1
|
Niu J, Qiao Y, Yang X, Chen X, Li H, Guo Y, Zhang W, Wang Z. Protease and Bacillus coagulans Supplementation in a Low-Protein Diet Improves Broiler Growth, Promotes Amino Acid Transport Gene Activity, Strengthens Intestinal Barriers, and Alters the Cecal Microbial Composition. Animals (Basel) 2025; 15:170. [PMID: 39858172 PMCID: PMC11758613 DOI: 10.3390/ani15020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Low-protein (LPRO) diets can effectively reduce feed costs and decrease environmental pollution, making them an important pathway to enhance the sustainability of livestock production. However, they may have adverse effects on the growth performance of broiler chickens, which has limited their widespread application. This study aims to explore the impact of adding protease (PRO) to LPRO diets on the growth performance of broiler chickens, especially under conditions with or without the presence of Bacillus coagulans (BC), in order to provide theoretical support for the scientific application and promotion of LPRO feeds. We selected 432 one-day-old broiler chickens and divided them into four treatment groups, which were fed with the control (CON) diet, the LPRO diet, the PRO diet (LPRO diet with added protease), and the PAB diet (PRO diet with added BC). The LPRO group demonstrated decreased growth performance while both PRO and PAB diets resulted in a significant increase (p < 0.05). Both PRO and PAB diets significantly enhanced the expression of amino acid transport genes and tight junction genes (p < 0.05) and optimized the composition of the intestinal microbiota. Overall, LPRO diets have a detrimental effect on the growth of broiler chickens, while the PRO and PAB diets effectively counteract these negative effects by improving protein digestion, amino acid absorption, and intestinal health.
Collapse
Affiliation(s)
- Junlong Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Yingying Qiao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450003, China;
| | - Xiaopeng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Xiaoshuang Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Hongfei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| |
Collapse
|
2
|
Elolimy AA, Hashim MM, Elsafty SA, Abdelhady ARY, Ladirat S, Shourrap M, Madkour M. Effects of microencapsulated essential oils and seaweed meal on growth performance, digestive enzymes, intestinal morphology, liver functions, and plasma biomarkers in broiler chickens. J Anim Sci 2025; 103:skaf092. [PMID: 40151066 PMCID: PMC12065408 DOI: 10.1093/jas/skaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Globally, poultry production has increased to meet the demand for animal protein. Traditionally, antibiotic growth promoters have been used to enhance growth performance and prevent infections in commercial poultry practices. However, concerns regarding antimicrobial resistance have triggered interest in alternative solutions, such as essential oils (EOs) and seaweed additives. The aim of the current study was to assess the impact of a microencapsulated blend of EOs (cinnamaldehyde, eugenol, and thymol) and Ascophyllum nodosum seaweed meal on growth performance, intestinal function, blood biomarkers, and hepatic gene expression in broiler chickens. A total of 440 Arbor Acres chicks were randomly assigned to either a control (CON) or treatment (NEX) group. Each treatment was divided into 11 replicates (20 birds per replicate). NEX chicks were supplemented with 100 mg/kg feed containing a microencapsulated blend of EOs (cinnamaldehyde, eugenol, and thymol) and Ascophyllum nodosum seaweed meal. Data were analyzed using the UNIVARIATE procedure in SAS software. Each replicate was considered an experimental unit. Over a 35-d period, NEX supplementation improved the feed conversion ratio (P = 0.02), reduced mortality rate (P = 0.01), and increased the European performance efficiency factor. No differences in carcass traits were observed between the 2 treatments (P > 0.05). Jejunal digestive enzyme activities, particularly those of amylase and lipase, were higher in NEX birds (P < 0.05) and correlated with morphometric parameters, such as villus height (P = 0.04) and muscular layer thickness (P < 0.01). Gene expression analysis revealed the upregulation of key genes related to nutrient transporters (solute carrier family 5 member 1 gene (SLC5A1), solute carrier family 1 member 1 gene (SLC1A1), solute carrier family 15 member 1 gene (SLC15A1)) in the jejunum (P < 0.05) and lipid metabolism (peroxisome proliferator-activated receptor alpha gene (PPARA) and microsomal triglyceride transfer protein gene (MTTP)) in the liver (P < 0.05) of NEX-supplemented birds. NEX treatment altered plasma biomarkers, including increased glucose (P < 0.01), insulin (P < 0.01), and protein profiles (P < 0.05) but decreased low-density lipoprotein cholesterol (P = 0.03), suggesting enhanced metabolic health. NEX supplementation improved growth performance, economic efficiency, intestinal morphology, digestive enzyme activity, liver function, and metabolic biomarkers in broiler chickens.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates
| | - Mosaad M Hashim
- Applied Feed Research House, AFRH, Orabi Community, Al Obour City, Qalyobia, Egypt
| | - Salah A Elsafty
- Applied Feed Research House, AFRH, Orabi Community, Al Obour City, Qalyobia, Egypt
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| | - Abdel Rahman Y Abdelhady
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| | | | - Mohamed Shourrap
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
3
|
Guo X, Li Q, Wang L, Zhang Y, Johnston LJ, Levesque CL, Cao Y, Dong B. Effects of crude protease produced by Bacillus subtilis (MAFIC Y7) on growth performance, immune indices, and anti-inflammatory responses of broilers fed soybean meal- or cottonseed meal-based diets. J Anim Sci 2024; 102:skae047. [PMID: 38412360 PMCID: PMC10926942 DOI: 10.1093/jas/skae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
A strain of Bacillus subtilis (MAFIC Y7) was isolated from the intestine of Tibetan pigs and was able to express high protease activity. The aim of this study was to characterize the proteases produced by MAFIC Y7, and to investigate the effects of protease addition on growth performance, ileal amino acid digestibility, and serum immunoglobulin and immune factors of broilers fed SBM-based diets, or on growth performance, carcass characteristics, and intestinal morphology of broilers fed CSM-based diets. B. subtilis (MAFIC Y7) expressed protease showed its optimal enzyme activity at 50 °C and pH 7.0. The coated crude enzyme (CCE) showed greater stability at pH 3.0 than its uncoated counterpart. Experiment 1 was conducted with six diets based on three levels of crude protein (CP)-CPlow, CPmedium, and CPhigh-with or without CCE. In CPlow, CCE increased gain:feed (G:F) (days 1 to 21, days 1 to 42) by 8%, 3%, respectively, and enhanced apparent ileal digestibility (AID) of crude protein and lysine (on day 42) by 8.8%, 4.6%, respectively, compared with diets containing no CCE (P < 0.05). CCE increased G:F from days 1 to 21 from 0.63 to 0.68, improved G:F and average daily gain (ADG) during days 1 to 42, and enhanced AID of crude protein, lysine, cysteine, and isoleucine on day 42 compared with the unsupplemented treatments (in CPmedium, P < 0.05). CCE increased serum IgA (on day 21), serum IgA and IgG and increased serum IL-10 (on day 42), but decreased serum tumor necrosis factor-α (TNF-α; on day 21), and serum IL-8 and TNF-α (on day 42) compared with unsupplemented treatments. At CPhigh, CCE decreased serum levels of IL-6 and TNF-α (on day 21), and IL-8 and TNF-α (on day 42) compared with unsupplemented treatments (in CPhigh, P < 0.05). In experiment 2, CSM-based diets with two lysine-to-protein ratios (5.2% or 5.5%) with or without CCE. In the high Lys diet (5.5% Lys:protein), CCE increased ADG and G:F, increased carcass, but decreased abdominal fat compared with the unsupplemented treatment (P < 0.05). In the 5.2% Lys:protein dietary treatment, CCE improved duodenal villus height compared with the unsupplemented treatment (P < 0.05). Supplementation of protease produced by MAFIC Y7 was associated with lower inflammatory responses in SBM diets (CPmedium or CPhigh) and improved ADG in broilers fed CPmedium or CPhigh. The proteases improved ADG and the efficiency of CSM use when the ratio of Lys to protein was 5.5%.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lee J Johnston
- Department of Animal Science, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA
| | - Crystal L Levesque
- Department of Animal Science, College of Agriculture and Biological Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572000, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572000, China
| |
Collapse
|
4
|
Liu W, Liu J, Li D, Han H, Yan H, Sun Y, Lei Q, Wang J, Zhou Y, Cao D, Li H, Li F. Effect of Lactobacillus salivarius SNK-6 on egg quality, intestinal morphology, and cecal microbial community of laying hens. Poult Sci 2024; 103:103224. [PMID: 37980753 PMCID: PMC10658386 DOI: 10.1016/j.psj.2023.103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
The objective of this study was to investigate the effect of Lactobacillus salivarius (L. salivarius) SNK-6 supple-mentation on the laying performance, egg quality, blood parameters, intestinal morphology, and cecal microbial community of laying hens. A total of 432 healthy 30-wk-age laying hens were randomly divided into 3 groups with 6 replicates under the same husbandry and dietary regimes: control (CON); 2.0 × 108 CFU/kg L. salivarius supplementation (T1); 2.0 × 109 CFU/kg L. salivarius supplementation (T2). The experiment lasted for 10 wk. The results indicated that the supplementation resulted in a significant reduction in the broken egg and unqualified egg ratios, and a significant increase in the eggshell strength, eggshell relative weight, albumen height, and Haugh units (P < 0.05). The L. salivarius-treated hens exhibited significantly reduced serum malondialdehyde levels (P < 0.05); significantly increased total protein, phosphorus, calcitonin, and immunoglobulin M (P < 0.05); significantly increased cecal secretory immunoglobulin A concentration (P < 0.05); significantly improved villus height (VH) in the duodenum and VH to crypt depth ratio in the jejunum (P < 0.05). The serum globulin and interleukin-1β, immunoglobulin G concentrations, and catalase activity significantly increased in T2 (P < 0.05). Furthermore, the serum interferon-α level in T1 was significantly higher than that of the CON (P < 0.05). The intestinal barrier-related mRNA gene ZO-1, CLDN1, and MUC2 expression in the jejunum was significantly upregulated in the T1 and T2 groups (P < 0.05). The Firmicutes/Bacteroidetes ratio was higher and the relative abundances of Flavonifractor and Clostridiales_noname were significantly higher in the T1 group (P < 0.05). In conclusion, dietary supplementation with L. salivarius SNK-6 may improve hen egg quality, serum antioxidant capacity, immune function, and intestinal health.
Collapse
Affiliation(s)
- Wei Liu
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Jie Liu
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Dapeng Li
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Haixia Han
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Huaxiang Yan
- Shanghai Academy of Agricultural Sciences, Animal Husbandry and Veterinary Research Institute, 201106, Shanghai, China
| | - Yan Sun
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Qiuxia Lei
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Jie Wang
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Yan Zhou
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Dingguo Cao
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Huimin Li
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Fuwei Li
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China.
| |
Collapse
|
5
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Villar-Patiño G, Camacho-Rea MDC, Olvera-García ME, Soria-Soria A, Baltazar-Vázquez JC, Gómez-Verduzco G, Solano L, Téllez G, Ramírez-Pérez AH. The Effect of Encapsulated Propyl Propane Thiosulfonate (PTSO) on Apparent Ileal Digestibility and Productive Performance in Broiler Chickens. Animals (Basel) 2023; 13:ani13061123. [PMID: 36978663 PMCID: PMC10044627 DOI: 10.3390/ani13061123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This study analyzed the effects of different dietary doses of encapsulated propyl propane thiosulfonate (Pe-PTSO) on the apparent ileal digestibility (AID) of nutrients and productive performance in broilers. A total of 100 one-day-old Cobb 500 were housed in battery cages for 20 days. At 10 days of age, the birds were assigned to one of five diets: negative control (P0), 250 mg/kg of Pe-PTSO (P250), 500 mg/kg of Pe-PTSO (P500), 750 mg/kg of Pe-PTSO (P750), and positive control, nicarbazin-narasin (ION). Titanium dioxide was the external marker, which was added to the diets from day 17 to 20. In the birds fed the P250 diet, there was a significant difference (p ≤ 0.05) in the AID values for amino acids and energy compared to those that consumed the P0 diet. Furthermore, the P250 diet significantly increased (p ≤ 0.05) the average daily weight gain compared to the P0 diet. No significant differences were observed between treatments in average daily feed intake and feed conversion ratio. In summary, the inclusion of 250 mg of encapsulated PTSO per kg in broiler chickens diet improved the digestibility of amino acids and energy, as well as weight gain.
Collapse
Affiliation(s)
- Gonzalo Villar-Patiño
- Programa de Doctorado en Ciencias de la Salud y de la Producción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
- Grupo Nutec, El Marqués, Querétaro 76246, Mexico
| | - María Del Carmen Camacho-Rea
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Departamento de Nutrición Animal, Tlalpan, Ciudad de México 14080, Mexico
| | | | | | | | - Gabriela Gómez-Verduzco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Lourdes Solano
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Departamento de Nutrición Animal, Tlalpan, Ciudad de México 14080, Mexico
| | - Guillermo Téllez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aurora Hilda Ramírez-Pérez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Choi J, Liu G, Goo D, Wang J, Bowker B, Zhuang H, Kim WK. Effects of tannic acid supplementation on growth performance, gut health, and meat production and quality of broiler chickens raised in floor pens for 42 days. Front Physiol 2022; 13:1082009. [PMID: 36589444 PMCID: PMC9800873 DOI: 10.3389/fphys.2022.1082009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
A study was conducted to investigate the effects of tannic acid (TA) supplementation on growth performance, gut health, antioxidant capacity, gut microbiota, and meat yield and quality in broilers raised for 42 days. A total of 700 one-day-old male broiler chickens (Cobb500) were allocated into 5 treatments with 7 replicates of 20 birds per pen. There were five treatments: 1) tannic acid 0 (TA0: basal diet without TA); 2) tannic acid 0.25 (TA0.25: basal diet+0.25 g/kg TA); 3) tannic acid 0.5 (TA0.5: basal diet+0.5 g/kg TA); 4) tannic acid 1 (TA1: basal diet+1 g/kg TA); and 5) tannic acid 2 (TA2: basal diet+2 g/kg TA). The dietary phases included starter (D 0 to 18; crumble feed), grower (D 18 to 28; pellet feed), and finisher (D 28 to 42; pellet feed). On D 18, the supplementation of TA linearly reduced body weight (BW) and average daily feed intake (ADFI) (p < 0.05), and on D 28, the supplementation of TA linearly reduced BW, average daily gain (ADG), and feed conversion ratio (FCR) (p < 0.05). Relative mRNA expression of genes related to mucin production (MUC2), tight junction proteins (CLDN2 and JAM2), and nutrient transporters (B0AT1 and SGLT1) was linearly increased by the supplementation of TA (p < 0.05). The supplementation of TA tended to linearly increase the relative abundance of the family Enterobacteriaceae (p = 0.08) and quadratically increased the relative abundance of the families Lachnospiraceae and Ruminococcaceae in the cecal microbial communities (p < 0.05). On D 36, the ratio of the phyla Firmicutes and Bacteroidetes was quadratically reduced by the supplementation of TA (p < 0.05). On D 42, bone mineral density and the lean to fat ratio were linearly decreased by the supplementation of TA (p < 0.05). On D 43, total chilled carcass weight was linearly reduced (p < 0.05), and proportion of leg weight was increased by supplementation of TA (p < 0.05). The supplementation of TA linearly reduced pH of the breast meat (p < 0.05) and linearly increased redness (a*) (p < 0.05). Although the supplementation of TA positively influenced gut health and gut microbiota in the starter/grower phases, it negatively affected overall growth performance, bone health, and meat production in broilers on D 42.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Brain Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States,*Correspondence: Woo Kyun Kim,
| |
Collapse
|
9
|
Choi J, Yadav S, Wang J, Lorentz BJ, Lourenco JM, Callaway TR, Kim WK. Effects of supplemental tannic acid on growth performance, gut health, microbiota, and fat accumulation and optimal dosages of tannic acid in broilers. Front Physiol 2022; 13:912797. [PMID: 36117708 PMCID: PMC9478478 DOI: 10.3389/fphys.2022.912797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to investigate the effects of different dosages of tannic acid (TA) on growth performance, nutrient digestibility, gut health, immune system, oxidative status, microbial composition, volatile fatty acids (VFA), bone mineral density, and fat digestion and accumulation in broilers and to find optimal dosages of TA for efficient growth and gut health in broilers. A total of 320 male Cobb500 broilers were randomly distributed to 4 treatments with 8 replicates including 1) tannic acid 0 (TA0): basal diet without TA; 2) tannic acid 0.5 (TA0.5): basal diet with 0.5 g/kg TA; 3) tannic acid 1.5 (TA1.5); and 4) tannic acid 2.5 (TA2.5). Supplemental TA at levels greater than 972 mg/kg tended to reduce BW on D 21 (p = 0.05). The TA2.5 had significantly lower apparent ileal digestibility (AID) of crude protein compared to the TA0 group. The AID of ether extract tended to be reduced by TA at levels greater than 525 mg/kg (p = 0.08). The jejunal lipase activities tended to be reduced by TA at levels less than 595.3 mg/kg (p = 0.09). TA linearly decreased goblet cell density in the crypts of the jejunum (p < 0.05) and reduced mRNA expression of mucin two at levels less than 784.9 mg/kg and zonula occludens two at levels less than 892.6 mg/kg (p < 0.05). The TA0.5 group had higher activities of liver superoxide dismutase compared to the TA0 group (p < 0.05). Bone mineral density and contents tended to be linearly decreased by TA (p = 0.05), and the ratio of lean to fat was linearly decreased (p < 0.01). Total cecal VFA production tended to be linearly reduced by TA at levels greater than 850.9 mg/kg (p = 0.07). Supplemental TA tended to increase the relative abundance of the phylum Bacteroidetes (p = 0.1) and decrease the relative abundance of the phylum Proteobacteria (p = 0.1). The relative abundance of the family Rikenellaceae was the lowest at 500 mg/kg TA, and the relative abundance of the family Bacillaceae was the highest at 1,045 mg/kg TA. Collectively, these results indicate that the optimum level of supplemental TA would range between 500 and 900 mg/kg; this range of TA supplementation would improve gut health without negatively affecting growth performance in broilers under antibiotic-free conditions.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Benjamin J. Lorentz
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: Woo Kyun Kim,
| |
Collapse
|
10
|
Choi J, Singh AK, Chen X, Lv J, Kim WK. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals (Basel) 2022; 12:ani12172178. [PMID: 36077897 PMCID: PMC9454433 DOI: 10.3390/ani12172178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to evaluate the effects of OAs and EOs on growth performance, serum biochemistry, antioxidant enzyme activities, intestinal morphology, and digestive enzyme activities to replace AGP in broilers. Six hundred one-day-old broilers were allotted to five treatments with six replicates: (1) negative control (NC; basal diet); (2) positive control (PC; NC + 50 mg/kg bacitracin methylene disalicylate); (3) organic acids (OA; NC + 2000 mg/kg OA); (4) essential oils (EO; NC + 300 mg/kg EO); and (5) OA + EO (NC + 2000 mg/kg OA + 300 mg/kg EO). In the starter phase, the PC, EO, and OA + EO groups had a significantly lower feed conversion ratio (FCR) compared to the NC group. While the final body weight (BW) of broilers fed OAs was similar compared to broilers fed PC (p > 0.1), the FCR of the OA group tended to be lower than the PC group on D 42 (p = 0.074). The OA group had the higher serum GLOB:ALB (albumin) and ileal villus height and crypt depth (VH:CD) ratios compared to the EO group. Thus, the supplementation of EOs and OAs could substitute AGP in the starter and finisher phase, respectively.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Xi Chen
- Nutribins, Walnut, CA 91789, USA
| | - Jirong Lv
- DadHank (Chengdu) Biotech Corp, Chengdu 611130, China
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
11
|
Choi J, Tompkins YH, Teng PY, Gogal RM, Kim WK. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals (Basel) 2022; 12:ani12111378. [PMID: 35681844 PMCID: PMC9179276 DOI: 10.3390/ani12111378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to evaluate effects of tannic acid (TA) on growth performance, fecal moisture content, oocyst shedding, gut permeability, lesion score, intestinal morphology, apparent ileal digestibility, and the antioxidant and immune system of broilers infected with Eimeria maxima. A total of 420 one-day-old broilers were distributed to five treatments with seven replicates of 12 birds. The five treatments were the (1) sham-challenged control (SCC; birds fed a control diet and administrated with PBS); (2) challenged control (CC; birds fed a control diet and inoculated with E. maxima); (3) tannic acid 0.5 (TA0.5; CC + 500 mg/kg TA); (4) tannic acid 2.75 (TA2.75; CC + 2750 mg/kg TA); and (5) tannic acid 5 (TA5; CC + 5000 mg/kg TA). The TA2.75 group had significantly lower gut permeability compared to the CC group at 5 days post-infection (dpi). Supplementation of TA linearly reduced oocyst shedding of E. maxima at 7 to 9 dpi (p < 0.05). At 13 dpi, the TA2.75 group had significantly greater apparent ileal digestibility (AID) of dry matter (DM) and organic matter (OM) compared to the CC group. At 13 dpi, supplementation of TA linearly increased jejunal villus height (VH). Thus, this study showed that supplementation of TA at levels of 500 to 2750 mg/kg has the potential to be an anti-coccidial agent against E. maxima in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Yuguo Huo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Robert M. Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
12
|
Pantoja-Don Juan CA, Gómez-Verduzco G, Márquez-Mota CC, Téllez-Isaías G, Kwon YM, Cortés-Cuevas A, Arce-Menocal J, Martínez-Gómez D, Ávila-González E. Productive Performance and Cecum Microbiota Analysis of Broiler Chickens Supplemented with β-Mannanases and Bacteriophages—A Pilot Study. Animals (Basel) 2022; 12:ani12020169. [PMID: 35049792 PMCID: PMC8772565 DOI: 10.3390/ani12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary For several years, antibiotic growth promoters (AGPs) have been used in poultry production; however, with the recent ban on the use of AGPs, several alternatives have been evaluated. In the present work, we evaluated the use of β-mannanases and bacteriophages as an alternative to AGPs. This study demonstrates that supplementation with β-mannanases, bacteriophages, or a mix of these two does not affect the productive performance in broilers fed corn–soybean meal. The mixture of β-mannanases and bacteriophages promoted the abundance of beneficial microorganisms in the cecum. These preliminary results suggest that β-mannanases and bacteriophages have potential as alternatives to AGPs in poultry production. Abstract This study was conducted to evaluate the productive performance, intestinal health, and description of the cecum microbiota in broilers supplemented with β-mannanases (MNs) and bacteriophages (BPs). Six hundred one-day-old broilers were divided into four groups and fed one of the following diets: CON—corn–soybean meal + 10 ppm enramycin (ENR); MN: CON + 500 ppm MN; BP: CON + 500 ppm BP; MN + BP: BP + 500 ppm MN. The BP and MN factors showed similar performances to ENR. MN improved the concentration of IgA in the jejunum at 35 days of age. The morphometric index (IM) of the thymus increased by adding MN, while BP increased the liver and thymus IM. The histological analysis showed that BP and MN improved the intestinal morphology. MN + BP showed a tendency to decrease the abundance of Proteobacteria and increase the abundance of Bacteroidetes, indicating better microbiota function. In conclusion, our results demonstrate that the combination of MN + BP has potential in poultry nutrition; however, we highly recommend further experiments to confirm this hypothesis.
Collapse
Affiliation(s)
- Carlos A. Pantoja-Don Juan
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico;
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico;
- Correspondence: (G.G.-V.); (C.C.M.-M.); Tel.: +52-55-5622-5868 (G.G.-V.)
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
- Correspondence: (G.G.-V.); (C.C.M.-M.); Tel.: +52-55-5622-5868 (G.G.-V.)
| | - Guillermo Téllez-Isaías
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.-I.); (Y.M.K.)
| | - Young M. Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.-I.); (Y.M.K.)
| | - Arturo Cortés-Cuevas
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac 13300, Mexico; (A.C.-C.); (E.Á.-G.)
| | - José Arce-Menocal
- Departamento de Producción Avícola, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, Centro, Morelia 58000, Mexico;
| | - Daniel Martínez-Gómez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Calz. del Hueso 1100, Coapa, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico;
| | - Ernesto Ávila-González
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac 13300, Mexico; (A.C.-C.); (E.Á.-G.)
| |
Collapse
|
13
|
Moog BA, Angeles AA, Merca FE, Sangel PP. Comparative effect of potentiated zinc oxide and antibiotic growth promoters on intestinal morphometry and nutrient digestibility in broiler chickens. Trop Anim Health Prod 2021; 54:16. [PMID: 34905114 DOI: 10.1007/s11250-021-03012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
The comparative effects of potentiated zinc oxide (pZnO) and antibiotic growth promoters (AGP) supplementation on intestinal morphometry and nutrient digestibility in broiler chickens were studied. Four hundred straight-run Cobb 500-day-old broiler chicks were randomly allotted to four dietary treatments replicated 10 times with 10 birds per replicate. Dietary treatments were as follows: T1: basal diets without AGP (negative control; NC), T2: basal diets with 500 g/t maduramicin 10 g and 500 g/t zinc bacitracin 150 (positive control; PC), T3: NC added with 150 g/t pZnO, and T4: PC added with 150 g/t pZnO in a 2 × 2 factorial design in RCBD. At days 18 and 35, 10 birds were randomly selected per treatment for morphometry of the duodenum, jejunum, and ileum. At day 38, eight birds per treatment were used for the nutrient digestibility study. Results showed significant interaction effects (P < 0.05) of AGP and pZnO supplementation on day 35 intestinal morphometry of duodenum's villi height and villi height: crypt depth, and ileum's crypt depth; apparent CODGE, AME, CP, DM, and EE. Significant differences (P < 0.05) with pZnO supplementation were only observed on feed intake and FCR of birds fed with pZnO at days 8-14 and fecal quality at days 0-7. Results of present study suggested that pZnO has the potential to replace AGPs without negatively affecting the intestinal morphometry, digestibility, and growth performance of broiler chickens.
Collapse
Affiliation(s)
- B A Moog
- Institute of Animal Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines.
| | - A A Angeles
- Institute of Animal Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
- Dairy Training and Research Institute, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - F E Merca
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - P P Sangel
- Institute of Animal Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| |
Collapse
|
14
|
Mogire MK, Choi J, Lu P, Yang C, Liu S, Adewole D, Rodas-Gonzalez A, Yang C. Effects of red-osier dogwood extracts on growth performance, intestinal digestive and absorptive functions, and meat quality of broiler chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A total of 320 one-day-old Cobb 500 chicks with an initial weight of 48.3 ± 3.3 g·pen−1 were assigned to four dietary treatments with eight replicates provided in three phases for 46 d. The treatments were fed as mash diets and included (1) negative control (NC) corn-soybean basal diet, (2) positive control (PC) basal diet with 30 ppm avilamycin, (3) basal diet supplemented with 1000 ppm red-osier dogwood extracts (RDE1), and (4) basal diet with 3000 ppm red-osier dogwood extracts (RDE2). Results showed reduced jejunal crypt depth in RDE1 and increased villus:crypt ratio in groups (either RDE1 or RDE2) (P < 0.05). Cationic amino acid (AA) transporter mRNA abundance was decreased (P < 0.05) in RDE1, RDE2, and PC treatments, but peptide and neutral AA transporter mRNA abundance were higher (P < 0.05) in RDE2 compared with NC. Apparent ileal digestibility of crude fat was increased in RDE2 and PC compared with NC, whereas AA digestibility was greater in RDE1, RDE2, and PC (P < 0.05). In conclusion, red-osier dogwood had no effect on growth performance, improved the intestinal health and function of broiler chickens, and had no detrimental effects on meat quality.
Collapse
Affiliation(s)
- Marion K. Mogire
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | | | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Yang C, Diarra MS, Choi J, Rodas-Gonzalez A, Lepp D, Liu S, Lu P, Mogire M, Gong J, Wang Q, Yang C. Effects of encapsulated cinnamaldehyde on growth performance, intestinal digestive and absorptive functions, meat quality and gut microbiota in broiler chickens. Transl Anim Sci 2021; 5:txab099. [PMID: 34222827 PMCID: PMC8252029 DOI: 10.1093/tas/txab099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Essential oils are potential antimicrobial alternatives and their applications in animal feeds are limited due to their fast absorption in the upper gastrointestinal tract. This study investigated the effects of encapsulated cinnamaldehyde (CIN) at 50 mg/kg or 100 mg/kg on the growth performance, organ weights, meat quality, intestinal morphology, jejunal gene expression, nutrient digestibility, and ileal and cecal microbiota. A total of 320 male day-old broiler Cobb-500 chicks were randomly allocated to four treatments with eight pens per treatment (10 birds per pen): 1) basal diet (negative control, NC); 2) basal diet supplemented with 30 mg/kg avilamycin premix (positive control, PC); 3) basal diet with 50 mg/kg encapsulated CIN (EOL); 4) basal diet with 100 mg/kg encapsulated CIN (EOH). Despite birds fed EOH tended to increase (P = 0.05) meat pH at 24 h, all pH values were normal. Similar to PC group, meats from birds fed EOL and EOH showed a reduced (P < 0.05) Warner-Bratzler force shear (WBFS) compared to the NC group. The highest villus to crypt ratios (VH/CD; P < 0.05) were observed in broilers fed either EOL or EOH, with an average of 14.67% and 15.13% in the duodenum and 15.13% and 13.58% in the jejunum, respectively. For jejunal gene expressions, only six out of the 11 studied genes showed statistically significant differences among the dietary treatments. Gene expressions of cationic amino acid transporter 1 (CAT-1) and neutral amino acid transporter 1 (B0AT-1) were upregulated in EOH-fed birds compared to PC and NC-fed birds (P < 0.05), respectively; while the expression of proliferating cell nuclear antigen (PCNA) was downregulated in EOL-fed birds when compared to NC birds (P < 0.05). Nonetheless, the expressions of cadherin 1 (CDH-1), zonula occludens 1 (ZO-1), and maltase-glucoamylase (MG) were all upregulated (P < 0.05) in EOH-fed birds compared to PC-fed birds. The apparent ileal digestibility (AID) of dry matter, crude protein, crude fat and of all 18 tested amino acids increased in EOL-fed birds (P < 0.01). Additionally, relative abundances (%) of ileal Proteobacteria decreased, while ileal and cecal Lactobacillus increased in EOH-fed birds (P < 0.05). In conclusion, dietary encapsulated CIN improved meat quality and gut health by reducing meat WBFS, increasing VH/CD in intestines, jejunal gene expressions, AID of nutrients and beneficial ileal and cecal microbiota composition.
Collapse
Affiliation(s)
- Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Argenis Rodas-Gonzalez
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Marion Mogire
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|