1
|
Padilha SF, Martins R, Hul LM, Carreño LOD, Freitas MSD, Lopes JS, Ibelli AMG, Peixoto JDO, Zanella Morés MA, Cantão ME, Teixeira RDA, Dias LT, Ledur MC. Genome-wide association analysis reveals insights into the genetic architecture of mesenteric torsion in pigs. Sci Rep 2025; 15:13774. [PMID: 40258920 PMCID: PMC12012111 DOI: 10.1038/s41598-025-98029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
Mesenteric torsion (MT) is a condition that affects several animal species and can lead to the animals' death. However, little is known about its etiology. Therefore, this study aimed to identify genomic regions and candidate genes associated with MT. Phenotypic and genotypic data from 405 pigs, including MT records and genealogy were used. In the model, contemporary group (sex, year, and week of weaning) was considered fixed effect, the linear effect of weaning weight as a covariate, while direct additive genetic effect was random. In the genome-wide association study, genomic windows explaining more than 0.3% of the genetic variance were considered significant. Fifty-two significant windows were identified, covering 299 genes located on 15 chromosomes. The HSD17B4, TNFAIP8, TENM4, CHD2, RGMA, OPRM1, PPARGC1A, CHIA, KCNJ2, KCNJ16, KCNJ15, ELN, SGO1, IL17A, IL17F, GATA4, OVOL2, GLI3, and RAP1A genes were considered candidates to MT since they are related to intestinal morphogenesis, feeding behavior, intestinal barrier, digestion, and intestinal motility. These processes could induce intestinal malformations, dysbiosis, excessive fermentation, delay intestinal transit, and obstruction. Our findings contribute to understanding the mechanisms involved in the occurrence of MT in pigs and may help to elucidate the etiology of intestinal torsion/volvulus in other mammals, including humans.
Collapse
Affiliation(s)
- Suelen Fernandes Padilha
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | - Rafaela Martins
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | - Ludmila Mudri Hul
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Faculdade de Ensino Superior do Centro do Paraná, Guarapuava, PR, 85200-000, Brazil
| | | | | | | | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Embrapa Suínos e Aves, Concórdia, 89715-899, SC, Brazil
- Embrapa Pecuária Sudeste, São Carlos, SP, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Embrapa Suínos e Aves, Concórdia, 89715-899, SC, Brazil
| | | | | | | | - Laila Talarico Dias
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | | |
Collapse
|
2
|
Fan Z, Lei L, Wu X, Xing R, Du P, Wang Z, Zhao H, Huang Y, Chen W, Si X. Dietary fatty acids promote gut health in weaned piglets by regulating gut microbiota and immune function. Front Microbiol 2025; 16:1558588. [PMID: 40270814 PMCID: PMC12014538 DOI: 10.3389/fmicb.2025.1558588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Background Post-weaning diarrhea in piglets is a common challenge that adversely impacts growth performance and increases mortality, leading to severe economic losses. Medium-chain fatty acids (MCFA) and short-chain fatty acids (SCFA) are frequently used as feed additives due to their bioactive properties. This study evaluated the effects of two different blends of MCFA and SCFA (VSM and VS + VM) as alternatives to zinc oxide (ZnO) on growth performance, nutrient digestibility, oxidative stress, inflammatory, and gut microbiota composition in weaned piglets. Methods and results A total of 108 piglets (8.22 ± 0.51 kg) were randomly assigned to three treatments: control (CON, basal diet + ZnO), VSM (basal diet + higher MCFA and lower SCFA content) and VS + VM (basal diet + higher SCFA and lower MCFA content). Results indicated that Both VSM and VS + VM, can replace ZnO to relieve diarrhea of weaned piglets as evidenced by increased average daily gain (ADG) and decreased feed to gain ratio (F/G) in 1-15 days, with no difference in final body weight compared to the CON group. Additionally, dietary MCFA and SCFA supplementation improves anti-oxidative and anti-inflammatory capacity by decreased of malondialdehyde (MDA) activity, and inhibited proinflammatory cytokine tumor necrosis factor α (TNF-α) and interleukin (IL-1β, IL-17A) secretion. Further study showed that the protective effect of MCFA and SCFA were associated with restoring gut barrier, upregulating abundances of Lactobacillus and Roseburia of piglets. Interpretation Collectively, the combination of MCFA and SCFA alleviated oxidative stress, modulated inflammation, and supported gut barrier function in weaned piglets, offering a promising alternative to ZnO, with VSM showing superior effects.
Collapse
Affiliation(s)
- Zongze Fan
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lei Lei
- Zhengzhou Agricultural Comprehensive Administrative Law Enforcement Detachment, Zhengzhou, China
| | - Xingyue Wu
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ronghui Xing
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Du
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ziyang Wang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Huijuan Zhao
- Delvigent (Hebei) Biotech Co. Ltd., Cangzhou, China
| | - Yanqun Huang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xuemeng Si
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Huang J, Sun Z, Zhang G, Zhang Z, Sun F, Han D, Wang J, Zhao J. Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025; 298:139810. [PMID: 39814295 DOI: 10.1016/j.ijbiomac.2025.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05). The AX increased sIgA concentration and protein expression of protein expression of TLR4 and NF-κB (p65), but decreased mRNA expression of pro-inflammatory cytokines in the ileum of weaned pig model, leading to the reduced diarrhea (P < 0.05). The AX increased an abundance of Bifidobacterium pseudocatenulatum, production of butyric acid and ferulic acid in the ileal digesta of pigs (P < 0.05). In a LPS-treated mouse model, butyric acid and ferulic acid combination increased IL-10 concentration and abundance of Bifidobacterium pseudocatenulatum, but reduced mRNA expression of IL-6 and gene expression of TLR4 and NF-κB (p65) in the jejunum. In summary, AX is fermented by gut microbiota to produce ferulic acid, as well as butyric acid, which improved host immunity by promoting relative abundance of Bifidobacterium pseudocatenulatum and suppressing activation of TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Xu J, Qiao H, Gan L, Wang P, Zhao Y, Lei Z, Chou Y, Hou C, Li M, Wang J. Impacts of zinc caproate supplementation on growth performance, intestinal health, anti-inflammatory activity, and Zn homeostasis in weaned piglets challenged with Escherichia coli K88. J Anim Sci Biotechnol 2025; 16:44. [PMID: 40087676 PMCID: PMC11908000 DOI: 10.1186/s40104-025-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is one of the primary causes of diarrhea in piglets, creating substantial economic losses in the swine farming industry worldwide. This study aimed to investigate the impacts of zinc caproate (ZnCA, C12H22O4Zn) on the intestinal health, growth performance, inflammatory status, and Zn homeostasis of weaned piglets challenged with ETEC K88. In total, 48 weaned piglets (Duroc × Landrace × Yorkshire, 7.78 ± 0.19 kg, 28 d) were selected for a 21-d experiment. Each experimental treatment consisted of 6 replicate pens with 2 piglets each. The treatment conditions were as follows: i) a basal diet (CON), ii) a basal diet + ETEC K88 (NC), iii) a basal diet + 2,500 mg/kg of Zn (provided as zinc oxide, ZnO) + ETEC K88 (PC), and iv) a basal diet + 1,600 mg/kg of Zn (provided as ZnCA) + ETEC K88 (ZnCA). RESULTS The addition of 1,600 mg/kg ZnCA to the diet of post-weaning piglets effectively enhanced growth performance and nutrient digestibility and reduced the incidence of diarrhea and inflammatory reactions caused by ETEC K88 infection. These therapeutic effects were comparable to those of pharmacological doses of ZnO. In terms of improving intestinal health and Zn homeostasis in post-weaning piglets challenged with ETEC K88, the effectiveness of 1,600 mg/kg ZnCA surpassed that of pharmacological doses of ZnO. CONCLUSIONS Overall, under the experimental conditions of this study, ZnCA exhibited the potential to reduce the pharmacological dosage of ZnO while improving intestinal health and Zn homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Jilong Xu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Hanzhen Qiao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Liping Gan
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Peng Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yifeng Zhao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Zetian Lei
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yixuan Chou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Chenrui Hou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Mengqi Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Jinrong Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Liu X, Zhang X, He Q, Sun X, Wang W, Li S. Effects of increasing n3:n6 ratio by replacing extruded soybeans with extruded flaxseed on dry matter intake, rumen fluid bacteria, and liver lipid metabolism in transition cows. BMC Microbiol 2025; 25:138. [PMID: 40087566 PMCID: PMC11907948 DOI: 10.1186/s12866-024-03733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/23/2024] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The drop of dry matter intake (DMI) and rise of milk production in transitional dairy cows would mobilize reserved fat and disrupt lipid metabolism, eventually attributed to negative energy balance (NEB) and immune injury. The positive effect of n-3 polyunsaturated fatty acids (PUFA) on regulating energy metabolism and inflammation has been elucidated, however, the lack of regulatory mechanism of dairy cows deserves further investigation. In this study, 30 Holstein transition cows were divided into the control (CON) and HN3 groups based on the n-3: n-6 PUFA ratio in the diet. RESULTS The results showed that compared to the CON group, high n-3: n-6 PUFA ratio-supplemented cows in the prepartum phase reduced the relative abundance of gram-negative bacteria in the rumen, the concentration of lipopolysaccharide in the plasma and liver also significantly decreased (P < 0.05). Transcriptomic analysis of the liver showed that the NF-κB signaling pathway significantly down-regulated and the taste transduction pathway up-regulated (P < 0.05) in the HN3 group. In the postpartum phase, a high n-3/n-6 PUFA ratio in the diet increased the relative abundance of Prevotella, Succinimonas and Treponema in the rumen, at the same time, orexins in plasma were also changed (P < 0.05). Further, the insulin resistance pathway significantly down-regulated and the taste transduction pathway up-regulated (P < 0.05) in the liver. CONCLUSIONS Overall, these results showed that a high n-3: n-6 PUFA ratio in the diet attenuates inflammatory responses in the prepartum phase and increases milk protein in the postpartum phase of transitional dairy cows. Appropriate increase in the proportion of n-3: n-6 PUFA ratio in the diet may be an effective measure to alleviate postpartum metabolic disease in dairy cows.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinyue Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiongyu He
- Animal Genomics, ETH Zurich, Universitatstrasse 2, Zurich, 8092, Switzerland
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Department of the neurosurgery, Penn State College of Medicine, 700 HMC Cres Rd, Hummelstown, PA, 17036, USA.
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Ji M, Rong X, Wu Y, Li H, Zhao X, Zhao Y, Guo X, Cao G, Yang Y, Li B. Effects of Fermented Liquid Feed with Compound Probiotics on Growth Performance, Meat Quality, and Fecal Microbiota of Growing Pigs. Animals (Basel) 2025; 15:733. [PMID: 40076016 PMCID: PMC11899608 DOI: 10.3390/ani15050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Feed fermentation enhances feed nutrition and animal health, but its impact on the gut microbiota of young pigs remains unclear. This study aimed to evaluate the effects of a probiotic fermented feed, which includes Lactobacillus plantarum, Pediococcus pentosaceus, Bacillus subtilis, and Bacillus coagulans, on the growth performance, meat quality, and intestinal microbiota of growing pigs. We randomly assigned 24 Duroc × Landrace × Landrace pigs to two groups: a control (Ctrl) group and the fermented liquid feed (FLF) group, with three replicate pens per group and four pigs per pen. Results indicated that the FLF group experienced a significant decrease in anti-nutritional factors like α-conglycinin and β-conglycinin. In addition, the average daily gain of pigs in the FLF group increased significantly, while the feed conversion ratio and shear force decreased. HE staining showed that the FLF group had notably enhanced villus height in the jejunum and ileum. 16S rRNA sequencing revealed a marked increase in the relative abundance of certain microbes in the FLF group, which were predominantly associated with carbohydrate and amino acid metabolism. These results indicated that compound probiotic FLF can elevate feed quality, enhance the growth performance of growing pigs, and ameliorate the structure of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Yang
- Key Laboratory of Animal Science, College of Animal Science, Shanxi Agricultural University, No.1, Mingxian South Road, Taigu, Jinzhong 030801, China; (M.J.); (Y.W.); (Y.Z.); (X.G.); (G.C.)
| | - Bugao Li
- Key Laboratory of Animal Science, College of Animal Science, Shanxi Agricultural University, No.1, Mingxian South Road, Taigu, Jinzhong 030801, China; (M.J.); (Y.W.); (Y.Z.); (X.G.); (G.C.)
| |
Collapse
|
7
|
Matsubara K, Li J, Enomoto Y, Takahashi T, Ma M, Ninomiya R, Kazami D, Miura K, Hirayama K. Beneficial Role of Heat-Treated Lactobacillus sakei HS-1 on Growth Performance, Nutritional Status and Gut Microbiota in Weaned Piglets. J Anim Physiol Anim Nutr (Berl) 2025; 109:362-375. [PMID: 39410870 PMCID: PMC11919806 DOI: 10.1111/jpn.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/26/2024] [Accepted: 09/22/2024] [Indexed: 03/20/2025]
Abstract
In the swine industry, there is a strong need to replace an antibiotic growth promoter (AGP) used as feed additives in weaned piglets to enhance nutrient utilization in their diets and improve growth performance. Lactobacillus sakei HS-1 strain is a microbial preparation isolated from pickles. The study aim is to investigate the effectiveness of heat-treated L. sakei HS-1 strain (HT-LS) as a growth promoter in weaned piglets compared to colistin (CS), a widely used AGP. Eighteen crossbred weaned piglets (Landrace × Yorkshire × Duroc) of 21 days (average body weight [BW]: 7.06 ± 0.59 kg) were divided into three groups: fed the control diet (CT group), fed a diet supplemented with 30 ppm colistin sulphate (CS group), fed a diet supplemented with HT-LS at a concentration of 2.0 × 105 cells/g (LS group) until 49 days. The results indicated that LS group exhibited significantly higher average daily gain (p < 0.05) and higher BW (p < 0.1) compared with CT group, even higher than CS group. CS group showed higher growth performance compared to CT group but the differences were not statistically significant. In addition, LS group had higher (p < 0.05) or tended to higher (p < 0.1) concentrations of several plasma amino acids than the other two groups at 35 and 49 days. Faecal acetate concentration was higher (p < 0.1) in LS group than in CT group at 35 days. Blood immunoglobulin G concentration in LS group was significantly lower (p < 0.05) than in CT group at 35 and 49 days, and blood immunoglobulin A tended to be lower (p < 0.1) at 35 days than in CT group. LS group showed an increased abundance of g_Prevotella 7, g_Streptococcus and g_Lactobacillus (linear discriminant analysis [LDA] score ≥ 2.0). Predictive metagenomic analysis revealed an enrichment of the mixed acid fermentation pathway (LDA score ≥ 2.0). Furthermore, several gut microbes exhibited correlations with plasma amino acids (p < 0.01) and short-chain fatty acids in faeces (p < 0.01). These findings demonstrate that HT-LS improves the growth performance of weaned piglets by enhancing the efficient utilization of nutrients through gut microbiota modification.
Collapse
Affiliation(s)
- Kazuki Matsubara
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | - Yuriko Enomoto
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | - Tomotsugu Takahashi
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | - Min Ma
- Animal Resource Science Center, Graduate School of Agricultural and Life SciencesThe University of TokyoIbarakiJapan
| | | | | | - Kozue Miura
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Research Center for Food Safety, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Llauradó-Calero E, García-Gudiño J, Hernández-García FI, Izquierdo M, Lizardo R, Torrallardona D, Esteve-Garcia E, Tous N. Effect of fish oil in Iberian sow diets on fatty acid, oxylipins and immune traits of colostrum and milk, and suckling piglets' growth performance. Animal 2025; 19:101430. [PMID: 39954335 DOI: 10.1016/j.animal.2025.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Iberian sow productivity is characterised by a low number of weaned piglets with higher within-litter variation in piglet birth BW compared with conventional breeds. To overcome this, nutritional strategies, such as the dietary addition of n-3 fatty acids (FAs), are being studied to improve sow performance, as well as colostrum and milk composition. In addition, n-3 FAs and their derived oxylipins could also be beneficial for the offspring due to their anti-inflammatory roles. The present study was conducted in an outdoor production system where sows were group-fed during the mating and gestation periods, while feed intake was provided individually during lactation. The study aimed to evaluate the effects of including fish oil rich in eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively) in Iberian sow diets on litter size, piglet growth during lactation, and the concentrations of anti-inflammatory molecules in colostrum and milk. Forty sows were randomly assigned to either a control or fish oil diet during pregnancy and lactation. Sow performance and litter traits were monitored until weaning. Colostrum and milk were collected after the birth of the first piglet and at weaning, respectively. Their FA composition, oxylipin profile, and immune indicators were analysed. Despite the piglets from the control group having greater average birth BW than those from the fish oil litters (P = 0.016), the fish oil piglets were heavier at weaning (P < 0.028). Total n-3 FA concentration was increased in the colostrum and milk of fish oil-fed sows (all P < 0.001), mainly due to increases in EPA and DHA concentrations (all P < 0.001). In the same way, most of their oxygenated derivatives were also increased in both colostrum and milk (P ≤ 0.045). The colostrum from fish oil-fed sows also presented higher concentrations of immunoglobulins (Ig) G and A than that from control sows (P = 0.025 and P = 0.026, respectively). In conclusion, the inclusion of fish oil in sow diets increased the levels of IgG and IgA in colostrum, n-3 FAs and their derived oxylipins in colostrum and milk, and piglet BW at weaning.
Collapse
Affiliation(s)
- E Llauradó-Calero
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - J García-Gudiño
- Animal Production, Centre of Scientific and Technological Research of Extremadura (CICYTEX), E-06187 Guadajira, Spain
| | - F I Hernández-García
- Animal Production, Centre of Scientific and Technological Research of Extremadura (CICYTEX), E-06187 Guadajira, Spain
| | - M Izquierdo
- Animal Production, Centre of Scientific and Technological Research of Extremadura (CICYTEX), E-06187 Guadajira, Spain
| | - R Lizardo
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - D Torrallardona
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - E Esteve-Garcia
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - N Tous
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain.
| |
Collapse
|
9
|
Oteyola AO, Oliveira IMSD, Almeida JMD, Cardoso LC, Paula TDMDE, Nogueira JM, Carvalho JCDS, Nogueira HM, Porto BLS, Mota APL, Campos-Junior PHA, Jorge EC, Almeida FRCLD. Chronic fat consumption affects metabolic aspects of murine physiology and influences ovarian follicle atresia. Reprod Toxicol 2025; 132:108836. [PMID: 39800278 DOI: 10.1016/j.reprotox.2025.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Saturated fat has been linked to cardiovascular diseases, leading to an increase in polyunsaturated fat consumption. The aim of the present study was to investigate the effects of three fat sources (coconut oil, lard and soybean oil) on metabolic and reproductive parameters in heterogenic mice. Female Swiss mice (5-6 weeks old; n = 9/group) were divided into four experimental groups: control (CC), coconut oil (CO), lard (LA), and soybean oil (SO), and were orally given 0.6 mL of the corresponding fat daily for 6 weeks to further investigate morphological, biochemical, and molecular parameters. SO females showed the highest glucose intolerance (P < 0.05), and all experimental groups were highly insulin resistant, with no statistical differences among them (P > 0.05). Moreover, all fat supplemented groups presented increased proportion in bile ducts, and CO and SO females presented higher LDL-cholesterol levels compared to CC (P < 0.05). Regarding reproductive parameters, estrous cycle alterations were observed mainly in the SO group, showing extended luteal phase duration (longer diestrus), and higher numbers of atretic follicles per area compared to the CC females (P < 0.05). Furthermore, higher proportion of active Casp-3 positive cells in the granulosa layers of preantral follicles were observed in the LA compared to the CO group (P < 0.05). The gene expression data revealed downregulation of Igf1r and Acvr1 in SO, upregulation of Igf1r in LA and Lhcgr in CO compared to CC females (P < 0.05). Thus, excessive fat intake may have deleterious effects on metabolism and reproductive function, but lard may be the least harmful source.
Collapse
Affiliation(s)
- Ayodeji Ojo Oteyola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jonathas Medeiros de Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Carvalho Cardoso
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Julia Meireles Nogueira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Ana Paula Lucas Mota
- Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
10
|
Schokker D, van den Esker MH, Bossers A, Allaart JG, van Hees H, de Greeff A, Rebel JMJ. Neonatal and maternal dietary interventions driving microbiota and functionality in piglet gut compartments. Sci Rep 2025; 15:6771. [PMID: 40000703 PMCID: PMC11861315 DOI: 10.1038/s41598-025-90781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Feed additives aiming to improve gastrointestinal health are frequently supplied to piglets after weaning (d28) but might be more effective when administered before weaning. In this period, feed additives can either be administered directly to neonates, or indirectly via sow's feed. It is yet unknown what the effect of the administration route is on gut functionality and health in the piglets. Therefore, we compared the effect of different dietary interventions on gut functionality after maternal administration (lactation feed) to the neonatal administration route (oral gavage). These feed interventions included medium chain fatty acids (MCFA), beta-glucans (BG), and galacto-oligosaccharides (GOS). For the maternal administration route, MCFA showed a significant difference in alpha diversity parameter, observed species at d1 and one differentially expressed gene (DEG), and 99 DEG at d31. Pathway enrichment analysis showed association to immune processes and metabolism. For BG, only 21 DEG were observed at d31, these DEGs were associated to signal transduction and sympathetic nerve pathway. For GOS, 816 DEG were observed for GOS at d1, and 77 at d31, where DEGs at d1 were associated to immune processes. For the neonatal administration route, MCFA showed 94 DEG and GOS 6 DEG. Where DEGs in MCFA were mainly associated to cell adhesion processes. When comparing the administration routes directly between treatment groups, we observed significant differences in alpha diversity parameters, observed species at d31 for MCFA, Shannon for GOS, as well as for beta diversity in GOS. For MCFA 515 DEG were observed, for BG 503 DEG, and for GOS 996 DEG. Where for MCFA most pathways were associated to immunological processes, BG showed more metabolism, and GOS mainly metabolism with a few immunological processes. The type of intervention and the administration route influence gut functionality of the piglets. MCFA administration led to a more differentially orchestrated response when comparing the neonatal and maternal administration route then the other two additives. This implies that for each nutritional intervention in early life of a pig the optimal route of administration needs to be determined.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Wageningen Bioveterinary Research, Lelystad, The Netherlands.
- , Postbus 338, Wageningen, 6700 AH, The Netherlands.
| | | | - Alex Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Hubèrt van Hees
- Trouw Nutrition Research and Development, Boxmeer, The Netherlands
| | | | | |
Collapse
|
11
|
Tao D, Dong Y, Che D, Wang Z, Zheng Y, Han R, Jiang H. Acanthopanax senticosus polysaccharide alleviates LPS-induced intestinal inflammation in piglets by gut microbiota and hyodeoxycholic acid regulation. Int J Biol Macromol 2025; 307:141467. [PMID: 40010458 DOI: 10.1016/j.ijbiomac.2025.141467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
The purpose of this study is to investigate the effects and mechanisms of Acanthopanax senticosus polysaccharides (ASPS) on lipopolysaccharide (LPS)-induced intestinal injury and growth performance in piglets. Our results indicated that ASPS improved the growth performance in LPS-challenged piglets, including the increase in average daily gain (ADG), average daily feed intake (ADFI), and the feed to gain ratio (F/G). ASPS alleviated LPS-induced intestinal inflammation in piglets, accompanied by the increase in the villus height to crypt depth ratio (VCR) and the decreased in the expression levels of IL-1β, IL-6, and TNF-α. 16S rRNA sequencing results showed that ASPS improved gut microbiota dysbiosis and increased Lactobacillus_sp._L_YJ abundance. The combined analysis of untargeted metabolomics of intestinal contents and serum showed that ASPS significantly increased the levels of hyodeoxycholic acid (HDCA), DHA ethyl ester, and alanylalanine, and the level of HDCA is the highest among all metabolites, suggesting that ASPS regulated the metabolites of intestinal contents and serum to alleviate LPS-induced intestinal inflammation in piglets, and HDCA might play a significant role during this process. Furthermore, we investigated the effects of HDCA on growth performance and intestinal inflammation in LPS-challenged piglets. The results indicated that HDCA alleviated LPS-induced intestinal inflammation and improved the growth performance in piglets. In conclusion, ASPS could alleviate LPS-induced intestinal inflammation in piglets by gut microbiota and hyodeoxycholic acid regulation. These findings might provide strong evidence for ASPS as a feed additive to improve piglet diarrhea, and reveal the therapeutic potential of hyodeoxycholic acid in preventing intestinal inflammation in piglets.
Collapse
Affiliation(s)
- Dapeng Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Yangyunyi Dong
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China 132109
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Yingying Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Rui Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118.
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118.
| |
Collapse
|
12
|
Ge Z, An Y, Lan W, Li X. Effects of Dietary Supplementation of Omega-3 PUFA Enriched Fish Oil During Late-Pregnancy and Lactation on Reproductive Performance, Immune Activity and Fecal Microbiota Composition in Postpartum Sows. Vet Sci 2025; 12:139. [PMID: 40005899 PMCID: PMC11860538 DOI: 10.3390/vetsci12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Delayed or failed postpartum estrus can impede the reproductive performance of rebreeding dams. Our study aimed to test whether dietary fish oil can promote estrus return and improve fecal microbiota in multiparous sows. Forty-five sows were randomly allocated into three treatments: a basal diet, or a basal diet plus 30 or 60 g/day of fish oil from gestation day 90 to lactation day 21. Results showed that dietary fish oil significantly elevated circulating DHA in sows, without significant changes in litter size, litter weight, or backfat loss. Supplementation of fish oil (30 or 60 g/day) shortened the interval from weaning to estrus by 1.8 days and 1.67 days, respectively, associated with a significant boost of estradiol. Increases in prolactin and IgA were only significant in the high-dosage group. In addition, plasma MDA and antioxidant activities were up-regulated by fish oil, combined with elevated serum IL-1β and IL-6. Moreover, dietary fish oil significantly reduced serum zonulin, improved the Simpson index of fecal microbiota, and increased the abundance of Lactobacillus and Ruminococcaceae_UCG-014 genera. In conclusion, dietary omega-3 PUFA-enriched fish oil provides a promising approach to aiding estrus return and reshaping fecal microbiota in post-weaning sows.
Collapse
Affiliation(s)
- Zihao Ge
- Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, China
- Key Laboratory of Animal Genetics and Breeding in Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Xianyang 712100, China
| | - Yalong An
- Key Laboratory of Animal Genetics and Breeding in Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Xianyang 712100, China
| | - Wei Lan
- Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Xiao Li
- Key Laboratory of Animal Genetics and Breeding in Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
13
|
Li Y, Feng J, Ding G, Deng L, He Y, Zhang Q, Wang J, Chen X. The possible effects of chili peppers on ADHD in relation to the gut microbiota. Front Nutr 2025; 12:1551650. [PMID: 39968396 PMCID: PMC11832391 DOI: 10.3389/fnut.2025.1551650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, which is characterized by inattention, impulsivity and hyperactivity. Although the etiology and pathogenesis of ADHD are not fully understood, existing studies have shown that it may be related to genetic factors, environmental factors, abnormal brain development, and psychosocial factors. In recent years, with the concept of microbioa-gut-brain axis (MGBA), more and more studies have begun to pay attention to the effect of gut microbiota on ADHD. Dietary structure can significantly change the diversity and abundance of gut microbiota. Therefore, dietary supplements or food additives to regulate gut microbiota have become one of the potential ways to treat ADHD. Peppers, as an important dietary component, have potential value in regulating gut microbiota. Among them, capsaicin (8-methyl N-vanillyl-6-noneamide, CAP), as a key active component of peppers, has been shown to have potential therapeutic effects on central nervous system (CNS) diseases such as Parkinson's disease, epilepsy, and depression. In addition, much attention has been paid to the beneficial effects of CAP on gut microbiota. Chili peppers contain not only CAP, but also rich in vitamin C and fatty acids, all of which may ameliorate ADHD by modulating the gut microbiota. This finding not only provides a potential treatment for ADHD, but also provides a new perspective to expand the research and clinical treatment of ADHD pathogenesis. Although current research on the potential therapeutic effects of chili peppers on ADHD is still at an early stage and requires further verification through larger-scale and more rigorous controlled studies, its potential clinical value cannot be ignored.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Chen
- Department of Pediatrics, Child and Adolescent Psychiatric Center of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (Army 958th Hospital), Chongqing, China
| |
Collapse
|
14
|
Duan G, Li M, Zheng C, Wan M, Yu J, Cao B, Yin Y, Duan Y, Cong F. Odd-Chain Fatty Acid-Enriched Fats Improve Growth and Intestinal Morphology and Function in Milk Replacer-Fed Piglets. J Nutr 2025:S0022-3166(25)00028-8. [PMID: 39889853 DOI: 10.1016/j.tjnut.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The intestinal development and nutritional needs of piglets after birth are similar to those of human infants. OBJECTIVES This study aimed to investigate the effect of different forms of odd-chain fatty acids (OCFAs) on the growth and intestinal morphology and function of milk replacer-fed piglets, as a model for human infants. METHODS Forty 7-d-old piglets from 8 sows were randomly assigned into 5 groups (n = 8, each from a different litter) and fed sow milk or milk replacers supplemented with different kinds of fats (control fats, docosahexaenoic acid algal oil-, OCFA algal oil-, and OCFA-enriched fats) for 21 d. One-way analysis of variance was performed to compare the milk replacer-fed piglet groups, and unpaired t test was used to compare sow milk- and milk replacer-fed piglets. RESULTS Milk replacers supplemented with OCFA-enriched fats increased the average daily gain (ADG), ratio of villus height to crypt depth, and protein expression of Ki67, phosphorylated (p)-mTOR, p-S6K1, Occludin, Claudin, and ZO-1 in the selected intestines of piglets and decreased the protein expression of p-ULK1, Parkin, and PINK1 to levels similar to those of the sow milk-fed group (P < 0.05). CONCLUSION Overall, milk replacers supplemented with OCFA-enriched fats improved the ADG and the intestinal morphology and function of piglets to levels comparable to those of the sow milk-fed piglets.
Collapse
Affiliation(s)
- Geyan Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Li
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiayi Yu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Cao
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Fang Cong
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai, China.
| |
Collapse
|
15
|
Dong S, Zhang N, Wang J, Cao Y, Johnston LJ, Ma Y. Effects of Medium- and Short-Chain Fatty Acids on Growth Performance, Nutrient Digestibility, Gut Microbiota and Immune Function in Weaned Piglets. Animals (Basel) 2024; 15:37. [PMID: 39794980 PMCID: PMC11718992 DOI: 10.3390/ani15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.1%: a basal diet with 0.1% MSCFA (GML/TB = 1:1); (3) 0.2%: a basal diet with 0.2% MSCFA (GML/TB = 1:1). The experiment lasted 28 days. There were no differences on average daily growth (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Supplementation with 0.1% MSCFA increased apparent total tract digestibility (ATTD) of crude protein (CP) and gross energy (GE, p < 0.05) on d 14 and increased GE (p < 0.05) on d 28 compared with the CON group. The ATTD of dry matter (DM), organic matter (OM) and crude protein (CP) of piglets supplemented with 0.1% MSCFA was higher (p < 0.05). Compared with the CON group, supplementation with 0.1% MSCFA increased immunoglobulin M (IgM) concentration, decreased interleukin-6 (IL-6) content (p < 0.05) on d 14 and decreased malonaldehyde (MDA), interleukin-1beta (IL-1β), IL-6 concentrations (p < 0.05) on d 28. Supplementation with 0.1% MSCFA increased total antioxidant capacity (T-AOC) concentration (p < 0.05), decreased GSH-Px, MDA content (p < 0.05) in jejunum compared with the CON group. Moreover, supplementation with MSCFA increased the activity of duodenal lipase (p < 0.05) and the abundance of firmicutes and decreased the abundance of proteobacteria compared with the CON group. Overall, supplementation with MSCFA can improve nutrient digestibility, enhance immunity and antioxidant capacity, and improve the intestinal health of piglets. The combined use of MSCFA is a nutrition regulation strategy worthy of further exploration in modern animal husbandry.
Collapse
Affiliation(s)
- Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Nan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Jihua Wang
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Yu Cao
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Lee J. Johnston
- Department of Animal Science, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA;
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| |
Collapse
|
16
|
Villagómez-Estrada S, Melo-Durán D, van Kuijk S, Pérez JF, Solà-Oriol D. Specialized Feed-Additive Blends of Short- and Medium-Chain Fatty Acids Improve Sow and Pig Performance During Nursery and Post-Weaning Phase. Animals (Basel) 2024; 14:3692. [PMID: 39765595 PMCID: PMC11672445 DOI: 10.3390/ani14243692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The present study investigates the impact of supplementing diets with a synergistic blend of short- and medium-chain fatty acids (SCFAs-MCFAs) during the peripartum and lactation phases on early microbial colonization and the subsequent growth performance of newborn pigs. The experiment involved 72 sows and their litters, with a follow-up on 528 weaned pigs. Sows were fed either a control diet or a diet supplemented with SCFAs-MCFAs and the pigs were monitored for their growth performance and microbial populations. Subsequently, selected weaned pigs were allotted to an SCFAs-MCFAs diet according to the maternal diet. Results showed that SCFAs-MCFAs supplementation led to reduced backfat loss in sows and improved pig weight and uniformity at weaning (p < 0.05). Additionally, suckling pigs exhibited significant shifts in gut microbiota, including increased lactic acid bacteria and reduced Streptococcus suis populations (p < 0.05). Although there was no influence of maternal diet on pig growth after weaning, there was a modulation on bacterial populations at 7 and 35 days post-weaning. Pigs fed SCFAs-MCFAs demonstrated improved feed efficiency with notable reductions in E. coli and Streptococcus suis counts. The findings suggest that maternal dietary supplementation with SCFAs-MCFAs can positively influence both sow and pig performance, offering a potential strategy to enhance productivity and health in the commercial swine production.
Collapse
Affiliation(s)
- Sandra Villagómez-Estrada
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
- Faculty of Veterinary Medicine and Agronomy, Universidad UTE, Quito 17012764, Ecuador
| | - Diego Melo-Durán
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
- Faculty of Veterinary Medicine and Agronomy, Universidad UTE, Quito 17012764, Ecuador
| | - Sandra van Kuijk
- Trouw Nutrition, Research and Development Department, Stationsstraat 77, 3811 MH Amersfoort, The Netherlands;
| | - José F. Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
| |
Collapse
|
17
|
Pinheiro RRS, Watanabe PH, Araújo LRS, Mendonça IBD, Sales JJDM, Santos MEC, Pascoal LAF, Guerra RR, Almeida JMDS, Freitas ER. Structured lipids from fish viscera and coconut oils improve weight gain and intestinal morphology of piglets at nursery phase. Trop Anim Health Prod 2024; 56:403. [PMID: 39652263 DOI: 10.1007/s11250-024-04235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Five metabolism assays were performed to determine the metabolizable energy (ME) content of soybean oil, coconut oil, fish viscera oil, physical mixture of coconut oil and fish viscera oil (3:2, in kg: kg) and structured lipid prepared from interesterification of fish viscera oil and coconut oil (3: 2, in kg: kg), and one assay to evaluate the effects of including these lipid sources in piglet diets on performance, digestibility of diets, incidence of diarrhea and intestinal morphometry at nursery phase. Soybean, coconut, fish viscera, physical mixture and structured lipid oils showed ME values of 8239, 8199, 8839, 8268 and 8523 kcal/kg DM respectively. In the performance trial, a total of 90 piglets with 23 days of age were distributed among 5 diets, differing in the lipid source used (soybean oil, coconut oil, fish viscera oil, physical mixture or structured lipid). Piglets fed diet containing structured lipid showed better feed conversion, higher duodenal goblet cell number and jejunal absorption area (P < 0.05), with better digestibility of ether extract and energy of diets. Interesterification of lipid sources such as coconut oil and fish viscera oil improves intestinal morphology, positively influencing the performance of piglets at nursery phase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ricardo Romão Guerra
- Departamento de Ciências Veterinárias, Universidade Federal da Paraíba, Areia, Brazil
| | | | | |
Collapse
|
18
|
Marchetti L, Rebucci R, Lanzoni D, Giromini C, Aidos L, Di Giancamillo A, Cremonesi P, Biscarini F, Castiglioni B, Bontempo V. Dietary supplementation with a blend composed of carvacrol, tannic acid derived from Castanea sativa and Glycyrrhiza glabra, and glycerides of medium chain fatty acids for weanling piglets raised in commercial farm. Vet Res Commun 2024; 48:3773-3791. [PMID: 39269670 PMCID: PMC11538194 DOI: 10.1007/s11259-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study aimed to evaluate the dietary administration of a blend composed of carvacrol, tannic acid derived from Castanea sativa mill and Glycyrrhiza glabra, medium chain fatty acids (MCFAs) glycerides for weanling piglets. An in vitro digestion followed by total phenolic content (TPC) and total antioxidant activity (TAC) assessment was performed before the in vivo application. At weaning, a total of 210 piglets were randomly allocated to two experimental treatments (7 replicates/15 piglets for each replicate). Control group (CTR) was fed a standard basal diet while the treated group (T) was fed the basal diet mixed with 1.500 mg/kg of blend. After in vitro digestion, TPC and TAC evidenced peaks at the end of oral and gastric phases in comparison to the intestinal one in line with the high content of phenolic compound (P < 0.05). Treatment conditioned body weight and average daily gain (P < 0.05), fecal score on 6, 7, and 8 d after weaning (P < 0.05). At 35d, the T group showed a decrease in salivary cortisol compared to CTR (P < 0.05). Duodenum and jejunum sections of T piglets revealed higher villi (P < 0.05), deeper crypts (P < 0.01), and increased V/C ratio (P < 0.01). CTR showed a higher expression of duodenal Occludin (P < 0.05). Jejunal E-cadherin and Occludin were more expressed in T jejunum sections (P < 0.05). Twelve differentially abundant genera were identified in T group caecal samples. Potentially harmful Clostridium sensu stricto 13 was reduced by the treatment (P < 0.05). In conclusion, the tested blend positively affected salivary stress markers and the gut health of weaned piglets.
Collapse
Affiliation(s)
- Luca Marchetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy.
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20100, Italy
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Filippo Biscarini
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Valentino Bontempo
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| |
Collapse
|
19
|
Liu G, Fang Y, Zhang Y, Zhu M. Dihydroquercetin improves the proliferation of porcine intestinal epithelial cells via the Wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 734:150460. [PMID: 39083968 DOI: 10.1016/j.bbrc.2024.150460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Dihydroquercetin (DHQ), also known as Taxifolin (TA), is a flavanonol with various biological activities, such as anticancer, anti-inflammatory, and antioxidative properties. It has been found to effectively increase the viability of porcine intestinal epithelial cells (IPEC-J2). However, the precise mechanism by which DHQ increases the proliferation of IPEC-J2 cells is not entirely understood. This study aimed to explore the potential pathways through which DHQ encourages the proliferation of IPEC-J2 cells. The findings indicated that DHQ significantly improved the protein expression of tight junction proteins (ZO-1, Occludin, and Claudin1) and a molecular biomarker of proliferation (PCNA) in IPEC-J2 cells. Furthermore, DHQ was found to increase the Wnt/β-catenin pathway-associated β-catenin, c-Myc, and cyclin D1 mRNA expression, and promote the protein expression of β-catenin and TCF4. To confirm the involvement of the Wnt/β-catenin signaling pathway in the DHQ-promoted proliferation of IPEC-J2 cells, the inhibitor LF3, which targets β-catenin/TCF4 interaction, was used. It was found that LF3 inhibited the protein expressions upregulated by DHQ and blocked the promotion of cell proliferation. These results indicate that DHQ positively regulates IPEC-J2 cell proliferation through the Wnt/β-catenin pathway, providing constructive insights into the role of DHQ in regulating intestine development.
Collapse
Affiliation(s)
- Guowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yongxia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
21
|
Llauradó-Calero E, Badiola I, Samarra I, Lizardo R, Torrallardona D, Esteve-Garcia E, Tous N. Impact of adding eicosapentaenoic and docosahexaenoic acid-rich fish oil in sow and piglet diets on blood oxylipins and immune indicators of weaned piglets. Animal 2024; 18:101317. [PMID: 39305823 DOI: 10.1016/j.animal.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024] Open
Abstract
Weaning is a decisive event in piglets' life. This study aimed to evaluate whether the inclusion of fish oil, rich in eicosapentaenoic and docosahexaenoic acids (EPA and DHA), in sow and piglet diets, increased the concentration of anti-inflammatory molecules in the blood of weaned piglets and whether the effect was dependent on the pigs being born with either low or a high birth BW (bBW). Thirty-six sows in four consecutive batches were randomly distributed between a control diet with animal fat (15 g/kg in gestation and 30 g/kg in lactation) or a n-3 long-chain fatty acid diet (LCFA; totally or half replacing animal fat by fish oil during gestation and lactation, respectively) from service until weaning (ca. 28 days). At birth, the two lightest (LBW) and the two heaviest (HBW) piglets in each litter were identified and, at weaning, grouped in pens by pairs prioritising their bBW. Pens were further distributed into a control (30 g/kg animal fat) or n-3 LCFA diet (totally replacing animal fat by fish oil) for 28 days. At the end of the trial, blood was collected from piglets in the first batch (n = 48). Serum fatty acids (FAs) were quantified by GC, plasma oxylipins by ultra-HPLC-MS, and plasma immune indicators by ELISA. An interaction between piglet diet and bBW for average daily gain (P = 0.020) and average daily feed intake (P = 0.014) during the whole postweaning indicated that dietary n-3 LCFA-promoted LBW piglets to have a similar growth and intake than HBW piglets reaching 1.5 kg average BW more at the end of the postweaning period than LBW control piglets. Fish oil in piglet diets also increased the concentrations of total n-3 FA, EPA and DHA (all P < 0.001), their resultant oxylipins, particularly their hydroxy derivatives from lipoxygenase enzymatic pathway (all P < 0.001) and tended to increase immunoglobulin M (P = 0.067) in blood. Regarding the bBW category, LBW piglets tend to increase tumour necrosis factor α in plasma (P = 0.083) compared to HBW. It is concluded that fish oil in postweaning diets could enhance the daily gain and feed intake of LBW piglets, increasing the concentration of serum n-3 FAs and their derived oxylipins in plasma.
Collapse
Affiliation(s)
- E Llauradó-Calero
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), E-43120 Constantí, Spain
| | - I Badiola
- Animal Health-CReSA, Institute of Agrifood Research and Technology (IRTA), E- 08193 Bellaterra, Spain
| | - I Samarra
- Centre for Omic Sciences (Joint Unit Eurecat-Universitat Rovira i Virgili), Eurecat, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructure (ICTS), E-43204 Reus, Spain
| | - R Lizardo
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), E-43120 Constantí, Spain
| | - D Torrallardona
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), E-43120 Constantí, Spain
| | - E Esteve-Garcia
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), E-43120 Constantí, Spain
| | - N Tous
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), E-43120 Constantí, Spain.
| |
Collapse
|
22
|
Tang X, Xiong K, Zeng Y, Fang R. The Mechanism of Zinc Oxide in Alleviating Diarrhea in Piglets after Weaning: A Review from the Perspective of Intestinal Barrier Function. Int J Mol Sci 2024; 25:10040. [PMID: 39337525 PMCID: PMC11432186 DOI: 10.3390/ijms251810040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is one of the most challenging phases for piglets, and it is also the time when piglets are the most susceptible to diarrhea, which may result in significant economic losses for pig production. One of the dietary strategies for reducing post-weaning diarrhea (PWD) in piglets is to provide them with a pharmacological dose of zinc oxide (ZnO). However, excessive or long-term usage of high-dose ZnO has significant impacts on pig health and the ecological environment. Therefore, caution should be exercised when considering the use of high-dose ZnO for the prevention or treatment of PWD in piglets. In this paper, the significant role of zinc in animal health, the potential mode of action of ZnO in alleviating diarrhea, and the impact of innovative, highly efficient ZnO alternatives on the regulation of piglet diarrhea were reviewed to offer insights into the application of novel ZnO in pig production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China;
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
Kim NY, Lee SI. Lauric acid reduces apoptosis by inhibiting FOXO3a-signaling in deoxynivalenol-treated IPEC-J2 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1010-1020. [PMID: 39398305 PMCID: PMC11466732 DOI: 10.5187/jast.2023.e92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2024]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant of food or feed worldwide and causes disease in animals. Lauric acid (LA) is a medium-chain fatty acid useful for barrier functions such as antimicrobial activity in the intestine of monogastric animals. However, the molecular mechanisms by which lauric acid exerts its effects on the deoxynivalenol-exposed small intestine have not been studied. We used an intestinal porcine epithelial cell line (IPEC-J2) as an in vitro model to explore the molecular mechanism of lauric acid in alleviating deoxynivalenol-induced damage. We found that lauric acid reversed deoxynivalenol-induced reduction in cell viability. Our quantitative real-time polymerase chain reaction results indicated that lauric acid alleviated deoxynivalenol-induced apoptosis through Annexin-V. Additionally, immunofluorescence and Western blotting showed that lauric acid attenuated deoxynivalenol-induced forkhead box O3 (FOXO3a) translocation into the nucleus. These results suggest that lauric acid attenuates forkhead box O3 translocation in the small intestine damaged by deoxynivalenol, thereby reducing apoptosis. In conclusion, this study found that lauric acid alleviates deoxynivalenol-induced damage in intestinal porcine epithelial cell line through various molecular mechanisms.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Sang In Lee
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
24
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
25
|
Wu H, Guo M, Zhao L, Zhang J, He J, Xu A, Yu Z, Ma X, Yong Y, Li Y, Ju X, Liu X. Siraitia grosvenorii Extract Protects Lipopolysaccharide-Induced Intestinal Inflammation in Mice via Promoting M2 Macrophage Polarization. Pharmaceuticals (Basel) 2024; 17:1023. [PMID: 39204128 PMCID: PMC11357656 DOI: 10.3390/ph17081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Siraitia grosvenorii has anti-inflammatory, antioxidant, and immune-regulating effects, while macrophages play an important role in reducing inflammation. However, it is still unclear whether Siraitia grosvenorii extract (SGE) is effective in reducing inflammation by regulating macrophages. This study investigated the regulatory effect of SGE on macrophage polarization in a lipopolysaccharide (LPS)-induced intestinal inflammation model after establishing the model in vitro and in vivo. The results from the in vivo model showed that, compared with the LPS group, SGE significantly improved ileal morphology, restored the ileal mucosal barrier, and reduced intestinal and systemic inflammation by increasing CD206 and reducing iNOS proteins. In the in vitro model, compared with the LPS group, SGE significantly reduced the expression of iNOS protein and cytokines (TNF-α, IL-1β, and IFN-γ) while significantly increasing the protein expression of CD206 in RAW264.7 cells. In conclusion, SGE can alleviate intestinal inflammation, protect the mucus barrier, and block the systemic immunosuppressive response by increasing M2 macrophages.
Collapse
Affiliation(s)
- Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Anning Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (H.W.); (M.G.); (L.Z.); (J.Z.); (J.H.); (Z.Y.); (X.M.); (Y.Y.); (Y.L.); (X.J.)
| |
Collapse
|
26
|
Ruampatana J, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Kanjanavaikoon K, der Veken WV, Poonyachoti S, Feyera T, Settachaimongkon S, Nuntapaitoon M. Clostridium butyricum Probiotic Feed Additive: Modulation of Sow Milk Metabolomics and Mitigation of Pre-Weaning Piglet Diarrhea. Animals (Basel) 2024; 14:2098. [PMID: 39061560 PMCID: PMC11273528 DOI: 10.3390/ani14142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to investigate the impact of Clostridium butyricum probiotic feed additive on sow and piglet performances, together with alterations in the lipidomic and metabolomic profiles of sow milk. Sixty-four Landrace × Yorkshire crossbred sows and 794 piglets were included. Sows were divided into two groups; i.e., (i) conventional gestation diet (control; n = 35) and (ii) conventional diet added with 10 g/sow/day of probiotic C. butyricum spores (treatment; n = 29) from one week before the estimated farrowing day until weaning (29.6 ± 4.8 days). The sow and piglet performances and incidence of piglet diarrhea were recorded. Changes in gross chemical composition, fatty acid and non-volatile polar metabolite profiles of sow colostrum, transient milk and mature milk were evaluated. The results showed that relative backfat loss in the treatment group (-2.3%) was significantly lower than in control group (11.6%), especially in primiparous sows (p = 0.019). The application of C. butyricum probiotics in sows significantly reduced the incidence of diarrhea in piglets (p < 0.001) but no other effect on piglet performance was found. Lipidomic and metabolomic analyses revealed variations in sow colostrum and milk biomolecular profiles, with indicative compounds significantly altered by feeding with the C. butyricum probiotics. In conclusion, the use of C. butyricum probiotics in sows may improve sow body condition and reduce diarrhea incidence in piglets, with underlying changes in milk composition that warrant further investigation. These findings support the potential of C. butyricum as a beneficial feed additive in swine production.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, DK-8830 Tjele, Denmark
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
28
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
29
|
Ribeiro DM, Luise D, Costa M, Carvalho DFP, Martins CF, Correa F, Pinho M, Mirzapour-Kouhdasht A, Garcia-Vaquero M, Mourato MP, Trevisi P, de Almeida AM, Freire JPB, Prates JAM. Impact of dietary Laminaria digitata with alginate lyase or carbohydrase mixture on nutrient digestibility and gut health of weaned piglets. Animal 2024; 18:101189. [PMID: 38850575 DOI: 10.1016/j.animal.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
Laminaria digitata is a brown seaweed rich in prebiotic polysaccharides, mainly laminarin, but its alginate-rich cell wall could compromise nutrient access. Carbohydrase supplementation, such as individual alginate lyase and carbohydrases mixture (Rovabio® Excel AP), could enhance nutrient digestibility and prebiotic potential. This study aimed to evaluate the effect of these enzymes on nutrient digestibility and gut health of weaned piglets fed with 10% L. digitata. Diets did not affect growth performance (P > 0.05). The majority of the feed fractions had similar digestibility across all diets, but the supplementation of alginate lyase increased hemicellulose digestibility by 3.3% compared to the control group (P = 0.047). Additionally, we observed that algal zinc was more readily available compared to the control group, even without enzymatic supplementation (P < 0.001). However, the increased digestibility of some minerals, such as potassium, raises concerns about potential mineral imbalance. Seaweed groups had a higher abundance of beneficial bacteria in colon contents, such as Prevotella, Oscillospira and Catenisphaera. Furthermore, the addition of alginate lyase led to a lower pH in the colon (P < 0.001) and caecum (P < 0.001) of piglets, which is possibly a result of released fermentable laminarin, and is consistent with the higher proportion of butyric acid found in these intestinal compartments. L. digitata is a putative supplement to enhance piglet gut health due to its prebiotic polysaccharides. Alginate lyase supplementation further improves nutrient digestibility and prebiotic potential. These results suggest the potential use of L. digitata and these enzymatic supplements in commercial piglet-feeding practices.
Collapse
Affiliation(s)
- D M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - D Luise
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Viale G. Fanin 46, Bologna, Italy
| | - M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - D F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - C F Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - F Correa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Viale G. Fanin 46, Bologna, Italy
| | - M Pinho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - A Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M P Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - P Trevisi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Viale G. Fanin 46, Bologna, Italy
| | - A M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - J P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - J A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal.
| |
Collapse
|
30
|
Wang S, Chen D, Ji X, Shen Q, Yu Y, Wu P, Tang G. Multi-omics unveils tryptophan metabolic pathway as a key pathway influencing residual feed intake in Duroc swine. Front Vet Sci 2024; 11:1403493. [PMID: 38868499 PMCID: PMC11168206 DOI: 10.3389/fvets.2024.1403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
The genetic trait of residual feed intake (RFI) holds considerable importance in the swine industry. Recent research indicates that the gut microbiota of pigs plays a pivotal role in the manifestation of the RFI trait. Nevertheless, the metabolic pathways involved in the functioning of these microorganisms remain elusive. Thus, based on the ranking of the RFI trait in Duroc pigs, the present study selected the top 10 and bottom 10 pigs as the experimental subjects. The distribution and metabolite differences of cecal microbiota were analyzed using 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. The low RFI cecal group was named LRC, and the high RFI cecal group was named HRC. The results indicate that the LRC group had lower RFI, feed conversion ratio (FCR), average daily feed intake (ADFI) (p < 0.001), and thinner backfat (p < 0.05) compared with the HRC group. We simultaneously recorded the foraging behavior as well, the LRC group had a significant increase in total time spent at the feeder per day (TPD) (p < 0.05) and a significant increase in average feed intake per mins (AFI) and the number of visits to the feeder per day (NVD) compared to the HRC group (p < 0.001). Clostridium_XVIII, Bulleidia, and Intestinimonas were significantly enriched in the LRC group (p < 0.01), while Sutterella, Fusobacterium, and Bacteroides were significantly increased in the HRC group (p < 0.01). In the metabolome, we detected 390 (248 metabolites up and 142 down in the LRC compared with HRC), and 200 (97 metabolites up and 103 down in the LRC compared with HRC) differential metabolites in positive and negative ionization modes. The comprehensive analysis found that in the LRC group, Escherichia and Eubacterium in the gut may increase serotonin content, respectively. Bacteroides may deplete serotonin. We suggest that the RFI may be partly achieved through tryptophan metabolism in gut microbes. In individuals with low RFI, gut microbes may enhance feed efficiency by enhancing host synthesis and metabolism of tryptophan-related metabolites.
Collapse
Affiliation(s)
- Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Qi Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yang Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Pingxian Wu
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing, China
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
32
|
Li Y, Shi P, Yao K, Lin Q, Wang M, Hou Z, Tang W, Diao H. Diarrhea induced by insufficient fat absorption in weaned piglets: Causes and nutrition regulation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:299-305. [PMID: 38371473 PMCID: PMC10869582 DOI: 10.1016/j.aninu.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/20/2024]
Abstract
Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in maintaining intestinal health and improving production performance. During the weaning period, physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase (CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| |
Collapse
|
33
|
Czech A, Woś K, Muszyński S, Tomaszewska E. Nutritional and Antioxidative Benefits of Dietary Macroalgae Supplementation in Weaned Piglets. Animals (Basel) 2024; 14:549. [PMID: 38396524 PMCID: PMC10886378 DOI: 10.3390/ani14040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This study explores the effects of dietary brown macroalgae (Ascophyllum nodosum) inclusion on digestibility and blood biochemical indices and redox markers in piglets fed diets with varying levels (0%, 0.6% and 1%) of macroalgae from 18 to 64 days of age. Macroalgae significantly influenced lipid profiles, reducing total cholesterol levels (quadratic contrast p = 0.001) and demonstrating an increase in high-density lipoprotein cholesterol levels, particularly with 1% macroalgae inclusion (linear contrast p < 0.001), with a decrease in low-density lipoprotein cholesterol in both macroalgae-supplemented groups (linear contrast p = 0.001). Additionally, macroalgae had a positive impact on the activities of antioxidative enzymes (ferric-reducing ability of plasma, superoxide dismutase, reduced glutathione) and reduced lipid peroxidation products (lipid hydroperoxide, malondialdehyde) in the blood, liver tissue, and intestinal epithelium of the ileum, suggesting enhanced antioxidative defense mechanisms. These changes were dose-dependent; in blood plasma, they exhibited both a linear and quadratic response, while in the tissues, the response was primarily linear. Additionally, an increase in the digestibility of crude fat in macroalgae-supplemented groups was observed (linear contrast p < 0.001), highlighting their potential role in improving nutrient absorption and digestion. The study findings emphasize the health benefits of natural, seaweed-based additives in diets, particularly in managing oxidative stress and improving lipid profiles, and highlight the potential of macroalgae as a natural dietary supplement to improve antioxidant systems and lipid metabolism in piglets.
Collapse
Affiliation(s)
- Anna Czech
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Katarzyna Woś
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
34
|
Chen Z, Kong Y, Huang Z, Zheng X, Zheng Z, Yao D, Yang S, Zhang Y, Aweya JJ. Exogenous alpha-linolenic acid and Vibrio parahaemolyticus induce EPA and DHA levels mediated by delta-6 desaturase to enhance shrimp immunity. Int J Biol Macromol 2024; 257:128583. [PMID: 38056755 DOI: 10.1016/j.ijbiomac.2023.128583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Globally, penaeid shrimp are the most farmed and traded aquatic organisms, although they are easily susceptible to microbial pathogens. Moreover, there is a desire to increase the nutritional value of shrimp, especially the levels of n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which also possess immunomodulatory and anti-inflammatory properties. Some aquatic animals can synthesize EPA and DHA from dietary plant-sourced alpha-linolenic acid (ALA), but penaeid shrimps' ability to synthesize these n-3 PUFAs is unknown. Here, molecular biology techniques, including gas chromatography-mass spectrometry, qPCR, ELISA, etc., were used to demonstrate that exogenous ALA or Vibrio parahaemolyticus could modulate EPA and DHA levels and immune genes in Penaeus vannamei by inducing key enzymes involved in n-3 PUFAs biosynthesis, such as delta desaturases and elongation of very long-chain fatty acid (ELOVLs). Most importantly, knockdown or inhibition of ∆6 desaturase significantly decreased EPA and DHA levels and immune gene expression even with exogenous ALA treatment, consequently affecting shrimp antibacterial immunity and survival. This study provides new insight into the potential of P. vannamei to synthesize n-3 PUFAs from exogenous ALA or upon bacteria challenge, which could be leveraged to increase their nutritional content and antimicrobial immunity.
Collapse
Affiliation(s)
- Zeyan Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yonghui Kong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zishu Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Defu Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shen Yang
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Jude Juventus Aweya
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
35
|
Kovanda L, Rengman S, Tawde S, Pos J, Park S, Sun S, Park J, Kim K, Li X, Liu Y. Dietary glycerides of valerate ameliorate diarrhea and impact intestinal physiology and serum biomarkers in weaned piglets infected with enterotoxigenic Escherichia coli F18. J Anim Sci 2024; 102:skae322. [PMID: 39432563 PMCID: PMC11537800 DOI: 10.1093/jas/skae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
In the commercial swine farm setting, the postweaning period is a critical window during which piglets are highly susceptible to infection and enterotoxigenic E. coli (ETEC)-associated diarrhea. Short-chain fatty acids and their glycerides are compounds that may influence intestinal health; however, valerate is one that has not been well-characterized for its role as a dietary supplement. Therefore, the major objective of this experiment was to investigate two forms of valerate glycerides on diarrhea, intestinal physiology, and systemic immunity of weaned pigs experimentally infected with ETEC F18. Dietary treatments included a control diet and three additional diets supplemented with 0.075% monovalerin, 0.1% monovalerin, or 0.1% trivalerin, respectively. Piglets were weaned (21 d to 24 d of age), individually housed, and experimental diets were fed through the 28-d trial period. After a 7-d period, all piglets were inoculated on three consecutive days with 1010 CFU ETEC F18/3 mL. Growth performance was monitored throughout the trial, and daily diarrhea scores were recorded. Rectal swabs were collected for bacterial culture to confirm the presence or absence of β-hemolytic coliforms throughout the trial. Serum samples were collected and analyzed for inflammatory biomarkers on days 0, 3, 6, and 21 postinoculation (PI) and untargeted metabolomics on day 6 PI. Intestinal mucosa and tissue sections were harvested from pigs sacrificed on day 7 PI for gene expression and histology analysis. All data, except for frequency of diarrhea and metabolomics, were analyzed by ANOVA using the PROC MIXED of SAS. Dietary trivalerin reduced (P < 0.05) the frequency of severe diarrhea over the entire trial period and the frequency of β-hemolytic coliforms on day 7 PI compared with the control. The intestinal villus height on day 7 PI in jejunum tissue was increased (P < 0.05) in pigs fed trivalerin. The mRNA expression of TNF-α was decreased (P < 0.05) in the trivalerin group, while that of ZO1 was increased (P < 0.05) compared with control. Throughout the trial, serum TNF-α was reduced in pigs fed trivalerin compared with control. Serum metabolites, adenosine, inosine, and shikimic acid were reduced (P < 0.05) on day 6 PI in all treatment groups compared with control. In conclusion, the present results indicate supplementing dietary valerate glycerides exhibited beneficial impacts on diarrhea, inflammation, and intestinal gene expression of piglets during the postweaning period.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Sofia Rengman
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Snehal Tawde
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Jeroen Pos
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Shuhan Sun
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jungjae Park
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
36
|
Baker JT, Duarte ME, Kim SW. Effects of dietary xylanase supplementation on growth performance, intestinal health, and immune response of nursery pigs fed diets with reduced metabolizable energy. J Anim Sci 2024; 102:skae026. [PMID: 38280204 PMCID: PMC10889732 DOI: 10.1093/jas/skae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
This study aimed to investigate the effects of xylanase on growth performance and intestinal health of nursery pigs fed diets with reduced metabolizable energy (ME). One hundred ninety-two pigs at 8.7 kg ± 0.7 body weight (BW) after 7 d of weaning were allotted in a randomized complete block design with initial BW and sex as blocks. Eight dietary treatments consisted of 5 ME levels (3,400, 3,375, 3,350, 3,325, and 3,300 kcal ME/kg) below the NRC (2012) requirement and 4 levels of xylanase (0, 1,200, 2,400, and 3,600 XU/kg) to a diet with 3,300 kcal ME/kg. All pigs received their respective treatments for 35 d in 2 phases, pre-starter (14 d) and starter (21 d). On day 35, eight pigs in 3,400 kcal/kg (CON), 3,300 kcal/kg (LE), and 3,300 kcal/kg + 3,600 XU xylanase/kg (LEX) were euthanized to collect jejunal tissues and digesta for the evaluation of mucosa-associated microbiota, intestinal immune response, oxidative stress status, intestinal morphology, crypt cell proliferation, and digesta viscosity as well as ileal digesta to measure apparent ileal digestibility. Data were analyzed using the MIXED procedure on SAS 9.4. The LE increased (P < 0.05) jejunal digesta viscosity, tended to have decreased (P = 0.053) relative abundance of Prevotella, and tended to increase (P = 0.055) Lactobacillus. The LE also increased (P < 0.05) the concentration of protein carbonyl whereas malondialdehyde, villus height (VH), villus height to crypt depth ratio (VH:CD), apparent ileal digestibility (AID) of nutrients, and finally average daily feed intake were decreased (P < 0.05). The LE did not affect average daily gain (ADG). The LEX decreased (P < 0.05) digesta viscosity, increased (P < 0.05) the relative abundance of Prevotella, decreased (P < 0.05) Helicobacter, decreased (P < 0.05) the concentration of protein carbonyl, tended to increase (P = 0.065) VH, and decreased (P < 0.05) VH:CD and crypt cell proliferation. Moreover, LEX increased (P < 0.05) the AID of dry matter and gross energy and tended to increase (P = 0.099; P = 0.076) AID of crude protein, and ether extract. The LEX did not affect ADG but did tend to decrease (P = 0.070) fecal score during the starter phase. Overall, reducing ME negatively affected intestinal health parameters and nutrient digestibility without affecting growth. Supplementation of xylanase mitigated some of the negative effects observed by ME reduction on intestinal health and digestibility of nutrients without affecting growth.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
37
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Xiao C, Li K, Teng C, Wei Z, Li J, Zhang S, Liu L, Lv H, Zhong R. Dietary Qi-Weng-Huangbo powder enhances growth performance, diarrhoea and immune function of weaned piglets by modulating gut health and microbial profiles. Front Immunol 2023; 14:1342852. [PMID: 38187371 PMCID: PMC10770244 DOI: 10.3389/fimmu.2023.1342852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The evolution of nutritional strategies to improve the gut health and microbiota profiles of early-weaned piglets is essential to reduce diarrhoea caused by weaning stress. Therefore, the aim of this study was to determine the effects of dietary supplementation of Qi-Weng-Huangbo powder, a traditional herbal medicine consisting of a mixture of Pulsatilla chinensis, Chinese Schneid and Astragalus extracts (PCE), on the growth performance, diarrhoea rate, immune function and intestinal health of weaned piglets. Methods 162 piglets were randomly assigned to the CON group (no PCE added), the PCEL group (300 mg/kg PCE) and the PCEH group (500 mg/kg PCE) at the end of the third week post farrowing. There were 9 replicates of each group with 6 pigs per replicate. The experiment lasted for 28 days and sampling was performed on the final day. Results The results showed that the PCE diet increased the average daily gain (ADG) and final body weight (BW) compared to the CON group. Both supplemented doses of PCE reduced the faecal scores of piglets, and the diarrhoea rate in the PCEL group was significantly lower than that in the CON group. The application of PCE diets promoted the development of the spleen in piglets and up-regulated serum immunoglobulin concentrations to enhance immune function, which was also reflected in the down-regulated gene expression of the colonic TLR/MyD88/NF-κB pathway. Supplementation with PCE improved intestinal morphology, and all doses of PCE significantly increased villus height (VH) in the ileum, whereas colonic crypt depth (CD) was significantly lower in the PCEH group than in the CON group. The PCEH diet significantly increased the levels of valeric and isovaleric acid in the colon content. Dietary PCEH also improved the colonic microbial community profile, reflected by a significant increase in Shannon's index compared with CON group. The abundance of Veillonellaceae and Rhodospirillales was significantly increased in the PCEH group at the family level. Discussion In conclusion, dietary PCE reduced diarrhoea rates, improved growth performance and enhanced immune function in weaned piglets. These improvements were potentially supported by altered ileum and colonic morphology, elevated colonic VFA levels, and modulation of colonic microbial profiles.
Collapse
Affiliation(s)
- Chuanpi Xiao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunran Teng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shunfeng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiyuan Lv
- Peking Centre Technology Co., LTD, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Li W, Lan T, Ding Q, Ren Z, Tang Z, Tang Q, Peng X, Xu Y, Sun Z. Effect of Low Protein Diets Supplemented with Sodium Butyrate, Medium-Chain Fatty Acids, or n-3 Polyunsaturated Fatty Acids on the Growth Performance, Immune Function, and Microbiome of Weaned Piglets. Int J Mol Sci 2023; 24:17592. [PMID: 38139420 PMCID: PMC10743886 DOI: 10.3390/ijms242417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (W.L.)
| |
Collapse
|
40
|
Dong W, Ricker N, Holman DB, Johnson TA. Meta-analysis reveals the predictable dynamic development of the gut microbiota in commercial pigs. Microbiol Spectr 2023; 11:e0172223. [PMID: 37815394 PMCID: PMC10715009 DOI: 10.1128/spectrum.01722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.
Collapse
Affiliation(s)
- Wenxuan Dong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Ricker
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
41
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
42
|
Liu Z, Li Z, Zheng Z, Li N, Mu S, Ma Y, Zhou Z, Yan J, Lu C, Wang W, Zhang H. Effects of L-theanine on intestinal morphology, barrier function, and MAPK signaling pathways in diquat-challenged piglets. Anim Biotechnol 2023; 34:1112-1119. [PMID: 34904512 DOI: 10.1080/10495398.2021.2013857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the protective effects of L-theanine supplementation on the diquat-challenged weaned piglets. A total of 160 weaned piglets were randomly divided into 4 groups using a 2 × 2 two-factor design, there were 4 replicates per group and 10 pigs per replicate. Piglets were fed diets (with 1000 mg/kg L-theanine addition or not), then challenged with diquat or saline on day 7. 21 days after challenge, two pigs from each replicate were selected for sample collection. Results showed that supplement with 1000 mg/kg L-theanine down-regulated the diarrhea rate, serum D-lactate level, tumor necrosis factor-α, and phosphorylation of extracellular regulated protein kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) signaling in pigs without diquat challenge (p < 0.05). While for diquat-challenged piglets, L-theanine addition increased average daily gain, jejunum villus height, and interferon-γ level (p < 0.05). Meanwhile, L-theanine addition decreased the diarrhea rates and mortality, serum D-lactate level, and phosphorylation of ERK and JNK in diquat-challenged pigs (p < 0.05). These results demonstrate that L-theanine pretreatment could alleviate diquat-induced oxidative stress and improve intestinal barrier function in diquat-challenged weaned piglets, which can be attributed to suppression of MAPK phosphorylation signaling pathways.
Collapse
Affiliation(s)
- Zhengqun Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeqing Li
- Tianjin Agricultural Development Service Center, Tianjin, China
| | - Zi Zheng
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Ning Li
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Shuqin Mu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Yong Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Zhijiang Zhou
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Jun Yan
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Chunlian Lu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenjie Wang
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Han P, Du Z, Liu X, You J, Shi XE, Sun S, Yang G, Li X. Effects of maternal supplementation of fish oil during late gestation and lactation on growth performance, fecal microbiota structure and post-weaning diarrhoea of offspring piglets. Br J Nutr 2023; 130:966-977. [PMID: 36539976 DOI: 10.1017/s0007114522003981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Homeostasis of gut microbiota is a critical contributor to growth and health in weaned piglets. Fish oil is widely reported to benefit health of mammals including preventing intestinal dysfunction, yet its protective effect during suckling-to-weaning transition in piglets remains undetermined. Low (30 g/d) and high (60 g/d) doses of n-3-rich fish oil were supplemented in sows from late gestation to lactation. Serum indicators and gut microbiota were determined to evaluate the effects of maternal fish oil on growth performance, immunity and diarrhea of piglets. DHA and EPA in the colostrum as well as serum of suckling and 1-week post-wean piglets were significantly and linearly increased by maternal supplementation of fish oil (P < 0.05). IGF1 and T3 in nursing and weaned piglets were significantly elevated by maternal fish oil (P < 0.05), and the increase of IGF1 was concerning the dosage of fish oil. Colostrum IgG, plasma IgG, IgM in suckling piglets, IgG, IgM and IgA in weaned piglets were significantly increase as maternal replenishment of fish oil increased (P < 0.05). Additionally, cortisol was significantly reduced in weaned pigs (P < 0.05), regardless of dosage. 16S rRNA sequencing revealed that α-diversity of fecal microbiota in nursery piglets, and fecal Lactobacillus genus, positively correlated with post-weaning IgA, was significantly increased by high dosage. Collectively, maternal fish oil during late pregnancy and lactation significantly promoted growth, enhanced immunity, and reduced post-weaning diarrhea in piglets, therefore facilitated suckling-to-weaning transition in piglets, which may be partially due to the altered gut microbial community.
Collapse
Affiliation(s)
- Peiyuan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Zhaohui Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xiaowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Junyi You
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xin E Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Shiduo Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| |
Collapse
|
44
|
Gomes-Neto JC, Pavlovikj N, Korth N, Naberhaus SA, Arruda B, Benson AK, Kreuder AJ. Salmonella enterica induces biogeography-specific changes in the gut microbiome of pigs. Front Vet Sci 2023; 10:1186554. [PMID: 37781286 PMCID: PMC10537282 DOI: 10.3389/fvets.2023.1186554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.
Collapse
Affiliation(s)
- Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samantha A. Naberhaus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
45
|
Hosseindoust A, Ha S, Mun J, Kim J. Effects of meal processing of black soldier fly on standardized amino acids digestibility in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1014-1023. [PMID: 37969343 PMCID: PMC10640932 DOI: 10.5187/jast.2023.e28] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 11/17/2023]
Abstract
The aim of this study was to investigate the effect of incorporating black soldier fly (BSF) larvae and its processed form as an alternative source of protein to fish meal (FM) on the digestibility of amino acids (AA) in weaned pigs. Four cannulated pigs with an initial bodyweight of 13.25 ± 0.25 kg and aged 30 days were subjected to a 4 × 4 Latin square design with three treatments, as well as a nitrogen-free treatment. The diets used for each treatment consisted of a FM diet, a diet containing BSF larvae meal (BSFM), and a diet containing extruded BSF (BSFE). The study was conducted over four stages, with a total duration of 28 days. The apparent ileal digestibility (AID) of protein was higher in the FM treatment compared with the BSFM. Among essential AA, the AID of Arg, His, Leu, and Thr were higher in the FM compared with the BSFM and BSFE. A greater AID of Ile and Phe was observed in pigs in the FM treatment compared with the BSFM. The average AA digestibility did not show any difference between treatments. Among non-essential AA, the AID of Ala (p = 0.054) and Glu (p = 0.064) tended to be increased in the FM compared with the BSFM. Among essential AA, the standardized ileal digestibility (SID) of Arg, His, Ile, and Leu were higher in the FM compared with the BSFM. Among non-essential AA, the SID of Cys (p = 0.074) tended to be increased in the FM compared with the BSFM. In conclusion, the processing and thermal conditioning techniques utilized for BSF larvae meal showed a tendency for increased AA digestibility. Therefore, when formulating a diet, it is important to take into account the difference in AA digestibility between FM and BSFM.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - SangHun Ha
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
46
|
Gómez G, Laviano HD, García-Casco JM, Escudero R, Muñoz M, Heras-Molina A, González-Bulnes A, Óvilo C, López-Bote C, Rey AI. Different Effect of Vitamin E or Hydroxytyrosol Supplementation to Sow's Diet on Oxidative Status and Performances of Weaned Piglets. Antioxidants (Basel) 2023; 12:1504. [PMID: 37627499 PMCID: PMC10451658 DOI: 10.3390/antiox12081504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Different feeding strategies are being applied to sows in order to obtain homogeneous piglets' weights and improved health status. This study evaluated how the dietary supplementation of vitamin E (VE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg) or the combined administration (VE + HXT) given to Iberian sows from day 85 of gestation affected the growth pattern of the piglets and their oxidative status; and quantified what these effects were due to. Dietary VE and HXT improved the oxidative status of sows and piglets. Both VE and HXT modified the growth pattern at birth and performances of the piglets in a different way according to the growing period. Piglets' performances were positively correlated with plasma VE and negatively with plasma malondialdehyde (MDA) of the sow. However, the highest variation in growth patterns was explained by the colostrum composition. Significant linear equations were observed between piglets' performances and colostrum saturated (SAT), n-7 monounsaturated fatty acids (C16:1n-7 and C18:1n-7) and different desaturases indices. This study would confirm that VE supplementation to the sow diet could be more adequate than HXT for the improved development during the first weeks of a piglet's life. The combined administration of both antioxidants would not produce additional positive effects compared to the individual supplementation.
Collapse
Affiliation(s)
- Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Ctra. Toledo-Albacete s/n., 13700 Tomelloso, Spain
| | - Hernan D. Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Rosa Escudero
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Ana Heras-Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Clemente López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana I. Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| |
Collapse
|
47
|
Wu G. Nutrition and Gut Health: Recent Advances and Implications for Development of Functional Foods. Int J Mol Sci 2023; 24:10075. [PMID: 37373221 DOI: 10.3390/ijms241210075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The small intestine is a highly differentiated and complex organ with many nutritional, physiological, and immunological functions [...].
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Medical Physiology and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
48
|
Xu Q, Liu M, Chao X, Zhang C, Yang H, Chen J, Zhou B. Stevioside Improves Antioxidant Capacity and Intestinal Barrier Function while Attenuating Inflammation and Apoptosis by Regulating the NF-κB/MAPK Pathways in Diquat-Induced Oxidative Stress of IPEC-J2 Cells. Antioxidants (Basel) 2023; 12:antiox12051070. [PMID: 37237936 DOI: 10.3390/antiox12051070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
As a natural sweetener, stevioside is extracted from Stevia rebaudiana Bertoni and possesses potent antioxidant activity. However, little information is known about its protective role in maintaining the intestinal epithelial cells health under oxidative stress. The aim of this study was to investigate the protective effects and underlying mechanisms of stevioside on alleviating inflammation, apoptosis, and improving antioxidant capacity in intestinal porcine epithelial cells (IPEC-J2) under oxidative stress by diquat. The results demonstrated that the pretreatment with stevioside (250 μM) for 6 h increased cell viability and proliferation and prevented apoptosis induced by diquat at 1000 μM for 6 h in IPEC-J2 cells, compared with the diquat alone-treated cells. Importantly, stevioside pretreatment significantly reduced ROS and MDA production as well as upregulated T-SOD, CAT, and GSH-Px activity. Moreover, it also decreased cell permeability and improved intestinal barrier functions by significantly upregulating the tight junction protein abundances of claudin-1, occludin, and ZO-1. At the same time, stevioside significantly down-regulated the secretion and gene expression of IL-6, IL-8, and TNF-α and decreased the phosphorylation levels of NF-κB, IκB, and ERK1/2 compared with the diquat alone group. Taken together, this study demonstrated that stevioside alleviated diquat-stimulated cytotoxicity, inflammation, and apoptosis in IPEC-J2 cells, protecting cellular barrier integrity and mitigating oxidative stress by interfering with the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
49
|
Tang Q, Li W, Ren Z, Ding Q, Peng X, Tang Z, Pang J, Xu Y, Sun Z. Different Fatty Acid Supplementation in Low-Protein Diets Regulate Nutrient Utilization and Lipid and Amino Acid Metabolism in Weaned Pigs Model. Int J Mol Sci 2023; 24:ijms24108501. [PMID: 37239844 DOI: 10.3390/ijms24108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This study was conducted to evaluate the effects of a low-protein (LP) diet supplemented with sodium butyrate (SB), medium-chain fatty acids (MCFAs) and n-3 polyunsaturated fatty acids (PUFAs) on nutrient utilization and lipid and amino acid metabolism in weaned pigs. A total of 120 Duroc × Landrace × Yorkshire pigs (initial body weight: 7.93 ± 0.65 kg) were randomly assigned to five dietary treatments, including the control diet (CON), LP diet, LP + 0.2% SB diet (LP + SB), LP + 0.2% MCFA diet (LP + MCFA) and LP + 0.2% n-3 PUFA diet (LP + PUFA). The results show that the LP + MCFA diet increased (p < 0.05) the digestibility of dry matter and total P in pigs compared with the CON and LP diets. In the liver of the pigs, the metabolites involved in sugar metabolism and oxidative phosphorylation significantly changed with the LP diet compared with the CON diet. Compared with the LP diet, the altered metabolites in the liver of the pigs fed with the LP + SB diet were mainly associated with sugar metabolism and pyrimidine metabolism; the altered metabolites in the liver of pigs fed with the LP + MCFA and LP + PUFA diets were mainly associated with lipid metabolism and amino acid metabolism. In addition, the LP + PUFA diet increased (p < 0.05) the concentration of glutamate dehydrogenase in the liver of pigs compared with the LP diet. Furthermore, the LP + MCFA and LP + PUFA diets increased (p < 0.05) the mRNA abundance of sterol regulatory element-binding protein 1 and acetyl-CoA carboxylase in the liver compared with the CON diet. The LP + PUFA diet increased (p < 0.05) mRNA abundances of fatty acid synthase in the liver compared with the CON and LP diets. Collectively, the LP diet supplemented with MCFAs improved nutrient digestibility, and the LP diet supplemented with MCFAs and n-3 PUFAs promoted lipid and amino acid metabolisms.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qi Ding
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
50
|
Laviano HD, Gómez G, Muñoz M, García-Casco JM, Nuñez Y, Escudero R, Molina AH, González-Bulnes A, Óvilo C, López-Bote C, Rey AI. Dietary Vitamin E and/or Hydroxytyrosol Supplementation to Sows during Late Pregnancy and Lactation Modifies the Lipid Composition of Colostrum and Milk. Antioxidants (Basel) 2023; 12:antiox12051039. [PMID: 37237905 DOI: 10.3390/antiox12051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Modifying the composition of a sow's milk could be a strategy to improve the intestinal health and growth of her piglet during the first weeks of life. This study evaluated how dietary supplementation of vitamin E (VE), hydroxytyrosol (HXT) or VE+HXT given to Iberian sows from late gestation affected the colostrum and milk composition, lipid stability and their relationship with the piglet's oxidative status. Colostrum from VE-supplemented sows had greater C18:1n-7 than non-supplemented sows, whereas HXT increased polyunsaturated (∑PUFAs), ∑n-6 and ∑n-3 fatty acids. In 7-day milk, the main effects were induced by VE supplementation that decreased ∑PUFAs, ∑n-6 and ∑n-3 and increased the Δ-6-desaturase activity. The VE+HXT supplementation resulted in lower desaturase capacity in 20-day milk. Positive correlations were observed between the estimated mean milk energy output and the desaturation capacity of sows. The lowest concentration of malondialdehyde (MDA) in milk was observed in VE-supplemented groups, whereas HXT supplementation increased oxidation. Milk lipid oxidation was negatively correlated with the sow's plasma oxidative status and to a great extent with the oxidative status of piglets after weaning. Maternal VE supplementation produced a more beneficial milk composition to improve the oxidative status of piglets, which could promote gut health and piglet growth during the first weeks, but more research is needed to clarify this.
Collapse
Affiliation(s)
- Hernan D Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), 13700 Toledo, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Juan M García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Rosa Escudero
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana Heras Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Clemente López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana I Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| |
Collapse
|