024] [Indexed: 02/24/2025]
Abstract
Heteroresistance (HR) in bacteria describes a subpopulational phenomenon of antibiotic resistant cells of a generally susceptible population. Here, we investigated the molecular mechanisms and phenotypic characteristics underlying HR to ceftazidime (CAZ) in a clinical Enterobacter cloacae complex strain (ECC). We identified a plasmid-borne gene duplication-amplification (GDA) event of a region harbouring an ampC gene encoding a β-lactamase blaDHA-1 as the key determinant of HR. Individual colonies exhibited variations in the copy number of the genes resulting in resistance level variation which correlated with growth onset (lag times) and growth rates in the presence of CAZ. GDA copy number heterogeneity occurred within single resistant colonies, demonstrating heterogeneity of GDA on the single-cell level. The interdependence between GDA, lag time and antibiotic treatment and the strong plasticity underlying HR underlines the high risk for misdetection of antimicrobial HR and subsequent treatment failure.
Collapse
Affiliation(s)
- Johannes Kupke
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Julian Brombach
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yuwen Fang
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Silver A Wolf
- Robert Koch Institute (RKI), MF1-Genome Competence Centre, Berlin, Germany
| | | | - Fereshteh Ghazisaeedi
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute (RKI), MF1-Genome Competence Centre, Berlin, Germany
| | - Niclas Nordholt
- Federal Institute for Materials Research and Testing (BAM), Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1), Berlin, Germany
| | - Frank Schreiber
- Federal Institute for Materials Research and Testing (BAM), Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1), Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Ulrich K Steiner
- Institute of Biology, Evolutionary Demography, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Sun H, Li Y, Gao S, Shi G, Cao L, Li X, Li T, Li T, Wang M, Li E, Liu J, Ni H, Chen Y, Liu Y. Identification of key chromium resistance genes in Cellulomonas using transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117843. [PMID: 39914077 DOI: 10.1016/j.ecoenv.2025.117843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Cellulomonas fimi Clb-11 can reduce high toxic Cr(VI) to less toxic Cr(III), and transcriptomics was used to reveal the key Cr(VI) uptake and reduction genes of C. fimi Clb-11 in this study. The results showed that under 0.5 mM Cr(VI) stress, 654 genes were upregulated. Among the upregulated genes, phosphate transport protein encoding genes phoU and TC.PIT, and molybdate transport protein encoding genes modA, modB, and modC were involved in the cell uptake of Cr(VI). Cytochrome c subunits encoding genes qcrA and qcrC were involved in the intracellular reduction of Cr(VI), and cytochrome c oxidase subunits encoding genes coxB and coxC were involved in extracellular electron secretion. Additionally, several unreported genes were found to be upregulated in C. fimi Clb-11 under Cr(VI) stress. The upregulated manganese transport protein encoding gene mntH may also assist Cr(VI) uptake in C. fimi Clb-11. Proton pump subunit encoding genes atpA, atpB, atpE, atpF, and atpH, as well as sodium-hydrogen antiporter subunit encoding genes mnhA and mnhC were upregulated, it may be involved in the extracellular proton secretion to reduce Cr(VI). Iron complex transport system substrate-binding protein encoding gene ABC.FEV.S, vacuolar iron transporter encoding gene VIT, FMN reductase gene encoding gene ssuE, and quinone oxidoreductase encoding genes qor and qorB were upregulated to reduce Cr(VI) in the intracellular. Our study showed theoretical importance by revealing the Cr(VI) reduction mechanism using chrome-resistant microorganisms.
Collapse
Affiliation(s)
- Hongmei Sun
- College of Life Sciences, Northwest A&F University, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China; College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo Key Laboratory of Virus Research, Ningbo 315010, PR China
| | - Shengchao Gao
- College of Life Sciences, Northwest A&F University, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Guangchuan Shi
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Lianbin Cao
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Xinya Li
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Tong Li
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Tongbiao Li
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Mingcheng Wang
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Enzhong Li
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Junhe Liu
- College of Biological and Food Engineering, Huanghuai University, No.76 Kaiyuan Road, Zhumadian, Henan 463000, PR China
| | - Hongxia Ni
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo Key Laboratory of Virus Research, Ningbo 315010, PR China
| | - Yi Chen
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo Key Laboratory of Virus Research, Ningbo 315010, PR China.
| | - Ying Liu
- College of Life Sciences, Northwest A&F University, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Milleville R, Hadjadj L, Rolain JM, Baron SA. Study of the mechanisms of colistin heteroresistance in a strain of Enterobacter cloacae by random mutagenesis. J Glob Antimicrob Resist 2024; 39:247-249. [PMID: 39486688 DOI: 10.1016/j.jgar.2024.10.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE The Enterobacter cloacae complex belongs to a group in which colistin resistance is not well documented due to their frequent heteroresistance. METHODS We investigated the molecular basis of colistin heteroresistance using genome analysis and random mutagenesis in a strain of E. cloacae. RESULTS The arnA gene was truncated in the six colistin susceptible mutants we obtained. However, the mcr-9 gene was present in these mutants suggesting this gene is not responsible for colistin resistance. CONCLUSIONS Previous studies have highlighted the role of the two-component system PhoPQ and its negative regulator mgrB or the arnBCADTEF operon. Our results confirm the crucial role of this operon.
Collapse
Affiliation(s)
- Romane Milleville
- Aix Marseille University, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Linda Hadjadj
- Aix Marseille University, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, Marseille, France; Aix Marseille University, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Sophie Alexandra Baron
- IHU Méditerranée Infection, Marseille, France; Aix Marseille University, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.
| |
Collapse
|
6
|
Si Z, Zhao S, Hao Y, Wang Q, Zhong Y, Liu Y, Chen R, Jin Y, Lu Z. Colistin Resistance Mechanisms and Molecular Epidemiology of Enterobacter c loacae Complex Isolated from a Tertiary Hospital in Shandong, China. Infect Drug Resist 2024; 17:3723-3735. [PMID: 39221183 PMCID: PMC11365514 DOI: 10.2147/idr.s473580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Background Enterobacter cloacae complex (ECC), which includes major nosocomial pathogens, causes urinary, respiratory, and bloodstream infections in humans, for which colistin is one of the last-line drugs. Objective This study aimed to analyse the epidemiology and resistance mechanisms of colistin-resistant Enterobacter cloacae complex (ECC) strains isolated from Shandong, China. Methods Two hundred non-repetitive ECC strains were collected from a tertiary hospital in Shandong Province, China, from June 2020 to June 2022. Whole-genome sequencing and bioinformatics analyses were performed to understand the molecular epidemiology of the colistin-resistant ECC strains. The nucleotide sequences of heat shock protein (hsp60) were analyzed by using BLAST search to classify ECC. The gene expression levels of ramA, soxS, acrA, acrB, phoP, and phoQ were assessed using RT-qPCR. MALDI-TOF MS was used to analyse the modification of lipid A. Results Twenty-three colistin-resistant strains were detected among the 200 ECC clinical strains (11.5%). The hsp60 cluster analysis revealed that 20 of the 23 ECC strains belonged to heterogeneous resistance clusters. Variants of mgrB, phoPQ, and pmrAB, particularly phoQ and pmrB, were detected in the 23 ECC strains. The soxS and acrA genes were significantly overexpressed in all 23 colistin-resistant ECC strains (P < 0.05). Additionally, all 23 ECC strains contained modified lipid A related to colistin resistance, which showed five ion peaks at m/z 1876, 1920, 1955, 2114, and 2158. Among the 23 ECC strains, 6 strains possessed a phosphoethanolamine (pETN) moiety, 16 strains possessed a 4-amino-4-deoxy-L-arabinose (-L-Ara4N) moiety, and one strain had both pETN and -L-Ara4N moieties. Conclusion This study suggests that diverse colistin resistance existed in ECC, including unknown resistance mechanisms, exist in ECC. Mechanistic investigations of colistin resistance are warranted to optimise colistin use in clinical settings and minimise the emergence of resistance.
Collapse
Affiliation(s)
- Zaifeng Si
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Clinical Laboratory, Dezhou Municipal Hospital of Traditional Chinese Medicine, Dezhou, Shandong, People’s Republic of China
| | - Shengmei Zhao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yanfa Zhong
- Department of Clinical Laboratory, Dezhou Municipal Hospital of Traditional Chinese Medicine, Dezhou, Shandong, People’s Republic of China
| | - Yue Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
7
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
8
|
García-Romero I, Srivastava M, Monjarás-Feria J, Korankye SO, MacDonald L, Scott NE, Valvano MA. Drug efflux and lipid A modification by 4-L-aminoarabinose are key mechanisms of polymyxin B resistance in the sepsis pathogen Enterobacter bugandensis. J Glob Antimicrob Resist 2024; 37:108-121. [PMID: 38552872 DOI: 10.1016/j.jgar.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom; Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Mugdha Srivastava
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany; Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Julia Monjarás-Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Samuel O Korankye
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lewis MacDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| |
Collapse
|
9
|
Wu J, Liu L, Wang J, Wang Y, Li X, Wang X, Jiang S, Li W, Zhang J, Zhang X. Transcriptomic analysis of induced resistance to polymyxin in carbapenem-resistant Enterobacter cloacae complex isolate carrying mcr-9. J Glob Antimicrob Resist 2024; 37:225-232. [PMID: 38750896 DOI: 10.1016/j.jgar.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES Polymyxins are currently the last-resort treatment against multi-drug resistant Gram-negative bacterial infections, but plasmid-mediated mobile polymyxin resistance genes (mcr) threaten its efficacy, especially in carbapenem-resistant Enterobacter cloacae complex (CRECC). The objective of this study was to provide insights into the mechanism of polymyxin-induced bacterial resistance and the effect of overexpression of mcr-9. METHODS The clinical strain CRECC414 carrying the mcr-9 gene was treated with a gradient concentration of polymyxin. Subsequently, the broth microdilution was used to determine the minimum inhibitory concentration (MIC) and RT-qPCR was utilized to assess mcr-9 expression. Transcriptome sequencing and whole genome sequencing (WGS) was utilized to identify alterations in strains resulting from increased polymyxin resistance, and significant transcriptomic differences were analysed alongside a comprehensive examination of metabolic networks at the genomic level. RESULTS Polymyxin treatment induced the upregulation of mcr-9 expression and significantly elevated the MIC of the strain. Furthermore, the WGS and transcriptomic results revealed a remarkable up-regulation of arnBCADTEF gene cassette, indicating that the Arn/PhoPQ system-mediated L-Ara4N modification is the preferred mechanism for achieving high levels of resistance. Additionally, significant alterations in bacterial gene expression were observed with regards to multidrug efflux pumps, oxidative stress and repair mechanisms, cell membrane biosynthesis, as well as carbohydrate metabolic pathways. CONCLUSION Polymyxin greatly disrupts the transcription of vital cellular pathways. A complete PhoPQ two-component system is a prerequisite for polymyxin resistance of Enterobacter cloacae, even though mcr-9 is highly expressed. These findings provide novel and important information for further investigation of polymyxin resistance of CRECC.
Collapse
Affiliation(s)
- Jiming Wu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Longjin Liu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shan Jiang
- Department of Pathogenic Biology, Basic Medicine of Jiamusi University, Jiamusi, China
| | - Wengang Li
- Department of Pathogenic Biology, Basic Medicine of Jiamusi University, Jiamusi, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Cimen C, Noster J, Stelzer Y, Rump A, Sattler J, Berends M, Voss A, Hamprecht A. Surface water in Lower Saxony: A reservoir for multidrug-resistant Enterobacterales. One Health 2023; 17:100606. [PMID: 37583366 PMCID: PMC10424258 DOI: 10.1016/j.onehlt.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase and carbapenemase-producing Enterobacterales (ESBL-E and CPE, respectively) is a threat to modern medicine, as infections become increasingly difficult to treat. These bacteria have been detected in aquatic environments, which raises concerns about the potential spread of antibiotic resistance through water. Therefore, we investigated the occurrence of ESBL-E and CPE in surface water in Lower Saxony, Germany, using phenotypic and genotypic methods. Water samples were collected from two rivers, five water canals near farms, and 18 swimming lakes. ESBL-E and CPE were isolated from these samples using filters and selective agars. All isolates were analyzed by whole genome sequencing. Multidrug-resistant Enterobacterales were detected in 4/25 (16%) water bodies, including 1/2 rivers, 2/5 water canals and 1/18 lakes. Among all samples, isolates belonging to five different species/species complexes were detected: Escherichia coli (n = 10), Enterobacter cloacae complex (n = 4), Citrobacter freundii (n = 3), Citrobacter braakii (n = 2), and Klebsiella pneumoniae (n = 2). Of the 21 isolates, 13 (62%) were resistant at least to 3rd generation cephalosporins and eight (38%) additionally to carbapenems. CPE isolates harbored blaKPC-2 (n = 5), blaKPC-2 and blaVIM-1 (n = 2), or blaOXA-181 (n = 1); additionally, mcr-9 was detected in one isolate. Two out of eight CPE isolates were resistant to cefiderocol and two to colistin. Resistance to 3rd generation cephalosporins was mediated by ESBL (n = 10) or AmpC (n = 3). The presence of AmpC-producing Enterobacterales, ESBL-E and CPE in northern German surface water samples is alarming and highlights the importance of aquatic environments as a potential source of MDR bacteria.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Janina Noster
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Yvonne Stelzer
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Andreas Rump
- University Institute for Medical Genetics, Klinikum Oldenburg, Oldenburg, Germany
| | - Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matthijs Berends
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
- Certe Medical Diagnostics and Advice Foundation, Department of Medical Epidemiology, Groningen, the Netherlands
| | - Andreas Voss
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Iqbal A, Nwokocha G, Tiwari V, Barphagha IK, Grove A, Ham JH, Doerrler WT. A membrane protein of the rice pathogen Burkholderia glumae required for oxalic acid secretion and quorum sensing. MOLECULAR PLANT PATHOLOGY 2023; 24:1400-1413. [PMID: 37428013 PMCID: PMC10576180 DOI: 10.1111/mpp.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Bacterial panicle blight is caused by Burkholderia glumae and results in damage to rice crops worldwide. Virulence of B. glumae requires quorum sensing (QS)-dependent synthesis and export of toxoflavin, responsible for much of the damage to rice. The DedA family is a conserved membrane protein family found in all bacterial species. B. glumae possesses a member of the DedA family, named DbcA, which we previously showed is required for toxoflavin secretion and virulence in a rice model of infection. B. glumae secretes oxalic acid as a "common good" in a QS-dependent manner to combat toxic alkalinization of the growth medium during the stationary phase. Here, we show that B. glumae ΔdbcA fails to secrete oxalic acid, leading to alkaline toxicity and sensitivity to divalent cations, suggesting a role for DbcA in oxalic acid secretion. B. glumae ΔdbcA accumulated less acyl-homoserine lactone (AHL) QS signalling molecules as the bacteria entered the stationary phase, probably due to nonenzymatic inactivation of AHL at alkaline pH. Transcription of toxoflavin and oxalic acid operons was down-regulated in ΔdbcA. Alteration of the proton motive force with sodium bicarbonate also reduced oxalic acid secretion and expression of QS-dependent genes. Overall, the data show that DbcA is required for oxalic acid secretion in a proton motive force-dependent manner, which is critical for QS of B. glumae. Moreover, this study supports the idea that sodium bicarbonate may serve as a chemical for treatment of bacterial panicle blight.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - George Nwokocha
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Vijay Tiwari
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Inderjit K. Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - Anne Grove
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Jong Hyun Ham
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - William T. Doerrler
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
12
|
Prasad SV, Fiedoruk K, Zakrzewska M, Savage PB, Bucki R. Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89. Microbiol Spectr 2023; 11:e0121523. [PMID: 37338344 PMCID: PMC10434160 DOI: 10.1128/spectrum.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
Collapse
Affiliation(s)
- Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
13
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Seethalakshmi PS, Rajeev R, Prabhakaran A, Kiran GS, Selvin J. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiol Res 2023; 270:127316. [PMID: 36812837 DOI: 10.1016/j.micres.2023.127316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
15
|
Todor H, Herrera N, Gross CA. Three Bacterial DedA Subfamilies with Distinct Functions and Phylogenetic Distribution. mBio 2023; 14:e0002823. [PMID: 36856409 PMCID: PMC10127716 DOI: 10.1128/mbio.00028-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Recent studies in bacteria have suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated our findings to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in archaea, bacteria, and eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and that some bacterial DedA proteins are undecaprenyl phosphate flippases. We performed a phylogenetic analysis of this protein family in bacteria that revealed 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our bioinformatic analysis lays the groundwork for future experimental studies on the role of DedA proteins in maintaining and modifying the membrane.
Collapse
Affiliation(s)
- Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Nadia Herrera
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Mataseje LF, Doualla-Bell F, Boyd DA, Fakharuddin K, Felipe Garcia Jeldes H, Plante V, Beaudoin MC, Godbout A, Wong S, Fafard J, Mulvey MR. Genetic and Phenotypic Characterization of the First Canadian Case of Ambler Class A Carbapenemase FRI-8. Microb Drug Resist 2023; 29:47-50. [PMID: 36802273 PMCID: PMC9969894 DOI: 10.1089/mdr.2022.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
This study investigated the mechanism of carbapenem resistance in an Enterobacter cloacae complex positive by the modified carbapenem inactivation method (mCIM) but negative by the Rosco Neo-Rapid Carb Kit, β CARBA, and conventional PCR for common carbapenemase genes (KPC, NDM, OXA-48, IMP, VIM, GES, and IMI/NMC). Using whole genome sequencing (WGS) data we confirmed the identification of Enterobacter asburiae (ST1639) and the presence of blaFRI-8 located on a 148kb IncFII(Yp) plasmid. This is the first occurrence of a clinical isolate harboring the FRI-8 carbapenemase and the second occurrence of FRI in Canada. This study highlights the need to use both WGS and phenotypic screening methods for detection of carbapenemase-producing strains if we consider the growing diversity of carbapenemases.
Collapse
Affiliation(s)
- Laura F. Mataseje
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Address correspondence to: Laura F. Mataseje, MSc, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, Canada
| | | | - David A. Boyd
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Ken Fakharuddin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | | | - Valerie Plante
- Centre Hospitalier de l'Université Laval, Québec City, Canada
| | | | | | - Simon Wong
- Laboratoire de santé Publique du Québec, Ste-Anne-de-Bellevue, Canada
| | - Judith Fafard
- Laboratoire de santé Publique du Québec, Ste-Anne-de-Bellevue, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|
17
|
Doijad SP, Gisch N, Frantz R, Kumbhar BV, Falgenhauer J, Imirzalioglu C, Falgenhauer L, Mischnik A, Rupp J, Behnke M, Buhl M, Eisenbeis S, Gastmeier P, Gölz H, Häcker GA, Käding N, Kern WV, Kola A, Kramme E, Peter S, Rohde AM, Seifert H, Tacconelli E, Vehreschild MJGT, Walker SV, Zweigner J, Schwudke D, Chakraborty T, Thoma N, Weber A, Vavra M, Schuster S, Peyerl-Hoffmann G, Hamprecht A, Proske S, Stelzer Y, Wille J, Lenke D, Bader B, Dinkelacker A, Hölzl F, Kunstle L, Chakraborty T. Resolving colistin resistance and heteroresistance in Enterobacter species. Nat Commun 2023; 14:140. [PMID: 36627272 PMCID: PMC9832134 DOI: 10.1038/s41467-022-35717-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.
Collapse
Affiliation(s)
- Swapnil Prakash Doijad
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Renate Frantz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle, Mumbai, India
| | - Jane Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Can Imirzalioglu
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Linda Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.,Institute of Hygiene and Environmental Medicine, Justus Liebig University, Gießen, Germany
| | - Alexander Mischnik
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Michael Behnke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Michael Buhl
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nürnberg, Germany
| | - Simone Eisenbeis
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Petra Gastmeier
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Hanna Gölz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Georg Alexander Häcker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Nadja Käding
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Winfried V Kern
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine and University Hospital and Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Axel Kola
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Silke Peter
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany
| | - Anna M Rohde
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evelina Tacconelli
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Maria J G T Vehreschild
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah V Walker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Zweigner
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Site: Research Center Borstel, Borstel, Germany
| | | | - Trinad Chakraborty
- German Center for Infection Research (DZIF), Braunschweig, Germany. .,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Todor H, Herrera N, Gross C. Three bacterial DedA subfamilies with distinct functions and phylogenetic distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522824. [PMID: 36712119 PMCID: PMC9881974 DOI: 10.1101/2023.01.04.522824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent studies in bacteria suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated it to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA-family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in Archaea, Bacteria, and Eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and some bacterial DedA proteins are undecaprenyl phosphate flippases. We perform a phylogenetic analysis of this protein family in Bacteria revealing 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our analysis lays the groundwork for a deeper understanding of DedA proteins and their role in maintaining and modifying the membrane.
Collapse
Affiliation(s)
- Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead Contact
| | - Nadia Herrera
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carol Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco 94158, CA, USA
| |
Collapse
|
19
|
Li B, Zhang J, Li X. A comprehensive description of the TolC effect on the antimicrobial susceptibility profile in Enterobacter bugandensis. Front Cell Infect Microbiol 2022; 12:1036933. [PMID: 36569193 PMCID: PMC9780596 DOI: 10.3389/fcimb.2022.1036933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Enterobacter bugandensis is an emerging human pathogen in which multidrug resistant strains have been continuously isolated from various environments. Thus, this organism possesses the potential to pose challenges in human healthcare. However, the mechanisms, especially the efflux pumps, responsible for the multidrug resistance in E. bugandensis remain to be well elucidated. Methods The Enterobacter strain CMCC(B) 45301 was specifically identified using whole genome sequencing. The specific CMCC(B) 45301 homologues of the TolC dependent efflux-pump genes characterized in Escherichia coli were identified. The tolC deletion mutant in CMCC(B) 45301 was constructed and subjected to susceptibility tests using 26 different antimicrobial agents, along with the wild type strain. The synergistic effects combining the Bacillus crude extract (BCE) and several other TolC-affected compounds against CMCC(B) 45301 were assayed. Results We reclassified the Enterobacter CMCC(B) 45301 strain from species cloacae to bugandensis, on the basis of its whole genome sequence. We found that the CMCC(B) 45301 TolC, AcrAB, AcrD, AcrEF, MdtABC, EmrAB, and MacAB exhibit high similarity with their respective homologues in E. coli and Enterobacter cloacae. Our results for the susceptibility tests revealed that lacking tolC causes 4- to 256-fold decrease in the minimal inhibitory concentrations of piperacillin, gentamicin, kanamycin, tetracycline, norfloxacin, ciprofloxacin, chloramphenicol, and erythromycin against CMCC(B) 45301. In addition, the inhibition zones formed by cefuroxime, cefoperazone, amikacin, streptomycin, minocycline, doxycycline, levofloxacin, florfenicol, trimethoprim-sulfamethoxazole, azithromycin, lincomycin, and clindamycin for the tolC mutant were larger or more obvious than that for the parent. Our data suggested the important role played by TolC in CMCC(B) 45301 susceptibility to common antibiotic families covering ß-lactam, aminoglycoside, tetracycline, fluoroquinolone, phenicol, folate pathway antagonist, macrolide, and lincosamide. Deletion for tolC also increased the susceptibility of CMCC(B) 45301 to berberine hydrochloride and BCE, two natural product-based agents. Finally, we found that erythromycin, norfloxacin, and ciprofloxacin can potentiate the antibacterial activity of BCE against CMCC(B) 45301. Discussion The present study elaborated the comprehensive TolC effect on the antimicrobial susceptibility profile in E. bugandensis, which might contribute to the development of more therapeutic options against this nosocomial pathogen.
Collapse
Affiliation(s)
- Bingyu Li
- Health Science Center, Shenzhen University, Shenzhen, Guangdong, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| | - Ji Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China,Research and Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| |
Collapse
|
20
|
Tartor YH, Abd El-Aziz NK, Gharieb RMA, El Damaty HM, Enany S, Soliman EA, Abdellatif SS, Attia ASA, Bahnass MM, El-Shazly YA, Elbediwi M, Ramadan H. Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr- 10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Front Microbiol 2021; 12:770813. [PMID: 34956131 PMCID: PMC8692987 DOI: 10.3389/fmicb.2021.770813] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54–0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan K Abd El-Aziz
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M A Gharieb
- Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hend M El Damaty
- Animal Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Enas A Soliman
- Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Samah S Abdellatif
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S A Attia
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mosa M Bahnass
- Animal Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yousry A El-Shazly
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed Elbediwi
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt.,Institute of Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Bacterial Epidemiology and Antimicrobial Resistance Research Unit, US National Poultry Research Center, US Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| |
Collapse
|
21
|
Caldeira JB, Chung AP, Piedade AP, Morais PV, Branco R. A DedA Family Membrane Protein in Indium Extrusion in Rhodanobacter sp. B2A1Ga4. Front Microbiol 2021; 12:772127. [PMID: 34925279 PMCID: PMC8679861 DOI: 10.3389/fmicb.2021.772127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 01/27/2023] Open
Abstract
Indium (In) is a critical metal widely used in electronic equipment, and the supply of this precious metal is a major challenge for sustainable development. The use of microorganisms for the recovery of this critical high-tech element has been considered an excellent eco-friendly strategy. The Rhodanobacter sp. B2A1Ga4 strain, highly resistant to In, was studied in order to disclose the bacterial mechanisms closely linked to the ability to cope with this metal. The mutation of the gene encoding for a DedA protein homolog, YqaA, affected drastically the In resistance and the cellular metabolic activity of strain Rhodanobacter sp. B2A1Ga4 in presence of this metal. This indicates that this protein plays an important role in its In resistance phenotype. The negative impact of In might be related to the high accumulation of the metal into the mutant cells showing In concentration up to approximately 4-fold higher than the native strain. In addition, the expression of the yqaA gene in this mutant reverted the bacterial phenotype with a significant decrease of In accumulation levels into the cells and an increase of In resistance. Membrane potential measurements showed similar values for native and mutant cells, suggesting that there was no loss of proton-motive force in the mutant cells. The results from this study suggest a potential role of this DedA family protein as a membrane transporter involved in the In efflux process. The mutant strain also has the potential to be used as a biotool in bioaccumulation strategies, for the recovery of In in biomining activities.
Collapse
Affiliation(s)
- Joana B Caldeira
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| | - Ana Paula Chung
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| | - Ana Paula Piedade
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Mechanical Engineering, Coimbra, Portugal
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Coimbra, Portugal
| |
Collapse
|
22
|
Scarsbrook HL, Urban R, Streather BR, Moores A, Mulligan C. Topological analysis of a bacterial DedA protein associated with alkaline tolerance and antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34914576 DOI: 10.1099/mic.0.001125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintaining membrane integrity is of paramount importance to the survival of bacteria as the membrane is the site of multiple crucial cellular processes including energy generation, nutrient uptake and antimicrobial efflux. The DedA family of integral membrane proteins are widespread in bacteria and are associated with maintaining the integrity of the membrane. In addition, DedA proteins have been linked to resistance to multiple classes of antimicrobials in various microorganisms. Therefore, the DedA family are attractive targets for the development of new antibiotics. Despite DedA family members playing a key physiological role in many bacteria, their structure, function and physiological role remain unclear. To help illuminate the structure of the bacterial DedA proteins, we performed substituted cysteine accessibility method (SCAM) analysis on the most comprehensively characterized bacterial DedA protein, YqjA from Escherichia coli. By probing the accessibility of 15 cysteine residues across the length of YqjA using thiol reactive reagents, we mapped the topology of the protein. Using these data, we experimentally validated a structural model of YqjA generated using evolutionary covariance, which consists of an α-helical bundle with two re-entrant hairpin loops reminiscent of several secondary active transporters. In addition, our cysteine accessibility data suggest that YqjA forms an oligomer wherein the protomers are arranged in a parallel fashion. This experimentally verified model of YqjA lays the foundation for future work in understanding the function and mechanism of this interesting and important family.
Collapse
Affiliation(s)
- Hollie L Scarsbrook
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Roman Urban
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Bree R Streather
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Alexandra Moores
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | | |
Collapse
|
23
|
Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Gao Q, Tian B, Cheng A. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149280. [PMID: 34364270 DOI: 10.1016/j.scitotenv.2021.149280] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Disease Investigation Laboratory, Livestock & Dairy Development Department, Zhob 85200, Balochistan, Pakistan
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
24
|
Xia GL, Jiang RL. Efficacy and safety of polymyxin B in carbapenem-resistant gram-negative organisms infections. BMC Infect Dis 2021; 21:1034. [PMID: 34607561 PMCID: PMC8488323 DOI: 10.1186/s12879-021-06719-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate how to use polymyxin B rationally in order to produce the best efficacy and safety in patients with carbapenem-resistant gram-negative organisms (CRO) infection. Methods The clinical characteristics and microbiological results of 181 patients caused by CRO infection treated with polymyxin B in the First Affiliated Hospital from July 2018 to May 2020 were retrospectively analyzed. The bacterial clearance rate, clinical efficacy, adverse drug reactions and 28 days mortality were evaluated. Results The overall effective rate of 181 patients was 49.72%, the total bacterial clearance rate was 42.0%, and the 28 day all-cause mortality rate was 59.1%. The effective rate and bacterial clearance rate in the group of less than 24 h from the isolation of CRO to the use of polymyxin B were significantly higher than those in the group of more than 24 h. Logistics multivariate regression analysis showed that the predictive factors for effective treatment of CRO with polymyxin B were APACHEII score, duration of polymyxin B treatment, combination of polymyxin B and other antibiotics, and bacterial clearance. 17 cases (9.36%) of acute kidney injury were considered as polymyxin B nephrotoxicity and 4 cases (23.5%) recovered after polymyxin B withdrawal. After 14 days of polymyxin B use, 3 cases of polymyxin B resistance appeared, and there were 2 cases of polymyxin B resistance in the daily dose 1.5 mg/kg/day group. Conclusion For CRO infection, the treatment of polymyxin B should be early, combined, optimal dose and duration of treatment, which can achieve better clinical efficacy and microbial reactions, and reduce the adverse reactions and drug resistance.
Collapse
Affiliation(s)
- G L Xia
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - R L Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), NO. 54 Youdian Road, Hangzhou, 310006, China.
| |
Collapse
|
25
|
Chemical or Genetic Alteration of Proton Motive Force Results in Loss of Virulence of Burkholderia glumae, the Cause of Rice Bacterial Panicle Blight. Appl Environ Microbiol 2021; 87:e0091521. [PMID: 34260305 DOI: 10.1128/aem.00915-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rice is an important source of food for more than half of the world's population. Bacterial panicle blight (BPB) is a disease of rice characterized by grain discoloration or sheath rot caused mainly by Burkholderia glumae. B. glumae synthesizes toxoflavin, an essential virulence factor that is required for symptoms of the disease. The products of the tox operons, ToxABCDE and ToxFGHI, are responsible for the synthesis and the proton motive force (PMF)-dependent secretion of toxoflavin, respectively. The DedA family is a highly conserved membrane protein family found in most bacterial genomes that likely function as membrane transporters. Our previous work has demonstrated that absence of certain DedA family members results in pleiotropic effects, impacting multiple pathways that are energized by PMF. We have demonstrated that a member of the DedA family from Burkholderia thailandensis, named DbcA, is required for the extreme polymyxin resistance observed in this organism. B. glumae encodes a homolog of DbcA with 73% amino acid identity to Burkholderia thailandensis DbcA. Here, we created and characterized a B. glumae ΔdbcA strain. In addition to polymyxin sensitivity, the B. glumae ΔdbcA strain is compromised for virulence in several BPB infection models and secretes only low amounts of toxoflavin (∼15% of wild-type levels). Changes in membrane potential in the B. glumae ΔdbcA strain were reproduced in the wild-type strain by the addition of subinhibitory concentrations of sodium bicarbonate, previously demonstrated to cause disruption of PMF. Sodium bicarbonate inhibited B. glumae virulence in rice, suggesting a possible non-toxic chemical intervention for bacterial panicle blight. IMPORTANCE Bacterial panicle blight (BPB) is a disease of rice characterized by grain discoloration or sheath rot caused mainly by Burkholderia glumae. The DedA family is a highly conserved membrane protein family found in most bacterial genomes that likely function as membrane transporters. Here, we constructed a B. glumae mutant with a deletion in a DedA family member named dbcA and report a loss of virulence in models of BPB. Physiological analysis of the mutant shows that the proton motive force is disrupted, leading to reduction of secretion of the essential virulence factor toxoflavin. The mutant phenotypes are reproduced in the virulent wild-type strain without an effect on growth using sodium bicarbonate, a nontoxic buffer that has been reported to disrupt the PMF. The results presented here suggest that bicarbonate may be an effective antivirulence agent capable of controlling BPB without imposing an undue burden on the environment.
Collapse
|
26
|
Liu S, Fang R, Zhang Y, Chen L, Huang N, Yu K, Zhou C, Cao J, Zhou T. Characterization of resistance mechanisms of Enterobacter cloacae Complex co-resistant to carbapenem and colistin. BMC Microbiol 2021; 21:208. [PMID: 34238225 PMCID: PMC8268410 DOI: 10.1186/s12866-021-02250-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/04/2021] [Indexed: 11/27/2022] Open
Abstract
Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02250-x.
Collapse
Affiliation(s)
- Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Renchi Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaihang Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Panta PR, Doerrler WT. A link between pH homeostasis and colistin resistance in bacteria. Sci Rep 2021; 11:13230. [PMID: 34168215 PMCID: PMC8225787 DOI: 10.1038/s41598-021-92718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Colistin resistance is complex and multifactorial. DbcA is an inner membrane protein belonging to the DedA superfamily required for maintaining extreme colistin resistance of Burkholderia thailandensis. The molecular mechanisms behind this remain unclear. Here, we report that ∆dbcA displays alkaline pH/bicarbonate sensitivity and propose a role of DbcA in extreme colistin resistance of B. thailandensis by maintaining cytoplasmic pH homeostasis. We found that alkaline pH or presence of sodium bicarbonate displays a synergistic effect with colistin against not only extremely colistin resistant species like B. thailandensis and Serratia marcescens, but also a majority of Gram-negative and Gram-positive bacteria tested, suggesting a link between cytoplasmic pH homeostasis and colistin resistance across species. We found that lowering the level of oxygen in the growth media or supplementation of fermentable sugars such as glucose not only alleviated alkaline pH stress, but also increased colistin resistance in most bacteria tested, likely by avoiding cytoplasmic alkalinization. Our observations suggest a previously unreported link between pH, oxygen, and colistin resistance. We propose that maintaining optimal cytoplasmic pH is required for colistin resistance in a majority of bacterial species, consistent with the emerging link between cytoplasmic pH homeostasis and antibiotic resistance.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
28
|
Plasmid-mediated Kluyvera-like arnBCADTEF operon confers colistin (hetero)resistance to Escherichia coli. Antimicrob Agents Chemother 2021; 65:AAC.00091-21. [PMID: 33685891 PMCID: PMC8092862 DOI: 10.1128/aac.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of colistin as a last resort antimicrobial is compromised by the emergence of resistant enterobacteria with acquired determinants like mcr genes, mutations that activate the PmrAB system and by still unknown mechanisms. This work analyzed 74 E. coli isolates from healthy swine, turkey or bovine, characterizing their colistin resistance determinants. The mcr-1 gene, detected in 69 isolates, was the main determinant found among which 45% were carried by highly mobile plasmids, followed by four strains lacking previously known resistance determinants or two with mcr-4 (one in addition to mcr-1), whose phenotypes were not transferred by conjugation. Although a fraction of isolates carrying mcr-1 or mcr-4 genes also presented missense polymorphisms in pmrA or pmrB, constitutive activation of PmrAB was not detected, in contrast to strains with mutations that confer colistin resistance. The expression of mcr genes negatively controls the transcription of the arnBCADTEF operon itself, a down-regulation that was also observed in the four isolates lacking known resistance determinants, three of them sharing the same macrorestriction and plasmid profiles. Genomic sequencing of one of these strains, isolated from a bovine in 2015, revealed a IncFII plasmid of 62.1 Kb encoding an extra copy of the arnBCADTEF operon closely related to Kluyvera ascorbata homologs. This element, called pArnT1, was cured by ethidium bromide and the cells lost resistance to colistin in parallel. Furthermore, a susceptible E. coli strain acquired heteroresistance after transformation with pArnT1 or pBAD24 carrying the Kluyvera-like arnBCADTEF operon, revealing it as a new colistin resistance determinant.
Collapse
|
29
|
The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 2021; 9:microorganisms9020442. [PMID: 33672663 PMCID: PMC7924381 DOI: 10.3390/microorganisms9020442] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex.
Collapse
|
30
|
Zong Z, Feng Y, McNally A. Carbapenem and Colistin Resistance in Enterobacter: Determinants and Clones. Trends Microbiol 2021; 29:473-476. [PMID: 33431326 DOI: 10.1016/j.tim.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
Enterobacter is a globally important pathogen. Here we clarify its taxonomy and review recent developments in its resistance to carbapenem and colistin, illustrating that Enterobacter has a large arsenal of mechanisms to grow under antimicrobial pressure. Further studies are required to decipher colistin heteroresistance and understand why certain Enterobacter lineages have emerged clinically.
Collapse
Affiliation(s)
- Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
32
|
R 93P Substitution in the PmrB HAMP Domain Contributes to Colistin Heteroresistance in Escherichia coli Isolates from Swine. Antimicrob Agents Chemother 2020; 64:AAC.01509-20. [PMID: 32868331 DOI: 10.1128/aac.01509-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/19/2020] [Indexed: 02/04/2023] Open
Abstract
Here, the mechanisms of colistin heteroresistance (CHR) were assessed in 12 Escherichia coli isolates from swine in China. CHR was investigated by population analysis profile tests. CHR stability was studied by culturing isolates for five overnight incubation periods in colistin-free medium. Subsequently, the mcr-1 gene and mutations in PmrAB, PhoPQ, and MgrB were screened in parental isolates and resistant subpopulations. Additionally, the expression levels of phoPQ, its target gene pagP, and its negative regulator gene mgrB, as well as pmrAB and its target genes pmrHFIJKLM and pmrC, were determined by real-time relative quantitative PCR. Eleven of the 12 isolates were confirmed to show CHR, with 17 resistant subpopulations. Also, 11 of the 17 subpopulations (64.71%) harbored point mutations in PmrB and/or PhoQ, differing from their parental isolates. However, only one stable resistant subpopulation (EPF42-4) was identified; it harbored an arginine-to-proline substitution at position 93 (R93P) within the PmrB HAMP (histidine kinase, adenylyl cyclase, methyl-binding protein, and phosphatase) domain. Compared to the pmrB expression levels in the parental isolate EPF42 and E. coli K-12 MG1655, remarkable pmrB overexpression was observed in EPF42-4, which showed upregulated pmrA, pmrK, and pmrC expression. Structural analysis demonstrated that the R93P substitution promotes conformational changes in the HAMP domain, leading to an acceleration in its signal transduction ability and the activation of PmrB expression. In conclusion, point mutations in PmrB and/or PhoQ were primarily associated with CHR. The R93P substitution resulted in the establishment of stable resistant subpopulations in E. coli showing CHR.
Collapse
|
33
|
Precise Species Identification for Enterobacter: a Genome Sequence-Based Study with Reporting of Two Novel Species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov. mSystems 2020; 5:5/4/e00527-20. [PMID: 32753511 PMCID: PMC7406230 DOI: 10.1128/msystems.00527-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae. Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non-Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information. The genus Enterobacter comprises common pathogens and has a complicated taxonomy. Precise taxonomic assignation lays a foundation for microbiology. In this study, we updated the Enterobacter taxonomy based on robust genome analyses. We found that all Enterobacter subspecies assignments were incorrect. Enterobacter cloacae subsp. dissolvens and Enterobacter hormaechei subsp. hoffmannii are species (Enterobacter dissolvens and Enterobacter hoffmannii, respectively) rather than subspecies. Enterobacter xiangfangensis, Enterobacter hormaechei subsp. oharae, and Enterobacter hormaechei subsp. steigerwaltii are not Enterobacter hormaechei subspecies but belong to the same species (Enterobacter xiangfangensis). Enterobacter timonensis should be removed to Pseudenterobacter, a novel genus. We then reported two novel species, Enterobacter quasiroggenkampii and Enterobacter quasimori, by genome- and phenotype-based characterization. We also applied the updated taxonomy to curate 1,997 Enterobacter genomes in GenBank. Species identification was changed following our updated taxonomy for the majority of publicly available strains (1,542, 77.2%). The most common Enterobacter species was E. xiangfangensis. We identified 14 novel tentative Enterobacter genomospecies. This study highlights that updated and curated taxonomic assignments are the premise of correct identification. IMPORTANCEEnterobacter species are major human pathogens. Precise species identification lays a foundation for microbiology, but the taxonomy of Enterobacter is complicated and confusing. In this study, first, we significantly updated the taxonomy of Enterobacter by rigorous genome analyses and found that all subspecies assignments of Enterobacter were incorrect. Second, we characterized and reported two novel Enterobacter species with clinical significance. Third, we curated 1,997 Enterobacter genome sequences deposited in GenBank and found that the species identification of most Enterobacter strains needed to be corrected. Fourth, we found that the most common Enterobacter species seen in clinical samples is Enterobacter xiangfangensis rather than Enterobacter cloacae. Fifth, we identified 14 tentative novel Enterobacter and 18 tentative novel non-Enterobacter species. This study highlights that updated and curated taxonomic assignments are the premise of correct species identification. We recommend that future Enterobacter studies need to use the updated taxonomy to avoid misleading information.
Collapse
|
34
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
35
|
Wand ME, Sutton JM. Mutations in the two component regulator systems PmrAB and PhoPQ give rise to increased colistin resistance in Citrobacter and Enterobacter spp. J Med Microbiol 2020; 69:521-529. [PMID: 32125265 DOI: 10.1099/jmm.0.001173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Colistin is a last resort antibiotic for treating infections caused by carbapenem-resistant isolates. Mechanisms of resistance to colistin have been widely described in Klebsiella pneumoniae and Escherichia coli but have yet to be characterized in Citrobacter and Enterobacter species.Aim. To identify the causative mutations leading to generation of colistin resistance in Citrobacter and Enterobacter spp.Methodology. Colistin resistance was generated by culturing in increasing concentrations of colistin or by direct culture in a lethal (above MIC) concentration. Whole-genome sequencing was used to identify mutations. Fitness of resistant strains was determined by changes in growth rate, and virulence in Galleria mellonella.Results. We were able to generate colistin resistance upon exposure to sub-MIC levels of colistin, in several but not all strains of Citrobacter and Enterobacter resulting in a 16-fold increase in colistin MIC values for both species. The same individual strains also developed resistance to colistin after a single exposure at 10× MIC, with a similar increase in MIC. Genetic analysis revealed that this increased resistance was attributed to mutations in PmrB for Citrobacter and PhoP in Enterobacter, although we were not able to identify causative mutations in all strains. Colistin-resistant mutants showed little difference in growth rate, and virulence in G. mellonella, although there were strain-to-strain differences.Conclusions. Stable colistin resistance may be acquired with no loss of fitness in these species. However, only select strains were able to adapt suggesting that acquisition of colistin resistance is dependent upon individual strain characteristics.
Collapse
Affiliation(s)
- Matthew E Wand
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
36
|
Naha S, Sands K, Mukherjee S, Roy C, Rameez MJ, Saha B, Dutta S, Walsh TR, Basu S. KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: Clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. Int J Antimicrob Agents 2020; 55:105903. [PMID: 31954832 DOI: 10.1016/j.ijantimicag.2020.105903] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/21/2023]
Abstract
This study characterizes four KPC-2-producing Klebsiella pneumoniae isolates from neonates belonging to a single sequence type 147 (ST147) in relation to carbapenem resistance and explores probable mechanisms of differential colistin resistance among the clonal cluster. Whole genome sequencing (WGS) revealed that the isolates were nearly 100% identical and harbored resistance genes (blaKPC-2,OXA-9,CTX-M-15,SHV-11,OXA-1,TEM-1B, oqxA, oqxB, qnrB1, fosA, arr-2, sul1, aacA4, aac(6')Ib-cr, aac(6')Ib), and several virulence genes. blaKPC-2 was the only carbapenem-resistant gene found, bracketed between ISKpn7 and ISKpn6 of Tn4401b on a non-conjugative IncFII plasmid. Remarkably, one of the clonal isolates was resistant to colistin, the mechanistic basis of which was not apparent from comparative genomics. The transmissible colistin resistance gene, mcr, was absent. Efflux pump inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) rendered a 32-fold decrease in the minimum inhibitory concentration (MIC) of colistin in the resistant isolate only. acrB, tolC, ramA, and soxS genes of the AcrAB-TolC pump system overexpressed exclusively in the colistin-resistant isolate, although the corresponding homologs of the AcrAB-TolC pump, regulators and promoters were mutually identical. No change was observed in the expression of other efflux genes (kpnE/F and kpnG/H) or two-component system (TCS) genes (phoP/phoQ, pmrA/pmrB). Colistin resistance in one of the clonal KPC-2-producing isolates is postulated to be due to overexpression of the AcrAB-TolC pump. This study is probably the first to report clinical clonal K. pneumoniae isolates with differences in colistin susceptibility. The presence of carbapenem-resistant isolates with differential behavior in the expression of a genomically identical pump system indicates the nuances of the resistance mechanisms and the difficulty of treatment thereof.
Collapse
Affiliation(s)
- Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P33, CIT Road, Scheme XM, Beliaghata, Kolkata-700010, West Bengal, India
| | - Kirsty Sands
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Subhankar Mukherjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P33, CIT Road, Scheme XM, Beliaghata, Kolkata-700010, West Bengal, India
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Bijan Saha
- Department of Neonatology, Institute of Post-Graduate Medical Education & Research and SSKM Hospital, Kolkata-700020, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P33, CIT Road, Scheme XM, Beliaghata, Kolkata-700010, West Bengal, India
| | - Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P33, CIT Road, Scheme XM, Beliaghata, Kolkata-700010, West Bengal, India.
| |
Collapse
|
37
|
Panta PR, Kumar S, Stafford CF, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A DedA Family Membrane Protein Is Required for Burkholderia thailandensis Colistin Resistance. Front Microbiol 2019; 10:2532. [PMID: 31827463 PMCID: PMC6849406 DOI: 10.3389/fmicb.2019.02532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Colistin is a “last resort” antibiotic for treatment of infections caused by some multidrug resistant Gram-negative bacterial pathogens. Resistance to colistin varies between bacterial species. Some Gram-negative bacteria such as Burkholderia spp. are intrinsically resistant to very high levels of colistin with minimal inhibitory concentrations (MIC) often above 0.5 mg/ml. We have previously shown DedA family proteins YqjA and YghB are conserved membrane transporters required for alkaline tolerance and resistance to several classes of dyes and antibiotics in Escherichia coli. Here, we show that a DedA family protein in Burkholderia thailandensis (DbcA; DedA of Burkholderia required for colistin resistance) is a membrane transporter required for resistance to colistin. Mutation of dbcA results in >100-fold greater sensitivity to colistin. Colistin resistance is often conferred via covalent modification of lipopolysaccharide (LPS) lipid A. Mass spectrometry of lipid A of ΔdbcA showed a sharp reduction of aminoarabinose in lipid A compared to wild type. Complementation of colistin sensitivity of B. thailandensis ΔdbcA was observed by expression of dbcA, E. coli yghB or E. coli yqjA. Many proton-dependent transporters possess charged amino acids in transmembrane domains that take part in the transport mechanism and are essential for function. Site directed mutagenesis of conserved and predicted membrane embedded charged amino acids suggest that DbcA functions as a proton-dependent transporter. Direct measurement of membrane potential shows that B. thailandensis ΔdbcA is partially depolarized suggesting that loss of protonmotive force can lead to alterations in LPS structure and severe colistin sensitivity in this species.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sujeet Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline F Stafford
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caitlin E Billiot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Martin V Douglass
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|