1
|
Prasad S, Patel B, Kumar P, Mitra P, Lall R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr Issues Mol Biol 2025; 47:80. [PMID: 39996801 PMCID: PMC11854524 DOI: 10.3390/cimb47020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Cranberries are a distinctive source of bioactive compounds, containing polyphenols such as flavonoids, anthocyanins, phenolic acids, and triterpenoids. Cranberries are often associated with potential health benefits for the urinary tract and digestive system due to their high antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties. Cranberry induces the production of antioxidant enzymes, suppresses lipid peroxidation, reduces inflammatory cytokines, modulates immune cells, maintains gut microbiota, and inhibits bacterial adhesion and growth. Cranberry polyphenols also have metal-binding motifs that bind with metals, particularly zinc and iron. The combination of cranberry polyphenols and metals displays increased biological activity. In this review, an attempt is made to describe the physiological properties and health benefits of cranberries for livestock, including poultry, swine, canine, feline, and ruminant animals, as either feed/food or as supplements. Cranberry, and/or its components, has the capability to potentially control infectious diseases like diarrhea, urinary tract infection, gut integrity, and intestinal probiotic health. Moreover, cranberries show efficacy in suppressing the growth of pathogenic microorganisms such as Salmonella species, Campylobacter species, Streptococcus species, and Enterococcus species bacteria. Thus, cranberry could be considered as a potential natural feed additive or food supplement for animal health improvement.
Collapse
Affiliation(s)
- Sahdeo Prasad
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| | - Bhaumik Patel
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Prafulla Kumar
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food & Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Rajiv Lall
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| |
Collapse
|
2
|
Yang Z, Zhang D, Jiang Z, Peng J, Wei H. The formidable guardian: Type 3 immunity in the intestine of pigs. Virulence 2024; 15:2424325. [PMID: 39497434 PMCID: PMC11552283 DOI: 10.1080/21505594.2024.2424325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
Well-intestinal health is crucial for better growth performance in pigs. Type 3 immunity, which is one of the three types of immune responses in mammals, plays a vital role in maintaining intestinal homoeostasis. Therefore, we initially introduce the type 3 immune cells in the intestine of pigs, including their distribution, development, and function. We then discuss the type 3 immune response under infection, encompassing bacterial, fungal, and viral infections. It also covers two major stresses in pigs: heat stress and weaning stress. Lastly, we discuss the effects of various nutrients and feed additives on the regulation of the type 3 immune response in pigs under infection. This review aims to contribute to the understanding of the interaction between infection and type 3 immunity in pigs and to illustrate how various nutrients modulate the type 3 immune response in pigs under diverse infections.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dou Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhoudan Jiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. STRESS BIOLOGY 2024; 4:1. [PMID: 38163818 PMCID: PMC10758383 DOI: 10.1007/s44154-023-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of "The Hygiene Hypothesis" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
5
|
Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Since January 2006 when using antibiotics as growth promoters in animal feed have been banned scientists are looking for the best resolution to apply alternative substances. Extensive research into the health-promoting properties of probiotics and prebiotics has led to significant interest in the mechanisms of action of the combined administration of these feed additives as a synbiotic. Subsequent research has led to the development of new products. Among the most important health benefits of additives are, inhibiting the growth of pathogenic bacteria in the GI tract, maintenance of homeostasis, treatment of inflammatory bowel diseases, and increase in immunity. Specific immunomodulatory mechanisms of action are not well understood and the effect is not always positive, though there are no reports of adverse effects of these substances found in the literature. For this reason, research is still being conducted on their proper application. However, due to the difficulties of carrying out research on humans, evidence of the beneficial effect of these additives comes mainly from experiments on animals. The objective of the present work was to assess the effect of probiotics, prebiotics, and synbiotics, as well as new additives including postbiotics, proteobiotics, nutribiotics, and pharmabiotics, on specific immunomodulatory mechanisms of action, increase in immunity, the reduction of a broad spectrum of diseases.
Collapse
|
6
|
Li L, Yin F, Wang X, Yang C, Yu H, Lepp D, Wang Q, Lessard M, Lo Verso L, Mondor M, Yang C, Nie S, Gong J. Microencapsulation protected Lactobacillus viability and its activity in modulating the intestinal microbiota in newly weaned piglets. J Anim Sci 2023; 101:skad193. [PMID: 37403537 PMCID: PMC10516462 DOI: 10.1093/jas/skad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Lactobacilli are sensitive to heat, which limits their application as probiotics in livestock production. Lactobacillus rhamnosus LB1 was previously shown to reduce enterotoxigenic Escherichia coli (ETEC) and Salmonella infections in pigs. To investigate its potential in the application, the bacterium was microencapsulated and examined for its survival from feed pelleting and long-term storage as well as its function in modulating pig intestinal microbiota. The in vitro studies showed that freshly microencapsulated Lactobacillus rhamnosus LB1 had viable counts of 9.03 ± 0.049 log10 colony-forming units/g, of which only 0.06 and 0.87 Log of viable counts were reduced after storage at 4 and 22 °C for 427 d. The viable counts of encapsulated Lactobacillus rhamnosus LB1 were 1.06 and 1.54 Log higher in the pelleted and mash feed, respectively, than the non-encapsulated form stored at 22 °C for 30 d. In the in vivo studies, 80 piglets (weaned at 21 d of age) were allocated to five dietary treatments for a 10-d growth trial. The dietary treatments were the basal diet (CTL) and basal diet combined with either non-encapsulated LB1 (NEP), encapsulated LB1 (EP), bovine colostrum (BC), or a combination of encapsulated LB1 and bovine colostrum (EP-BC). The results demonstrated that weaning depressed feed intake and reduced growth rates in pigs of all the treatments during 21 to 25 d of age; however, the body weight gain was improved during 25 to 31 d of age in all groups with the numerically highest increase in the EP-BC-fed pigs during 21 to 31 d of age. Dietary treatments with EP, particularly in combination with BC, modulated pig intestinal microbiota, including an increase in Lactobacillus relative abundance. These results suggest that microencapsulation can protect Lactobacillus rhamnosus LB1 against cell damage from a high temperature during processing and storage and there are possible complementary effects between EP and BC.
Collapse
Affiliation(s)
- Linyan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Fugui Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xiaoyin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Chongwu Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Martin Mondor
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, St-Hyacinthe, Quebec, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Correa F, Luise D, Bosi P, Trevisi P. Weaning differentially affects the maturation of piglet peripheral blood and jejunal Peyer's patches. Sci Rep 2022; 12:1604. [PMID: 35102264 PMCID: PMC8803882 DOI: 10.1038/s41598-022-05707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess how the post-weaning condition changes piglet peripheral blood (PB) and jejunal Peyer's patches (JPPs) as compared to the suckling period, and how these changes are associated with intestinal microbiota evolution. Sixteen pigs were slaughtered and sampled for PB, JPPs and jejunal content (JC) at weaning (26 days) or at 12 days fed on a pre-starter diet. The PB and JPP transcriptomes were analysed using mRNA-seq. The Gene Set Enrichment Analysis was used to demonstrate enriched gene clusters, depending on sampling time. Jejunal microbiota was profiled using 16S rRNA gene sequencing. Post-weaning JPPs were enriched for processes related to the activation of IFN-γ and major histocompatibility complex (MHC) class I antigen processing which clustered with the reduced abundance of the Weisella genus and Faecalibacterium prausnitzii in JC. The post-weaning microbiome differed from that seen in just-weaned pigs. For just-weaned PB, the enrichment of genes related to hemoglobin and the iron metabolism indicated the greater presence of reticulocytes and immature erythrocytes. The JPP genes involved in the I MHC and IFN-γ activations were markers of the post-weaning phase. Several genes attributable to reticulocyte and erythrocyte maturation could be interesting for testing the iron nutrition of piglets.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
8
|
Duarte ME, Kim SW. Intestinal microbiota and its interaction to intestinal health in nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:169-184. [PMID: 34977387 PMCID: PMC8683651 DOI: 10.1016/j.aninu.2021.05.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has gained increased attention from researchers within the swine industry due to its role in promoting intestinal maturation, immune system modulation, and consequently the enhancement of the health and growth performance of the host. This review aimed to provide updated scientific information on the interaction among intestinal microbiota, dietary components, and intestinal health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host because it is the main site for digestion and absorption of nutrients and plays an important role within the immune system. The diet and its associated components such as feed additives are the main factors affecting the microbial composition and is central in stimulating a beneficial population of microbiota. The microbiota–host interaction modulates the immune system, and, concurrently, the immune system helps to modulate the microbiota composition. The direct interaction between the microbiota and the host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of feed additives aimed to promote the intestinal health of pigs should consider their roles in the modulation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to dietary interventions.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| |
Collapse
|
9
|
Li L, Sun X, Zhao D, Dai H. Pharmacological Applications and Action Mechanisms of Phytochemicals as Alternatives to Antibiotics in Pig Production. Front Immunol 2021; 12:798553. [PMID: 34956234 PMCID: PMC8695855 DOI: 10.3389/fimmu.2021.798553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotics are widely used for infectious diseases and feed additives for animal health and growth. Antibiotic resistant caused by overuse of antibiotics poses a global health threat. It is urgent to choose safe and environment-friendly alternatives to antibiotics to promote the ecological sustainable development of the pig industry. Phytochemicals are characterized by little residue, no resistance, and minimal side effects and have been reported to improve animal health and growth performance in pigs, which may become a promising additive in pig production. This paper summarizes the biological functions of recent studies of phytochemicals on growth performance, metabolism, antioxidative capacity, gut microbiota, intestinal mucosa barrier, antiviral, antimicrobial, immunomodulatory, detoxification of mycotoxins, as well as their action mechanisms in pig production. The review may provide the theoretical basis for the application of phytochemicals functioning as alternative antibiotic additives in the pig industry.
Collapse
Affiliation(s)
- Lexing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dai Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Cheng YC, Duarte ME, Kim SW. Effects of Yarrowia lipolytica supplementation on growth performance, intestinal health and apparent ileal digestibility of diets fed to nursery pigs. Anim Biosci 2021; 35:605-613. [PMID: 34727641 PMCID: PMC8902212 DOI: 10.5713/ab.21.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective was to evaluate the efficacy of increasing supplementation of Yarrowia lipolytica (YL) up to 3.0% replacing 1.6% poultry fat and 0.9% blood plasma for growth performance, intestinal health and nutrient digestibility of diets fed to nursery pigs. Methods Twenty-four pigs weaned at 24 d of age (initial body weight at 7.2±0.6 kg) were allotted to three dietary treatments (n = 8) based on the randomized complete block. The diets with supplementation of YL (0.0%, 1.5%, and 3.0%, replacing poultry fat and blood plasma up to 1.6% and 0.9%, respectively) were fed for 21 d. Feed intake and body weight were recorded at d 0, 10, and 21. Fecal score was recorded at every odd day from d 3 to 19. Pigs were euthanized on d 21 to collect proximal and distal jejunal mucosa to measure intestinal health markers including tumor necrosis factor-alpha, interleukin-8, immunoglobulin A and immunoglobulin G. Ileal digesta was collected for apparent ileal digestibility (AID) of nutrients in diets. Data were analyzed using Proc Mixed of SAS. Results Supplementation of YL (1.5% and 3.0%) replacing poultry fat and blood plasma did not affect growth performance, fecal score and intestinal health. Supplementation of YL at 1.5% did not affect nutrient digestibility, whereas supplementation of YL at 3.0% reduced AID of dry matter (40.2% to 55.0%), gross energy (44.0% to 57.5%), crude protein (52.1% to 66.1%), and ether extract (50.8% to 66.9%) compared to diets without supplementation. Conclusion Yarrowia lipolytica can be supplemented at 1.5% in nursery diets, replacing 0.8% poultry fat and 0.45% blood plasma without affecting growth performance, intestinal health and nutrient digestibility. Supplementation of YL at 3.0% replacing 1.6% poultry fat and 0.9% blood plasma did not affect growth performance and intestinal health, whereas nutrient digestibility was reduced.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Lo Verso L, Dumont K, Lessard M, Lauzon K, Provost C, Gagnon CA, Chorfi Y, Guay F. The administration of diets contaminated with low to intermediate doses of deoxynivalenol and supplemented with antioxidants and binding agents slightly affects the growth, antioxidant status, and vaccine response in weanling pigs. J Anim Sci 2021; 99:skab238. [PMID: 34406414 PMCID: PMC8420677 DOI: 10.1093/jas/skab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to evaluate the impact of grading levels of deoxynivalenol (DON) in the diet of weaned pigs, as well as the effects of a supplementation with antioxidants (AOX), hydrated sodium calcium aluminosilicates (HSCAS), and their combination on the growth, AOX status, and immune and vaccine responses against the porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). At weaning, 336 piglets were allocated to six dietary treatments according to a randomized complete block design. Treatments were as follows: basal diet (CTRL); basal diet containing DON at 1.2 mg/kg (DON1.2); basal diet containing DON at 2.4 mg/kg (DON2.4); DON2.4 diet + a mix of AOX which included vitamins A and E at 20,000 IU and 200 IU/kg feed respectively, selenized yeast at 0.3 mg/kg, and a grape seed extracts at 100 mg/kg feed (DON2.4 + AOX); DON2.4 diet + the mix of AOX and the modified HSCAS mentioned above (DON2.4 + AOX + HSCAS); DON2.4 + AOX + HSCAS. Pigs were vaccinated against PRRSV and PCV2 at 7 d; on 0, 14, and 35 d, growth performance was recorded, and blood samples were collected in order to evaluate the oxidative status, inflammatory blood markers, lymphocyte blastogenic response, and vaccine antibody response. Increasing intake of DON resulted in a quadratic effect at 35 d in the lymphocyte proliferative response to concanavalin A and PCV2 as well as in the anti-PRRSV antibody response, whereas the catalase activity decreased in DON2.4 pigs compared with the CTRL and DON1.2 groups (P ≤ 0.05). Compared with the DON2.4 diet, the AOX supplementation slightly reduced gain to feed ratio (P = 0.026) and increased the ferric reducing ability of plasma as well as α-tocopherol concentration (P < 0.05), whereas the association of AOX + HSCAS increased the anti-PRRSV IgG (P < 0.05). Furthermore, the HSCAS supplement reduced haptoglobin levels in serum at 14 d compared with the DON2.4 group; however, its concentration decreased in all the experimental treatments from 14 to 35 d and particularly in the DON2.4 + AOX pigs, whereas a different trend was evidenced in the DON2.4 + HSCAS group, where over the same period haptoglobin concentration increased (P < 0.05). Overall, our results show that the addition of AOX and HSCAS in the diet may alleviate the negative effects due to DON contamination on the AOX status and immune response of vaccinated weanling pigs.
Collapse
Affiliation(s)
- Luca Lo Verso
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
| | - Kristina Dumont
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
| | - Martin Lessard
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada
| | - Karoline Lauzon
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada
| | - Chantale Provost
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Younes Chorfi
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Frédéric Guay
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
12
|
Guo L, Zhang D, Fu S, Zhang J, Zhang X, He J, Peng C, Zhang Y, Qiu Y, Ye C, Liu Y, Wu Z, Hu CAA. Metagenomic Sequencing Analysis of the Effects of Colistin Sulfate on the Pig Gut Microbiome. Front Vet Sci 2021; 8:663820. [PMID: 34277753 PMCID: PMC8282896 DOI: 10.3389/fvets.2021.663820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome plays important roles in maintaining host health, and inappropriate use of antibiotics can cause imbalance, which may contribute to serious disease. However, despite its promise, using metagenomic sequencing to explore the effects of colistin on gut microbiome composition in pig has not been reported. Herein, we evaluated the roles of colistin in gut microbiome modulation in pigs. Metagenomic analysis demonstrated that overall microbial diversity was higher in the colistin group compared with the control group. Antibiotic Resistance Genes Database analysis demonstrated that following colistin treatment, expression levels of tsnr, ant6ia, tetq, oleb, norm, ant3ia, and mexh were significantly upregulated, indicating that colistin may induce transformation of antibiotic resistance genes. Colistin also affected the microbiome distribution patterns at both genus and phylum levels. In addition, at the species level, colistin significantly reduced the abundance of Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea and enhanced the abundance of Treponema succinifaciens and Acidaminococcus fermentans compared to the control group. Gene Ontology analysis demonstrated that following treatment with colistin, metabolic process, cellular process, and single-organism process were the dominant affected terms. Kyoto Encyclopedia of Genes and Genomes analysis showed that oxidative phosphorylation, protein processing in endoplasmic reticulum, various types of N-glycan biosynthesis, protein processing in endoplasmic reticulum, pathogenic Escherichia coli infection, and mitogen-activated protein kinase signaling pathway–yeast were the dominant signaling pathways in the colistin group. Overall, our results suggested that colistin affects microbial diversity and may modulate gut microbiome composition in pig, potentially providing novel strategy or antibiotic rationalization pertinent to human and animal health.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Dan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Jiacheng Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Xiaofang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Jing He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Chun Peng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|