1
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|
2
|
Shi C, Hu S, Liu S, Jia X, Feng Y. Emerging role of exosomes during the pathogenesis of viral hepatitis, non-alcoholic steatohepatitis and alcoholic hepatitis. Hum Cell 2024; 38:26. [PMID: 39630211 DOI: 10.1007/s13577-024-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025]
Abstract
Extracellular vesicles (EVs) refer to a diverse range of membranous vesicles that are secreted by various cell types, they can be categorized into two primary subgroups: exosomes and microvesicles. Specifically, exosomes constitute a nanosized subset of EVs characterized by their intact lipid bilayer and diameters ranging from 30 to 150 nm. These vesicles play a crucial role in intercellular communication by transporting a diverse array of biomolecules, which act as cargoes for this communication process. Exosomes have demonstrated significant implications in a wide range of biologic processes and pathologic conditions, including immunity, development, cancer, neurodegenerative diseases, and liver diseases. Liver diseases significantly contribute to the global burden of morbidity and mortality, yet their pathogenesis remains complex and effective therapies are relatively scarce. Emerging evidence suggests that exosomes play a modulatory role in the pathogenesis of liver diseases, including viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcoholic hepatitis (AH). These findings bolster our confidence in the potential of exosomes as biomarkers and therapeutic tools for the diagnosis and treatment of liver diseases. In this comprehensive review, we offer a straightforward overview of exosomes and summarize the current understanding of their role in the pathogenesis of liver diseases. This provides a foundation for novel diagnostic and therapeutic approaches in the treatment of liver diseases.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Shen Liu
- Department of Pharmacy, Linquan County People's Hospital, Fuyang, 236400, Anhui, China
| | - Xiaodi Jia
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yubin Feng
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, Anhui, China.
| |
Collapse
|
3
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
4
|
Wang J, Ji Y, Cao X, Shi R, Lu X, Wang Y, Zhang CY, Li J, Jiang X. Characterization and analysis of extracellular vesicle-derived miRNAs from different adipose tissues in mice. Heliyon 2024; 10:e39149. [PMID: 39640764 PMCID: PMC11620040 DOI: 10.1016/j.heliyon.2024.e39149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Adipose tissue is traditionally classified into two main types based on their functions: brown adipose tissue (BAT) and white adipose tissue (WAT). Each type plays a distinct role in the body's energy metabolism. Additionally, a third type, beige adipose tissue, can develop within subcutaneous WAT (including inguinal WAT, iWAT) in response to specific stimuli and exhibits characteristics of both BAT and WAT. Extracellular vesicles (EVs) are crucial for intercellular communication, carrying a diverse array of biomolecules such as proteins, lipids, and nucleic acids. While the functional diversity and endocrine roles of adipose tissues are well-documented, a comparative analysis of the functions of EVs released by different adipose tissues from mice housed at room temperature has not been thoroughly explored. MicroRNAs (miRNAs), which are highly enriched in small extracellular vesicles (sEVs), offer a promising avenue for investigating the complex functions and unique roles of various adipose tissues. In this study, we isolated sEVs from different adipose tissues under basal conditions and performed a comprehensive analysis of their miRNA content. By comparing miRNA profiles across different adipose tissues, we aim to elucidate the potential roles of sEV-derived miRNAs in mediating intercellular communication and the distinct physiological functions of adipose tissues. Understanding the molecular features of miRNAs in adipose tissue EVs could reveal new aspects of adipose tissue biology and lay the groundwork for further research into their physiological significance.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuan Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaoqin Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ruixue Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaohui Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| |
Collapse
|
5
|
Bahram Sangani N, Koetsier J, Gomes AR, Diogo MM, Fernandes TG, Bouwman FG, Mariman ECM, Ghazvini M, Gribnau J, Curfs LMG, Reutelingsperger CP, Eijssen LMT. Involvement of extracellular vesicle microRNA clusters in developing healthy and Rett syndrome brain organoids. Cell Mol Life Sci 2024; 81:410. [PMID: 39305343 PMCID: PMC11416455 DOI: 10.1007/s00018-024-05409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression.
Collapse
Affiliation(s)
- Nasim Bahram Sangani
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands
- GKC, Maastricht University Medical Centre, Maastricht, 6229, ER, The Netherlands
| | - Jarno Koetsier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands
- GKC, Maastricht University Medical Centre, Maastricht, 6229, ER, The Netherlands
| | - Ana Rita Gomes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Freek G Bouwman
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mehrnaz Ghazvini
- Erasmus MC iPS Facility, Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Erasmus MC iPS Facility, Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands
- Department of Developmental Biology, Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands
| | - Leopold M G Curfs
- GKC, Maastricht University Medical Centre, Maastricht, 6229, ER, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands.
- GKC, Maastricht University Medical Centre, Maastricht, 6229, ER, The Netherlands.
| | - Lars M T Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands
- Department of Bioinformatics-BiGCaT, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
6
|
Baluška F, Miller WB, Reber AS. Sentient cells as basic units of tissues, organs and organismal physiology. J Physiol 2024; 602:2491-2501. [PMID: 37847422 DOI: 10.1113/jp284419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Cells evolved some 4 billion years ago, and since then the integrity of the structural and functional continuity of cellular life has been maintained via highly conserved and ancient processes of cell reproduction and division. The plasma membrane as well as all the cytoplasmic structures are reproduced and inherited uninterruptedly by each of the two daughter cells resulting from every cell division. Although our understanding of the evolutionary emergence of the very first cells is obscured by the extremely long timeline since that revolutionary event, the generally accepted position is that the de novo formation of cells is not possible; all present cells are products of other prior cells. This essential biological principle was first discovered by Robert Remak and then effectively coined as Omnis Cellula e Cellula (every cell of the cell) by Rudolf Virchow: all currently living cells have direct structural and functional connections to the very first cells. Based on our previous theoretical analysis, all cells are endowed with individual sentient cognition that guides their individual agency, behaviour and evolution. There is a vital consequence of this new sentient and cognitive view of cells: when cells assemble as functional tissue ecologies and organs within multicellular organisms, including plants, animals and humans, these cellular aggregates display derivative versions of aggregate tissue- and organ-specific sentience and consciousness. This innovative view of the evolution and physiology of all currently living organisms supports a singular principle: all organismal physiology is based on cellular physiology that extends from unicellular roots.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - William B Miller
- Banner Health Systems - Medicine, Paradise Valley, Phoneix, Arizona, USA
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Lu W, Yan J, Wang C, Qin W, Han X, Qin Z, Wei Y, Xu H, Gao J, Gao C, Ye T, Tay FR, Niu L, Jiao K. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Res 2024; 12:11. [PMID: 38383487 PMCID: PMC10881583 DOI: 10.1038/s41413-023-00310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024] Open
Abstract
Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zixuan Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wei
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Flemming JP, Wermuth PJ, Mahoney MG. Extracellular Vesicles in the Skin Microenvironment: Emerging Roles as Biomarkers and Therapeutic Tools in Dermatologic Health and Disease. J Invest Dermatol 2024; 144:225-233. [PMID: 37877931 DOI: 10.1016/j.jid.2023.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/26/2023]
Abstract
The recent discovery of extracellular vesicles (EVs) carrying cargo consisting of various bioactive macromolecules that can modulate the phenotype of recipient target cells has revealed an important new mechanism through which cells can signal their neighbors and regulate their microenvironment. Because EV cargo and composition correlate with the physiologic state of their cell of origin, investigations into the role of EVs in disease pathogenesis and progression have become an area of intense study. The physiologic and pathologic effects of EVs on their microenvironment are incredibly diverse and include the modulation of molecular pathways involved in angiogenesis, inflammation, wound healing, epithelial-mesenchymal transition, proliferation, and immune escape. This review examines recent studies on the role of EVs in diseases of the skin and on how differences in EV composition and cargo can alter cell states and the surrounding microenvironment. We also discuss the potential clinical applications of EVs in skin disease diagnosis and management. We examine their value as an easily isolated source of biomarkers to predict disease prognosis or to monitor patient response to treatment. Given the ability of EVs to modulate disease-specific signaling pathways, we also assess their potential to serve as novel personalized precision therapeutic tools for dermatological diseases.
Collapse
Affiliation(s)
- Joseph P Flemming
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Peter J Wermuth
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Mỹ G Mahoney
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Padbury EH, Bálint Š, Carollo E, Carter DRF, Becker EBE. TRPC3 signalling contributes to the biogenesis of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e132. [PMID: 38938673 PMCID: PMC11080740 DOI: 10.1002/jex2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) contribute to a wide range of pathological processes including cancer progression, yet the molecular mechanisms underlying their biogenesis remain incompletely characterized. The development of tetraspanin-based pHluorin reporters has enabled the real-time analysis of EV release at the plasma membrane. Here, we employed CD81-pHluorin to investigate mechanisms of EV release in ovarian cancer (OC) cells and report a novel role for the Ca2+-permeable transient receptor potential (TRP) channel TRPC3 in EV-mediated communication. We found that specific activation of TRPC3 increased Ca2+ signalling in SKOV3 cells and stimulated an immediate increase in EV release. Ca2+-stimulants histamine and ionomycin likewise induced EV release, and imaging analysis revealed distinct stimulation-dependent temporal and spatial release dynamics. Interestingly, inhibition of TRPC3 attenuated histamine-stimulated Ca2+-entry and EV release, indicating that TRPC3 is likely to act downstream of histamine signalling in EV biogenesis. Furthermore, we found that direct activation of TRPC3 as well as the application of EVs derived from TRPC3-activated cells increased SKOV3 proliferation. Our data provides insights into the molecular mechanisms and dynamics underlying EV release in OC cells, proposing a key role for TRPC3 in EV biogenesis.
Collapse
Affiliation(s)
- Elise H. Padbury
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Štefan Bálint
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Emanuela Carollo
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - David R. F. Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxfordUK
| | - Esther B. E. Becker
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Arif S, Moulin VJ. Extracellular vesicles on the move: Traversing the complex matrix of tissues. Eur J Cell Biol 2023; 102:151372. [PMID: 37972445 DOI: 10.1016/j.ejcb.2023.151372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles are small particles involved in intercellular signaling. They are produced by virtually all cell types, transport biological molecules, and are released into the extracellular space. Studies on extracellular vesicles have become more numerous in recent years, leading to promising research on their potential impact on health and disease. Despite significant progress in understanding the bioactivity of extracellular vesicles, most in vitro and in vivo studies overlook their transport through the extracellular matrix in tissues. The interaction or free diffusion of extracellular vesicles in their environment can provide valuable insights into their efficacy and function. Therefore, understanding the factors that influence the transport of extracellular vesicles in the extracellular matrix is essential for the development of new therapeutic approaches that involve the use of these extracellular vesicles. This review discusses the importance of the interaction between extracellular vesicles and the extracellular matrix and the different factors that influence their diffusion. In addition, we evaluate their role in tissue homeostasis, pathophysiology, and potential clinical applications. Understanding the complex interaction between extracellular vesicles and the extracellular matrix is critical in order to develop effective strategies to target specific cells and tissues in a wide range of clinical applications.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Véronique J Moulin
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Huang L, Wu E, Liao J, Wei Z, Wang J, Chen Z. Research Advances of Engineered Exosomes as Drug Delivery Carrier. ACS OMEGA 2023; 8:43374-43387. [PMID: 38027310 PMCID: PMC10666244 DOI: 10.1021/acsomega.3c04479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Exosomes are nanoscale vesicles secreted by living cells that have similar membrane composition to parental cells and carry a variety of proteins, lipids, and nucleic acids. Therefore, exosomes have certain biological activities and play an important role in intercellular communication. On the basis of its potential as a carrier for drug delivery systems, exosomes have been engineered to compensate for the shortage of natural exosomes through various engineering strategies for improving drug delivery efficiency, enhancing targeting to tissues and organs, and extending the circulating half-life of exosomes. This review focuses on the engineered exosomes loading drugs through different strategies, discussions on exosome surface modification strategies, and summarizes the advantages and disadvantages of different strategies. In addition, this review provides an overview of the recent applications of engineered exosomes in a number of refractory and relapsable diseases. This review has the potential to provide a reference for further research and development of engineered exosomes.
Collapse
Affiliation(s)
- Lianghui Huang
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Enguang Wu
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jiawei Liao
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jin Wang
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| |
Collapse
|
12
|
Lamas M. Epigenetic mechanisms of non-retinal components of the aging eye and novel therapeutic strategies. Exp Eye Res 2023; 236:109673. [PMID: 37802281 DOI: 10.1016/j.exer.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The eye is a complex organ composed of various cell types, each serving a unique purpose. However, aging brings about structural and functional changes in these cells, leading to discomfort and potential pathology. Alterations in gene expression, influenced by aging and environmental factors, significantly affect cell structure and function. Epigenetics, a field focused on understanding the correlation between changes in gene expression, cell function, and environmental factors, plays a crucial role in unraveling the molecular events responsible for age-related eye changes. This prompts the possibility of developing epigenetic strategies to intervene in these changes or reinstate proper molecular activities. Indeed, research has demonstrated that epigenetic modifications, including DNA methylation, histone modification, and non-coding RNAs, are closely associated with age-related alterations in gene expression and cell function. This review aims to compile and synthesize the most recent body of evidence supporting the role of epigenetics in age-related alterations observed in various components of the eye. Specifically, it focuses on the impact of epigenetic changes in the ocular surface, tear film, aqueous humor, vitreous humor, and lens. Furthermore, it highlights the significant advancements that have been made in the field of epigenetic-based experimental therapies, specifically focusing on their potential for treating pathological conditions in the aging eye.
Collapse
Affiliation(s)
- Monica Lamas
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Centro de Investigación sobre el Envejecimiento, CINVESTAV Sede Sur, Calzada de los Tenorios 235, CDMX, Mexico.
| |
Collapse
|
13
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Luo S, Chen J, Xu F, Chen H, Li Y, Li W. Dendritic Cell-Derived Exosomes in Cancer Immunotherapy. Pharmaceutics 2023; 15:2070. [PMID: 37631284 PMCID: PMC10457773 DOI: 10.3390/pharmaceutics15082070] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes are nanoscale vesicles released by diverse types of cells for complex intercellular communication. Numerous studies have shown that exosomes can regulate the body's immune response to tumor cells and interfere with the tumor microenvironment (TME). In clinical trials on dendritic cell (DC)-based antitumor vaccines, no satisfactory results have been achieved. However, recent studies suggested that DC-derived exosomes (DEXs) may be superior to DC-based antitumor vaccines in avoiding tumor cell-mediated immunosuppression. DEXs contain multiple DC-derived surface markers that capture tumor-associated antigens (TAAs) and promote immune cell-dependent tumor rejection. These findings indicate the necessity of the further development and improvement of DEX-based cell-free vaccines to complement chemotherapy, radiotherapy, and other immunotherapies. In this review, we highlighted the recent progress of DEXs in cancer immunotherapy, particularly by concentrating on landmark studies and the biological characterization of DEXs, and we summarized their important role in the tumor immune microenvironment (TIME) and clinical application in targeted cancer immunotherapy. This review could enhance comprehension of advances in cancer immunotherapy and contribute to the elucidation of how DEXs regulate the TIME, thereby providing a reference for utilizing DEX-based vaccines in clinical practice.
Collapse
Affiliation(s)
- Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Huan Chen
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China;
| | - Yiru Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| |
Collapse
|
15
|
Sun Y, Sun F, Xu W, Qian H. Engineered Extracellular Vesicles as a Targeted Delivery Platform for Precision Therapy. Tissue Eng Regen Med 2023; 20:157-175. [PMID: 36637750 PMCID: PMC10070595 DOI: 10.1007/s13770-022-00503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs)-based cell-free strategy has shown therapeutic potential in tissue regeneration. Due to their important roles in intercellular communications and their natural ability to shield cargos from degradation, EVs are also emerged as novel delivery vehicles for various bioactive molecules and drugs. Accumulating studies have revealed that EVs can be modified to enhance their efficacy and specificity for the treatment of many diseases. Engineered EVs are poised as the next generation of targeted delivery platform in the field of precision therapy. In this review, the unique properties of EVs are overviewed in terms of their biogenesis, contents, surface features and biological functions, and the recent advances in the strategies of engineered EVs construction are summarized. Additionally, we also discuss the potential applications of engineered EVs in targeted therapy of cancer and damaged tissues, and evaluate the opportunities and challenges for translating them into clinical practice.
Collapse
Affiliation(s)
- Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
16
|
Davies OG, Williams S, Goldie K. The therapeutic and commercial landscape of stem cell vesicles in regenerative dermatology. J Control Release 2023; 353:1096-1106. [PMID: 36535543 DOI: 10.1016/j.jconrel.2022.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are lipid enveloped nanoparticles that are naturally produced by cells and function in the intercellular transfer of biological material such as proteins, RNAs and metabolites. They have been shown to act in an autocrine and paracrine manner to alter the functions of local and distant recipient cells, with a growing body of evidence highlighting their wide-ranging functions in regenerative processes such as stem cell maintenance, tissue repair and immune modulation. EVs offer several potential advantages over stem cell therapies such as improved safety profiles, scalability, and enhanced storage and quality control of the final product. In fact, many of the pro-regenerative outcomes of stem cell therapies have been attributed to the release of mesenchymal stem cell-derived EVs (MSC-EVs) and their potent effects on extracellular matrix turnover, local cell recruitment, proliferation and angiogenesis is now well described. These positive outcomes have led to clinical trials assessing the safety of MSC-EVs for applications in wound healing and the treatment of cutaneous ulcers, as well as the emergence of multiple commercial MSC-EV sources marketed for topical application in cosmetic medicine. However, regenerative EV therapeutics remain in their infancy and pertinent questions regarding product standardisation, potency and the regulatory landscape surrounding the development of these promising nano-therapeutics must be addressed to ensure safe and effective clinical adoption. In this article we provide an overview of the emerging landscape of MSC-EVs in regenerative dermatology and cosmetic science, highlighting the underlying biological mechanisms pertinent to their application and providing a perspective on current safety considerations, regulation and future directions in the field.
Collapse
Affiliation(s)
- O G Davies
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, UK.
| | - S Williams
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| | - K Goldie
- European Medical Aesthetics Ltd, London, UK
| |
Collapse
|
17
|
Díaz-Godínez C, Ríos-Valencia DG, García-Aguirre S, Martínez-Calvillo S, Carrero JC. Immunomodulatory effect of extracellular vesicles from Entamoeba histolytica trophozoites: Regulation of NETs and respiratory burst during confrontation with human neutrophils. Front Cell Infect Microbiol 2022; 12:1018314. [PMID: 36389143 PMCID: PMC9650183 DOI: 10.3389/fcimb.2022.1018314] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Parasites release extracellular vesicles (EVs) which, in some cases, modulate the host's immune response contributing to the establishment of the infection. In this work we have isolated and characterized the EVs released by trophozoites of the human protozoan parasite Entamoeba histolytica, the causal agent of amoebiasis, when alone or in coculture with human neutrophils, and determined their effect on neutrophil NETs and ROS production. Nanoparticle tracking analysis showed that amoebic EVs are variable in size, ranging from less than 50 nm to nearly 600 nm in diameter (average of 167 nm), whereas neutrophil EVs are more uniform in size, with an average of 136 nm. In cocultures amoeba:neutrophil (1:100) most EVs are 98 nm in size, which is the typical size of exosomes. EVs from amoebae and neutrophils showed almost equal levels of ROS, which were considerably increased in EVs from cocultures. Uptake of amoebic EVs by neutrophils was demonstrated by fluorescence and resulted in a significant reduction in the oxidative burst and NET release triggered by PMA, ionophore A23187, or the amoebae itself used as stimuli. Interestingly, uptake of EVs from cocultures did not affect ROS production, but instead caused a greater delay in the onset of NETs release and in their quantity. A comparative proteomic analysis between the EVs of amoebae and neutrophils separately vs the cocultures showed a similar distribution of protein categories in the GO analysis, but differences in the expression and abundance of proteins such as the N-acetyl-D-galactosamine (GalNAc) inhibitable surface lectin and calreticulin in amoeba EVs, and various antimicrobial molecules in neutrophil EVs, such as lactoferrin and myeloperoxidase. These results highlight the importance of EVs in the immunomodulatory effects exerted by amoeba on human neutrophils.
Collapse
Affiliation(s)
- César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Diana G. Ríos-Valencia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Samuel García-Aguirre
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, EM, Mexico
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
18
|
An emerging role of KRAS in biogenesis, cargo sorting and uptake of cancer-derived extracellular vesicles. Future Med Chem 2022; 14:827-845. [PMID: 35502655 DOI: 10.4155/fmc-2021-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles secreted for intercellular communication with endosomal network regulating secretion of small EVs (or exosomes) that play roles in cancer progression. As an essential oncoprotein, Kirsten rat sarcoma virus (KRAS) is tightly regulated by its endosomal trafficking for membrane attachment. However, the crosstalk between KRAS and EVs has been scarcely discussed despite its endocytic association. An overview of the oncogenic role of KRAS focusing on its correlation with cancer-associated EVs should provide important clues for disease prognosis and inspire novel therapeutic approaches for treating KRAS mutant cancers. Therefore, this review summarizes the relevant studies that provide substantial evidence linking KRAS mutation to EVs and discusses the oncogenic implication from the aspects of biogenesis, cargo sorting, and release and uptake of the EVs.
Collapse
|
19
|
Al Halawani A, Mithieux SM, Yeo GC, Hosseini-Beheshti E, Weiss AS. Extracellular Vesicles: Interplay with the Extracellular Matrix and Modulated Cell Responses. Int J Mol Sci 2022; 23:ijms23063389. [PMID: 35328809 PMCID: PMC8954001 DOI: 10.3390/ijms23063389] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The discovery that cells secrete extracellular vesicles (EVs), which carry a variety of regulatory proteins, nucleic acids, and lipids, has shed light on the sophisticated manner by which cells can communicate and accordingly function. The bioactivity of EVs is not only defined by their internal content, but also through their surface associated molecules, and the linked downstream signaling effects they elicit in target cells. The extracellular matrix (ECM) contains signaling and structural molecules that are central to tissue maintenance and repair. Recently, a subset of EVs residing within the extracellular matrix has been identified. Although some roles have been proposed for matrix-bound vesicles, their role as signaling molecules within the ECM is yet to be explored. Given the close association of EVs and the ECM, it is not surprising that EVs partly mediate repair and regeneration by modulating matrix deposition and degradation through their cellular targets. This review addresses unique EV features that allow them to interact with and navigate through the ECM, describes how their release and content is influenced by the ECM, and emphasizes the emerging role of stem-cell derived EVs in tissue repair and regeneration through their matrix-modulating properties.
Collapse
Affiliation(s)
- Aleen Al Halawani
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia; (A.A.H.); (S.M.M.); (G.C.Y.)
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Suzanne M. Mithieux
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia; (A.A.H.); (S.M.M.); (G.C.Y.)
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia; (A.A.H.); (S.M.M.); (G.C.Y.)
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia; (A.A.H.); (S.M.M.); (G.C.Y.)
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
20
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Tesovnik T, Jenko Bizjan B, Šket R, Debeljak M, Battelino T, Kovač J. Technological Approaches in the Analysis of Extracellular Vesicle Nucleotide Sequences. Front Bioeng Biotechnol 2021; 9:787551. [PMID: 35004647 PMCID: PMC8733665 DOI: 10.3389/fbioe.2021.787551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Together with metabolites, proteins, and lipid components, the EV cargo consists of DNA and RNA nucleotide sequence species, which are part of the intracellular communication network regulating specific cellular processes and provoking distinct target cell responses. The extracellular vesicle (EV) nucleotide sequence cargo molecules are often investigated in association with a particular pathology and may provide an insight into the physiological and pathological processes in hard-to-access organs and tissues. The diversity and biological function of EV nucleotide sequences are distinct regarding EV subgroups and differ in tissue- and cell-released EVs. EV DNA is present mainly in apoptotic bodies, while there are different species of EV RNAs in all subgroups of EVs. A limited sample volume of unique human liquid biopsy provides a small amount of EVs with limited isolated DNA and RNA, which can be a challenging factor for EV nucleotide sequence analysis, while the additional difficulty is technical variability of molecular nucleotide detection. Every EV study is challenged with its first step of the EV isolation procedure, which determines the EV's purity, yield, and diameter range and has an impact on the EV's downstream analysis with a significant impact on the final result. The gold standard EV isolation procedure with ultracentrifugation provides a low output and not highly pure isolated EVs, while modern techniques increase EV's yield and purity. Different EV DNA and RNA detection techniques include the PCR procedure for nucleotide sequence replication of the molecules of interest, which can undergo a small-input EV DNA or RNA material. The nucleotide sequence detection approaches with their advantages and disadvantages should be considered to appropriately address the study problem and to extract specific EV nucleotide sequence information with the detection using qPCR or next-generation sequencing. Advanced next-generation sequencing techniques allow the detection of total EV genomic or transcriptomic data even at the single-molecule resolution and thus, offering a sensitive and accurate EV DNA or RNA biomarker detection. Additionally, with the processes where the EV genomic or transcriptomic data profiles are compared to identify characteristic EV differences in specific conditions, novel biomarkers could be discovered. Therefore, a suitable differential expression analysis is crucial to define the EV DNA or RNA differences between conditions under investigation. Further bioinformatics analysis can predict molecular cell targets and identify targeted and affected cellular pathways. The prediction target tools with functional studies are essential to help specify the role of the investigated EV-targeted nucleotide sequences in health and disease and support further development of EV-related therapeutics. This review will discuss the biological diversity of human liquid biopsy-obtained EV nucleotide sequences DNA and RNA species reported as potential biomarkers in health and disease and methodological principles of their detection, from human liquid biopsy EV isolation, EV nucleotide sequence extraction, techniques for their detection, and their cell target prediction.
Collapse
Affiliation(s)
- Tine Tesovnik
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Maruša Debeljak
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, Chair of Paediatrics, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| |
Collapse
|
22
|
Hyperleukocytic Acute Leukemia Circulating Exosomes Regulate HSCs and BM-MSCs. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9457070. [PMID: 34840706 PMCID: PMC8626181 DOI: 10.1155/2021/9457070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Hyperleukocytic acute leukemia (HLAL) circulating exosomes are delivered to hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BM-MSCs), thereby inhibiting the normal hematopoietic process. In this paper, we have evaluated and explored the effects of miR-125b, which is carried by HLAL-derived exosomes, on the hematopoietic function of HSCs and BM-MSCs. For this purpose, we have isolated exosomes from the peripheral blood of HLAL patients and healthy volunteers. Then, we measured the level of miR-125b in exosomes cocultured exosomes with HSCs and BM-MSCs. Moreover, we have used miR-125b inhibitors/mimic for intervention and then measured miR-125b expression and colony forming unit (CFU). Apart from it, HSC and BM-MSC hematopoietic-related factors α-globulin, γ-globulin, CSF2, CRTX4 and CXCL12, SCF, IGF1, and DKK1 expression were measured. Evaluation of the miR-125b and BAK1 targeting relationship, level of miR-125b, and expression of hematopoietic-related genes was performed after patients are treated with miR-125b mimic and si-BAK1. We have observed that miR-125b was upregulated in HLAL-derived exosomes. After HLAL-exosome acts on HSCs, the level of miR-125b is upregulated, reducing CFU and affecting the expression of α-globulin, γ-globulin, CSF2, and CRCX4. For BM-MSCs, after the action of HLAL-exo, the level of miR-125b is upregulated and affected the expression of CXCL12, SCF, IGF1, and DKK1. Exosomes derived from HLAL carry miR-125b to target and regulate BAK1. Further study confirmed that miR-125b and BAK1mimic reduced the expression of miR-125b and reversed the effect of miR-125b mimic on hematopoietic-related genes. These results demonstrated that HLAL-derived exosomes carrying miR-125b inhibit the hematopoietic differentiation of HSC and hematopoietic support function of BM-MSC through BAK1.
Collapse
|
23
|
Liu J, Chen Y, Pei F, Zeng C, Yao Y, Liao W, Zhao Z. Extracellular Vesicles in Liquid Biopsies: Potential for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611244. [PMID: 33506022 PMCID: PMC7814955 DOI: 10.1155/2021/6611244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Liquid biopsy is conducted through minimally invasive or noninvasive procedures, and the resulting material can be subjected to genomic, proteomic, and lipidomic analyses for early diagnosis of cancers and other diseases. Extracellular vesicles (EVs), one kind of promising tool for liquid biopsy, are nanosized bilayer particles that are secreted by all kinds of cells and that carry cargoes such as lipids, proteins, and nucleic acids, protecting them from enzymatic degradation in the extracellular environment. In this review, we provide a comprehensive introduction to the properties and applications of EVs, including their biogenesis, contents, sample collection, isolation, and applications in diagnostics based on liquid biopsy.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Chongmai Zeng
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yang Yao
- Department of Implantology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|