1
|
She W, Su J, Ma W, Ma G, Li J, Zhang H, Qiu C, Li X. Natural products protect against spinal cord injury by inhibiting ferroptosis: a literature review. Front Pharmacol 2025; 16:1557133. [PMID: 40248093 PMCID: PMC12003294 DOI: 10.3389/fphar.2025.1557133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic condition that frequently results in various neurological disabilities, including significant sensory, motor, and autonomic dysfunctions. Ferroptosis, a recently identified non-apoptotic form of cell death, is characterized by the accumulation of reactive oxygen species (ROS), intracellular iron overload, and lipid peroxidation, ultimately culminating in cell death. Recent studies have demonstrated that ferroptosis plays a critical role in the pathophysiology of SCI, contributing significantly to neural cell demise. Three key cellular enzymatic antioxidants such as glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), and dihydroorotate dehydrogenase (DHODH), have been elucidated as crucial components in the defense against ferroptosis. Natural products, which are bioactive compounds mostly derived from plants, have garnered considerable attention for their potential therapeutic effects. Numerous studies have reported that several natural products can effectively mitigate neural cell death and alleviate SCI symptoms. This review summarizes fifteen natural products containing (-)-Epigallocatechin-3-gallate (EGCG), Proanthocyanidin, Carnosic acid, Astragaloside IV, Trehalose, 8-gingerol, Quercetin, Resveratrol, Albiflorin, Alpha-tocopherol, Celastrol, Hispolon, Dendrobium Nobile Polysaccharide, Silibinin, and Tetramethylpyrazine that have shown promise in treating SCI by inhibiting ferroptosis. Additionally, this review provides an overview of the mechanisms involved in these studies and proposes several perspectives to guide future research directions.
Collapse
Affiliation(s)
- Wei She
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junxiao Su
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenji Ma
- Department of Orthopaedic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guohai Ma
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianfu Li
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hui Zhang
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Papa A, Cursaro I, Pozzetti L, Contri C, Cappello M, Pasquini S, Carullo G, Ramunno A, Gemma S, Varani K, Butini S, Campiani G, Vincenzi F. Pioneering first-in-class FAAH-HDAC inhibitors as potential multitarget neuroprotective agents. Arch Pharm (Weinheim) 2023; 356:e2300410. [PMID: 37750286 DOI: 10.1002/ardp.202300410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Aiming to simultaneously modulate the endocannabinoid system (ECS) functions and the epigenetic machinery, we selected the fatty acid amide hydrolase (FAAH) and histone deacetylase (HDAC) enzymes as desired targets to develop potential neuroprotective multitarget-directed ligands (MTDLs), expecting to achieve an additive or synergistic therapeutic effect in oxidative stress-related conditions. We herein report the design, synthesis, and biological evaluation of the first-in-class FAAH-HDAC multitarget inhibitors. A pharmacophore merging strategy was applied, yielding 1-phenylpyrrole-based compounds 4a-j. The best-performing compounds (4c, 4f, and 4h) were tested for their neuroprotective properties in oxidative stress models, employing 1321N1 human astrocytoma cells and SHSY5 human neuronal cells. In our preliminary studies, compound 4h stood out, showing a balanced nanomolar inhibitory activity against the selected targets and outperforming the standard antioxidant N-acetylcysteine in vitro. Together with 4f, 4h was also able to protect 1321N1 cells from tert-butyl hydroperoxide or glutamate insult. Our study may provide the basis for the development of novel MTDLs targeting the ECS and epigenetic enzymes.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Takayama Y, Akagi Y, Shibuya Y, Kida YS. Exposure to small molecule cocktails allows induction of neural crest lineage cells from human adipose-derived mesenchymal stem cells. PLoS One 2020; 15:e0241125. [PMID: 33104750 PMCID: PMC7588063 DOI: 10.1371/journal.pone.0241125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
Neural crest cells (NCCs) are a promising source for cell therapy and regenerative medicine owing to their multipotency, self-renewability, and capability to secrete various trophic factors. However, isolating NCCs from adult organs is challenging, because NCCs are broadly distributed throughout the body. Hence, we attempted to directly induce NCCs from human adipose-derived mesenchymal stem cells (ADSCs), which can be isolated easily, using small molecule cocktails. We established a controlled induction protocol with two-step application of small molecule cocktails for 6 days. The induction efficiency was evaluated based on mRNA and protein expression of neural crest markers, such as nerve growth factor receptor (NGFR) and sex-determining region Y-box 10 (SOX10). We also found that various trophic factors were significantly upregulated following treatment with the small molecule cocktails. Therefore, we performed global profiling of cell surface makers and identified distinctly upregulated markers, including the neural crest-specific cell surface markers CD271 and CD57. These results indicate that our chemical treatment can direct human ADSCs to developing into the neural crest lineage. This offers a promising experimental platform to study human NCCs for applications in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yuzo Takayama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- * E-mail: (YT); (YSK)
| | - Yuka Akagi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoichiro Shibuya
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Plastic and Reconstructive Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- * E-mail: (YT); (YSK)
| |
Collapse
|
4
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
5
|
Maruoka H, Yamazoe R, Takahashi R, Yatsuo K, Ido D, Fuchigami Y, Hoshikawa F, Shimoke K. Molecular mechanism of nur77 gene expression and downstream target genes in the early stage of forskolin-induced differentiation in PC12 cells. Sci Rep 2020; 10:6325. [PMID: 32286359 PMCID: PMC7156746 DOI: 10.1038/s41598-020-62968-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/23/2020] [Indexed: 11/20/2022] Open
Abstract
Forskolin promotes neuronal differentiation of PC12 cells via the PKA-CREB-dependent signaling pathway. Activation of PKA by forskolin phosphorylates CREB, which then binds to CRE sites in numerous gene promoters. However, it is unclear which gene contains the CRE sites responsible for forskolin-induced neuronal differentiation. In this study, we investigated how an immediate early gene, nur77, which has CRE sites in the promoter region, contributes to the early stage of differentiation of forskolin-treated PC12 cells. After treatment with forskolin, expression of Nur77 was upregulated within 1 hr. In addition, knockdown of nur77 inhibited neurite outgrowth induced by forskolin. We also revealed that the specific four CRE sites near the transcriptional start site (TSS) of nur77 were strongly associated with phosphorylated CREB within 1 hr after treatment with forskolin. To analyze the roles of these four sites, reporter assays using the nur77 promoter region were performed. The results showed that nur77 expression was mediated through three of the CRE sites, -242, -222, and -78, and that -78, the nearest of the three to the TSS of nur77, was particularly important. An analysis of neuronal markers controlled by Nur77 after A-CREB-Nur77-Synapsin1 signaling pathway plays a pivotal role in differentiation of forskolin-induced PC12 cells.
Collapse
Affiliation(s)
- Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ryosuke Yamazoe
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ryota Takahashi
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Keisuke Yatsuo
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Daiki Ido
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Yuki Fuchigami
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Fumiya Hoshikawa
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Koji Shimoke
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
6
|
Protective effects of carnosic acid on retinal ganglion cells in acute ocular hypertension rats. Int Ophthalmol 2020; 40:1869-1878. [PMID: 32277323 DOI: 10.1007/s10792-020-01359-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/28/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To observe the protective effects of carnosic acid on rat retinal ganglion cells (RGCs) among acute ocular hypertension rats. METHODS Sixty male SPF (specific-pathogen-free) SD rats (10 weeks) were randomly assigned to untreated group, carnosic-acid-treated group and hypertensive group with 20 rats for each. The acute ocular hypertension animal model was induced by the perfusion of normal saline solution into anterior chamber of eyes to elevate the intraocular pressure (IOP) to 110 mmHg for 60 min in the rats of the carnosic-acid-treated group and hypertensive group. Then, the carnosic acid dissolving in dimethyl sulfoxide (DMSO) was intraperitoneally injected for consecutive 7 days in the carnosic-acid-treated group, and only DMSO was used in the same way in the hypertensive group. The rats were killed 2 weeks after experiment, and retinal sections were prepared for histopathological and apoptotic retinal ganglion cells (RGCs) examination by hemotoxylin and eosin staining and TUNEL staining. Use immunofluorescence employed to examine the survival of RGCs. This study protocol was approved by the Ethic Committee for Experimental Animal of Three Gorges University. RESULTS The retinal morphology and structure were clear in the untreated group. The edema of retinal tissue, loosely arranged RGCs and swollen nucleus were seen in the hypertensive group. In the carnosic-acid-treated group, the retinal morphology and structure were regular. The retinal nerve fiber layer (RNFL) thickness was (32.96 ± 1.63), (58.96 ± 1.57) and (50.11 ± 2.37) μm, and the apoptotic cell number was (6.92 ± 2.96), (29.85 ± 6.40) and (14.69 ± 2.98)/field, and the survived cell number was (2363.17 ± 148.45), (1308.67 ± 106.02) and (1614.17 ± 96.39)/0.235 mm2 in the untreated group, hypertensive group and carnosic-acid-treated group, respectively, showing significant differences among groups (F = 339.284, 81.583, 122.68, all at P < 0.01). Compared with the untreated group, the RNFL thickness was thickened, the number of apoptotic RGCs was much more, and the number of survived RGCs was decreased in the hypertensive group. In the carnosic-acid-treated group, the RNFL thickness was thinner, the number of apoptotic RGCs was reduced, and the number of survived RGCs was increased in comparison with the untreated group (all at P < 0.01). CONCLUSIONS Carnosic acid plays a protective effect on RGCs by inhibiting the cell apoptosis in acute ocular hypertension rats.
Collapse
|
7
|
Mannelli LDC, Micheli L, Maresca M, Cravotto G, Bellumori M, Innocenti M, Mulinacci N, Ghelardini C. Anti-neuropathic effects of Rosmarinus officinalis L. terpenoid fraction: relevance of nicotinic receptors. Sci Rep 2016; 6:34832. [PMID: 27713514 PMCID: PMC5054390 DOI: 10.1038/srep34832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/21/2016] [Indexed: 01/05/2023] Open
Abstract
Traditional uses and current results highlight the neuroprotective properties of Rosmarinus officinalis L. The compelling need for novel strategies able to relieve neuropathic pain encouraged us to analyze different rosemary leaf extracts in rats following chronic constriction injury (CCI) of sciatic nerve. Ethanol, acetone, and the innovative ultrasound-hexane extractive methods were used to obtain: EE, AE, and for hexane extracts UREprel and URE. Extracts were characterized in terms of typical constituents and repeatedly administered to CCI-rats (13-days treatment, from the day of surgery). URE showed the best efficacy and potency in reducing hypersensitivity to noxious- and non-noxious stimuli and spontaneous pain. URE contained the higher quantity of the terpenoid carnosic acid (CA) and its efficacy was compared to pure CA. Histological analysis of the sciatic nerve revealed that URE prevented axon and myelin derangement, edema and inflammatory infiltrate. In the dorsal horn of the spinal cord, URE did not reduce astrocyte activation. Both the pain reliever and the neuroconservative effects of URE were significantly prevented by the nicotinic receptor (nAChR) antagonist mecamylamine. In conclusion, the hexane-ultrasound rosemary extract is able to reduce neuropathic hypersensitivity and protect nervous tissues. Effectiveness is mainly related to the terpenoid fraction by mechanisms involving nAChRs.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Mario Maresca
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Giancarlo Cravotto
- Dept. Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Maria Bellumori
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Division, University of Florence, Florence, Italy
| | - Marzia Innocenti
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Division, University of Florence, Florence, Italy
| | - Nadia Mulinacci
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Division, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
8
|
The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY) 2016; 7:854-68. [PMID: 26540407 PMCID: PMC4637210 DOI: 10.18632/aging.100831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB.
Collapse
|
9
|
Kaya-Tilki E, Dikmen M, Ozturk Y. Effects of DNMT and HDAC Inhibitors (RG108 and Trichostatin A) on NGF-induced Neurite Outgrowth and Cellular Migration. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.351.360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
The Dietary Components Carnosic Acid and Carnosol as Neuroprotective Agents: a Mechanistic View. Mol Neurobiol 2015; 53:6155-6168. [DOI: 10.1007/s12035-015-9519-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
|
11
|
Satoh T, Stalder R, McKercher SR, Williamson RE, Roth GP, Lipton SA. Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential. ASN Neuro 2015; 7:1759091415593294. [PMID: 26243592 PMCID: PMC4550314 DOI: 10.1177/1759091415593294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile.
Collapse
Affiliation(s)
- Takumi Satoh
- Sanford-Burnham Neuroscience and Aging Research Center, La Jolla, CA, USA Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| | - Romain Stalder
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA
| | - Scott R McKercher
- Sanford-Burnham Neuroscience and Aging Research Center, La Jolla, CA, USA
| | | | - Gregory P Roth
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA
| | - Stuart A Lipton
- Sanford-Burnham Neuroscience and Aging Research Center, La Jolla, CA, USA
| |
Collapse
|
12
|
Enhancement of Autophagy by Histone Deacetylase Inhibitor Trichostatin A Ameliorates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Mol Neurobiol 2014; 53:18-27. [PMID: 25399954 DOI: 10.1007/s12035-014-8986-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023]
Abstract
Trichostatin A (TSA), a pan-histone deacetylase inhibitor, exerts multiple neuroprotective properties. This study aims to examine whether TSA could enhance autophagy, thereby reduce neuronal apoptosis and ultimately attenuate early brain injury (EBI) following subarachnoid hemorrhage (SAH). SAH was performed through endovascular perforation method, and mortality, neurological score, and brain water content were evaluated at 24 h after surgery. Western blot were used for quantification of acetylated histone H3, LC3-II, LC3-I, Beclin-1, cytochrome c, Bax, and cleaved caspase-3 expression. Immunofluorescence was performed for colocalization of Beclin-1 and neuronal nuclei (NeuN). Apoptotic cell death of neurons was quantified with double staining of terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) and NeuN. The autophagy inhibitor 3-methyladenine (3-MA) was used to manipulate the proposed pathway. Our results demonstrated that TSA reduced brain edema and alleviated neurological deficits at 24 h after SAH. TSA significantly increased acetylated histone H3, the LC3-II/LC3-I ratio, and Beclin-1 while decreased Bax and cleaved caspase-3 in the cortex. Beclin-1 and NeuN, TUNEL, and NeuN, respectively, were colocalized in cortical cells. Neuronal apoptosis in the ipsilateral basal cortex was significantly inhibited after TSA treatment. Conversely, 3-MA reversed the beneficial effects of TSA. These results proposed that TSA administration enhanced autophagy, which contributes to alleviation of neuronal apoptosis, improvement of neurological function, and attenuation of EBI following SAH.
Collapse
|
13
|
Huang H, Wang H, Figueiredo-Pereira ME. Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential. Cell Biochem Biophys 2014; 67:55-66. [PMID: 23686612 DOI: 10.1007/s12013-013-9628-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cAMP-signaling pathway has been under intensive investigation for decades. It is a wonder that such a small simple molecule like cAMP can modulate a vast number of diverse processes in different types of cells. The ubiquitous involvement of cAMP-signaling in a variety of cellular events requires tight spatial and temporal control of its generation, propagation, compartmentalization, and elimination. Among the various steps of the cAMP-signaling pathway, G-protein-coupled receptors, adenylate cyclases, phosphodiesterases, the two major cAMP targets, i.e., protein kinase A and exchange protein activated by cAMP, as well as the A-kinase anchoring proteins, are potential targets for drug development. Herein we review the recent progress on the regulation and manipulation of different steps of the cAMP-signaling pathway. We end by focusing on the emerging role of cAMP-signaling in modulating protein degradation via the ubiquitin/proteasome pathway. New discoveries on the regulation of the ubiquitin/proteasome pathway by cAMP-signaling support the development of new therapeutic approaches to prevent proteotoxicity in chronic neurodegenerative disorders and other human disease conditions associated with impaired protein turnover by the ubiquitin/proteasome pathway and the accumulation of ubiquitin-protein aggregates.
Collapse
Affiliation(s)
- He Huang
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
14
|
Abstract
Living cells maintain a balance between oxidation and reduction, and perturbations of this redox balance are thought to contribute to various diseases. Recent attempts to regulate redox state have focused on electrophiles (EPs), which activate potent cellular defense systems against oxidative stress. One example of this approach is exemplified by carnosic acid (CA) and carnosol (CS), compounds that are found in the herb rosemary (Rosmarinus officinalis). Importantly, CA and CS themselves are not electrophilic, but in response to oxidation, become electrophilic, and then activate the Keap1/Nrf2/ARE (antioxidant-response element) transcription pathway to synthesize endogenous antioxidant "phase 2"enzymes. As a result of our efforts to develop these compounds as therapeutics for brain health, we have formulated two innovative criteria for drug development: the first concept is the use of pro-electrophilic drugs (PEDs) that are innocuous in and of themselves; and the second concept involves the use of compounds that are pathologically activated therapeutics (PATs); i.e., these small molecules are chemically converted to their active form by the very oxidative stress that they are designed to then combat. The chemical basis for PED and PAT drugs is embodied in the ortho- and para-hydroquinone electrophilic cores of the molecules, which are oxidized by the Cu(2+)/Cu(+) cycling system (or potentially by other transition metals). Importantly, this cycling pathway is under stringent regulation by the cell redox state. We propose that redox-dependent quinone formation is the predominant mechanism for formation of PED and PAT drugs from their precursor compounds. In fact, redox-dependent generation of the active form of drug from the "pro-form" distinguishes this therapeutic approach from traditional EPs such as curcumin, and results in a decrease in clinical side effects at therapeutic concentrations, e.g., lack of reaction with other thiols such as glutathione (GSH), which can result in lowering GSH and inducing oxidative stress in normal cells. We consider this pro-drug quality of PED/PAT compounds to be a key factor for generating drugs to be used to combat neurodegenerative diseases that will be clinically tolerated. Given the contribution of oxidative stress to the pathology of multiple neurodegenerative diseases, the Keap1/Nrf2/ARE pathway represents a promising drug target for these PED/PAT agents.
Collapse
Affiliation(s)
- Takumi Satoh
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA; Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka, Iwate 020-8551, Japan.
| | - Scott R McKercher
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA
| | - Stuart A Lipton
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
15
|
Satoh T, McKercher SR, Lipton SA. Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 2013; 65:645-657. [PMID: 23892355 PMCID: PMC3859717 DOI: 10.1016/j.freeradbiomed.2013.07.022] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
Living cells maintain a balance between oxidation and reduction, and perturbations of this redox balance are thought to contribute to various diseases. Recent attempts to regulate redox state have focused on electrophiles (EPs), which activate potent cellular defense systems against oxidative stress. One example of this approach is exemplified by carnosic acid (CA) and carnosol (CS), compounds that are found in the herb rosemary (Rosmarinus officinalis). Importantly, CA and CS themselves are not electrophilic, but in response to oxidation, become electrophilic, and then activate the Keap1/Nrf2/ARE (antioxidant-response element) transcription pathway to synthesize endogenous antioxidant "phase 2" enzymes. As a result of our efforts to develop these compounds as therapeutics for brain health, we have formulated two innovative criteria for drug development: the first concept is the use of pro-electrophilic drugs (PEDs) that are innocuous in and of themselves; and the second concept involves the use of compounds that are pathologically activated therapeutics (PATs);i.e., these small molecules are chemically converted to their active form by the very oxidative stress that they are designed to then combat. The chemical basis for PED and PAT drugs is embodied in the ortho- and para-hydroquinone electrophilic cores of the molecules, which are oxidized by the Cu(2+)/Cu(+) cycling system (or potentially by other transition metals). Importantly, this cycling pathway is under stringent regulation by the cell redox state. We propose that redox-dependent quinone formation is the predominant mechanism for formation of PED and PAT drugs from their precursor compounds. In fact, redox-dependent generation of the active form of drug from the "pro-form" distinguishes this therapeutic approach from traditional EPs such as curcumin, and results in a decrease in clinical side effects at therapeutic concentrations, e.g., lack of reaction with other thiols such as glutathione (GSH), which can result in lowering GSH and inducing oxidative stress in normal cells. We consider this pro-drug quality of PED/PAT compoundsto be a key factor for generating drugs to be used to combat neurodegenerative diseases that will be clinically tolerated. Given the contribution of oxidative stress to the pathology of multiple neurodegenerative diseases, the Keap1/Nrf2/ARE pathway represents a promising drug target for these PED/PAT agents.
Collapse
Affiliation(s)
- Takumi Satoh
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA; Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka, Iwate 020-8551, Japan.
| | - Scott R McKercher
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA
| | - Stuart A Lipton
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
16
|
Liu Q, Yu Y, Wang P, Li Y. Synthesis of analogues of linckoside B, a new neuritogenic steroid glycoside. NEW J CHEM 2013. [DOI: 10.1039/c3nj00514c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|