1
|
Sun J, Chen S, Zang D, Sun H, Sun Y, Chen J. Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). Int J Oncol 2024; 64:44. [PMID: 38426581 PMCID: PMC10919761 DOI: 10.3892/ijo.2024.5632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. The etiology of cancer has not been fully elucidated yet, and further enhancements are necessary to optimize therapeutic efficacy. Butyrate, a short‑chain fatty acid, is generated through gut microbial fermentation of dietary fiber. Studies have unveiled the relevance of butyrate in malignant neoplasms, and a comprehensive understanding of its role in cancer is imperative for realizing its full potential in oncological treatment. Its full antineoplastic effects via the activation of G protein‑coupled receptors and the inhibition of histone deacetylases have been also confirmed. However, the underlying mechanistic details remain unclear. The present study aimed to review the involvement of butyrate in carcinogenesis and its molecular mechanisms, with a particular emphasis on its association with the efficacy of tumor immunotherapy, as well as discussing relevant clinical studies on butyrate as a therapeutic target for neoplastic diseases to provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Jinzhe Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Shiqian Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Dan Zang
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Hetian Sun
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yan Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Jun Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
2
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
3
|
Sinrod AJG, Shah IM, Surek E, Barile D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023; 9:e20499. [PMID: 37867799 PMCID: PMC10589784 DOI: 10.1016/j.heliyon.2023.e20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Grape pomace is the primary wine coproduct consisting primarily of grape seeds and skins. Grape pomace holds immense potential as a functional ingredient to improve human health while its valorization can be beneficial for industrial sustainability. Pomace contains bioactive compounds, including phenols and oligosaccharides, most of which reach the colon intact, enabling interaction with the gut microbiome. Microbial analysis found that grape pomace selectively promotes the growth of many commensal bacteria strains, while other types of bacteria, including various pathogens, are highly sensitive to the pomace and its components and are inactivated. In vitro studies showed that grape pomace and its extracts inhibit the growth of pathogenic bacteria in Enterobacteriaceae family while increasing the growth and survival of some beneficial bacteria, including Bifidobacterium spp. and Lactobacillus spp. Grape pomace supplementation in mice and rats improves their gut microbiome complexity and decreases diet-induced obesity as well as related illnesses, including insulin resistance, indicating grape pomace could improve human health. A human clinical trial found that pomace, regardless of its phenolic content, had cardioprotective effects, suggesting that dietary fiber induced those health benefits. To shed light on the active components, this review explores the potential prebiotic capacity of select bioactive compounds in grape pomace.
Collapse
Affiliation(s)
- Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ece Surek
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Istinye University, 34396, Istanbul, Turkey
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| |
Collapse
|
4
|
Xiang Q, Yan X, Shi W, Li H, Zhou K. Early gut microbiota intervention in premature infants: Application perspectives. J Adv Res 2023; 51:59-72. [PMID: 36372205 PMCID: PMC10491976 DOI: 10.1016/j.jare.2022.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth is the leading cause of death in children under the age of five. One of the major factors contributing to the high risk of diseases and deaths in premature infants is the incomplete development of the intestinal immune system. The gut microbiota has been widely recognized as a critical factor in promoting the development and function of the intestinal immune system after birth. However, the gut microbiota of premature infants is at high risk of dysbiosis, which is highly associated with adverse effects on the development and education of the early life immune system. Early intervention can modulate the colonization and development of gut microbiota and has a long-term influence on the development of the intestinal immune system. AIM OF REVIEW This review aims to summarize the characterization, interconnection, and underlying mechanism of gut microbiota and intestinal innate immunity in premature infants, and to discuss the status, applicability, safety, and prospects of different intervention strategies in premature infants, thus providing an overview and outlook of the current applications and remaining gaps of early intervention strategies in premature infants. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, the gut microbiota of premature infants is at high risk of dysbiosis, resulting in dysfunctional intestinal immune system processes. Secondly, contributing roles of early intervention have been observed in improving the intestinal environment and promoting gut microbiota colonization, which is significant in the development and function of gut immunity in premature infants. Thirdly, different strategies of early intervention, such as probiotics, fecal microbiota transplantation, and nutrients, show different safety, applicability, and outcome in premature infants, and the underlying mechanism is complex and poorly understood.
Collapse
Affiliation(s)
- Quanhang Xiang
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xudong Yan
- Department of Neonatal Intensive Care Unit, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, the first affiliated hospital of Southern University of Science and Technology of China, Shenzhen People's Hospital, Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Abenavoli L, Scarlata GGM, Paravati MR, Boccuto L, Luzza F, Scarpellini E. Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection. Biomedicines 2023; 11:1792. [PMID: 37509432 PMCID: PMC10376769 DOI: 10.3390/biomedicines11071792] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Liver transplantation (LT) is the treatment of choice for patients with cirrhosis, decompensated disease, acute liver failure, and hepatocellular carcinoma (HCC). In 3-25% of cases, an alarming problem is acute and chronic cellular rejection after LT, and this event can lead to the need for new transplantation or the death of the patient. On the other hand, gut microbiota is involved in several mechanisms sustaining the model of the "gut-liver axis". These include modulation of the immune response, which is altered in case of gut dysbiosis, possibly resulting in acute graft rejection. Some studies have evaluated the composition of the gut microbiota in cirrhotic patients before and after LT, but few of them have assessed its impact on liver rejection. This review underlines the changes in gut microbiota composition before and after liver transplantation, hypothesizing possible immune mechanisms linking dysbiosis to transplantation rejection. Evaluation of changes in the gut microbiota composition in these patients is therefore essential in order to monitor the success of LT and eventually adopt appropriate preventive measures.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | | | | | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Francesco Luzza
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (TARGID.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Choo J, Glisovic N, Matic Vignjevic D. Gut homeostasis at a glance. J Cell Sci 2022; 135:281168. [DOI: 10.1242/jcs.260248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT
The intestine, a rapidly self-renewing organ, is part of the gastrointestinal system. Its major roles are to absorb food-derived nutrients and water, process waste and act as a barrier against potentially harmful substances. Here, we will give a brief overview of the primary functions of the intestine, its structure and the luminal gradients along its length. We will discuss the dynamics of the intestinal epithelium, its turnover, and the maintenance of homeostasis. Finally, we will focus on the characteristics and functions of intestinal mesenchymal and immune cells. In this Cell Science at a Glance article and the accompanying poster, we aim to present the most recent information about gut cell biology and physiology, providing a resource for further exploration.
Collapse
Affiliation(s)
- Jieun Choo
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | - Neda Glisovic
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | | |
Collapse
|
7
|
Yang ZJ, Wang TT, Wang BY, Gao H, He CW, Shang HW, Lu X, Wang Y, Xu JD. Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. J Inflamm (Lond) 2022; 19:14. [PMID: 36195874 PMCID: PMC9530412 DOI: 10.1186/s12950-022-00311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
With the incidence of hypertension increasing worldwide, more and more the mechanisms of hypertension from the perspective of immunity have found. Intestinal microbiota as well as its metabolites relationship with hypertension has attracted great attention from both clinicians and investigators. However, the associations of hypertension with lesions of a large number of immune factors including IL-17, MCP-1, IL-6, TGF-β, IL-10 and others have not been fully characterized. In this review, after introducing the immune factors as the most potent anti/pro-hypertension agents known, we provide detailed descriptions of the IL-17 involved in the pathology of hypertension, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Ze-Jun Yang
- grid.24696.3f0000 0004 0369 153XClinical Medicine of “5+3”program, School of Basic Medical Science, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tian Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- grid.411634.50000 0004 0632 4559Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Han Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- grid.414373.60000 0004 1758 1243Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sheng S, Fu Y, Pan N, Zhang H, Xiu L, Liang Y, Liu Y, Liu B, Ma C, Du R, Wang X. Novel exopolysaccharide derived from probiotic Lactobacillus pantheris TCP102 strain with immune-enhancing and anticancer activities. Front Microbiol 2022; 13:1015270. [PMID: 36225355 PMCID: PMC9549278 DOI: 10.3389/fmicb.2022.1015270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of exopolysaccharide (EPS) is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen exopolysaccharides-producing lactic acid bacteria (LAB) and evaluate the probiotic potential. we obtained three exopolysaccharide fractions (EPS1, EPS2, and EPS3) from Lactobacillus pantheris TCP102 and purified by a combination of ion-exchange chromatography and gel permeation chromatography. The structures of the fractions were characterized by FT-IR, UV, HPLC, and scanning electron microscopy (SEM) analysis. The Mw of EPS1, EPS2, and EPS3 were approximately 20.3, 23.0, and 19.3 kDa, and were mainly composed of galactose, glucose, and mannose, with approximate molar ratios of 2.86:1:1.48, 1.26:1:1, 1.58:1.80:1, respectively. Furthermore, SEM analysis demonstrated that the three polysaccharide fractions differ in microstructure and surface morphology. Additionally, preliminary results for immune-enhancing and anticancer activities reveal that these EPSs significantly induced the production of nitric oxide (NO), TNF-α, and IL-6 in Ana-1 cells and peritoneal macrophage cells. Meanwhile, the EPSs also significantly suppressed the proliferation of HCT-116, BCG-803, and particularly A-2780 cells. The results suggest that the three novel EPSs isolated from Lactobacillus pantheris TCP102 can be regarded as potential application value in functional food and natural antitumor drugs.
Collapse
Affiliation(s)
- Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yubing Fu
- School of Life Sciences, Faculty of Medicine and Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ruiping Du
- Animal Nutrition Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Mei H, Li C, Li X, Hu B, Lu L, Tomberlin JK, Hu W. Characteristics of tylosin and enrofloxacin degradation in swine manure digested by black soldier fly (Hermetia illucens L.) larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118495. [PMID: 34785289 DOI: 10.1016/j.envpol.2021.118495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae) larvae (BSF larvae or BSFL) offer an environmental-friendly method for degrading antibiotics, such as tylosin (TYL) and enrofloxacin (EF), in swine manure. This study examined the impact of temperature on this process, role of associated microbes, dynamics of resistant genes, and a description of the microbial community associated with the BSF larval gut, how microbes isolated from the BSF larval gut as inoculants impact the process as well as enhance antibiotic digestion, and finally a quantification of antibiotics in BSF larvae fed manure with TYL or EF. Antibiotic degradation in manure was optimized at 28 °C with at least 10% greater than 23 °C and 37 °C. More than 40% reduction in TYL and EF concentrations in the manure occurred when BSF larval gut associated microbes were present. Furthermore, DNA extracted from the gut of non-sterile BSF larvae fed manure with TYL or EF indicated at least two 2-△△Ct fold increase in antibiotic resistance genes for TYL and EF. We identified 250, 4, and 16 unique operational taxa for larvae fed control manure and manure with either TYL or EF. Intestinal microbes isolated from non-sterile larvae fed manure with TYL or EF, were identified, cultured, and examined for their ability to degrade TYL and EF in Luria-Bertani (LB) medium. Three strains (two strains of Enterococcus faecalis and one strain of Proteus mirabilis) resulted in at least 50% TYL or EF degradation within 96 h. Sterile BSF larvae inoculated with P. mirabilis recovered >60% of the degradation ability exhibited by non-sterile larvae. Finally, no TYL residuals were found in 14-d-old larvae, prepupae, or pupae of BSF immatures fed manure containing these antibiotics. While ∼65 μg/g and ∼20 μg/g of EF were found in larval contents and pupal exoskeleton, respectively.
Collapse
Affiliation(s)
- Hanjie Mei
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd., Guangzhou, Guangdong Province, 510640, China; Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China
| | - Bin Hu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Lizhu Lu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals (Basel) 2021; 12:ani12010093. [PMID: 35011199 PMCID: PMC8749645 DOI: 10.3390/ani12010093] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Farm animal health and welfare have been paid increasing concern in the world, which is generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators, such as stress-related hormone, cortisone, and norepinephrine. Gut microbiota as a “forgotten organ” has been reported for its great influence on the host phenotypes through the immune, neural, and endocrine pathways to affect the host health and behavior. In addition, fecal microbiota transplantation as a novel approach is applied to regulating the composition and function of the recipient farm animals. In this review, we summarized recent studies that gut microbiota influenced health, immunity, behavior, and stress response, as well as the progress of fecal microbiota transplantation in farm animals. The review will provide new insights into the measurement of farm animal health and welfare concerning gut microbiota, and the implication of fecal microbiota transplantation to improve productivity, health, and welfare. Above all, this review suggests that gut microbiota is a promising field to evaluate and improve animal welfare. Abstract In the past few decades, farm animal health and welfare have been paid increasing concern worldwide. Farm animal health and welfare are generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators. The gut microbiota has been reported to have a great influence on host phenotypes, possibly via the immune processes, neural functions, and endocrine pathways, thereby influencing host phenotypes. However, there are few reviews regarding farm animals’ health and welfare status concerning the gut microbiota. In this point of view, (1) we reviewed recent studies showing that gut microbiota (higher alpha diversity, beneficial composition, and positive functions) effectively influenced health characteristics, immunity, behaviors, and stress response in farm animals (such as pigs, chickens, and cows), which would provide a novel approach to measure and evaluate the health status and welfare of farm animals. In addition, fecal microbiota transplantation (FMT) as one of the methods can modulate the recipient individual’s gut microbiota to realize the expected phenotype. Further, (2) we highlighted the application of FMT on the improvement of the production performance, the reduction in disease and abnormal behavior, as well as the attenuation of stress in farm animals. It is concluded that the gut microbiota can be scientifically used to assess and improve the welfare of farm animals. Moreover, FMT may be a helpful strategy to reduce abnormal behavior and improve stress adaption, as well as the treatment of disease for farm animals. This review suggests that gut microbiota is a promising field to evaluate and improve animal welfare.
Collapse
|
13
|
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 2021; 22:265. [PMID: 34521452 PMCID: PMC8439047 DOI: 10.1186/s13059-021-02471-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. Results In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. Conclusions We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02471-3.
Collapse
Affiliation(s)
- Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
14
|
Murdaca G, Gerosa A, Paladin F, Petrocchi L, Banchero S, Gangemi S. Vitamin D and Microbiota: Is There a Link with Allergies? Int J Mol Sci 2021; 22:4288. [PMID: 33924232 PMCID: PMC8074777 DOI: 10.3390/ijms22084288] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
There is increasing recognition of the importance of both the microbiome and vitamin D in states of health and disease. Microbiome studies have already demonstrated unique microbial patterns in systemic autoimmune diseases such as inflammatory bowel disease, rheumatoid arthritis, and systemic lupus erythematosus. Dysbiosis also seems to be associated with allergies, in particular asthma, atopic dermatitis, and food allergy. Even though the effect of vitamin D supplementation on these pathologies is still unknown, vitamin D deficiency deeply influences the microbiome by altering the microbiome composition and the integrity of the gut epithelial barrier. It also influences the immune system mainly through the vitamin D receptor (VDR). In this review, we summarize the influence of the microbiome and vitamin D on the immune system with a particular focus on allergic diseases and we discuss the necessity of further studies on the use of probiotics and of a correct intake of vitamin D.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.G.); (F.P.); (L.P.); (S.B.)
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Alessandra Gerosa
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.G.); (F.P.); (L.P.); (S.B.)
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.G.); (F.P.); (L.P.); (S.B.)
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Lorena Petrocchi
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.G.); (F.P.); (L.P.); (S.B.)
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Sara Banchero
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.G.); (F.P.); (L.P.); (S.B.)
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
15
|
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 2021; 19:31. [PMID: 33691728 PMCID: PMC7945333 DOI: 10.1186/s12964-021-00712-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer. Video Abstract
Collapse
Affiliation(s)
- Camille Ternet
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Franzin M, Stefančič K, Lucafò M, Decorti G, Stocco G. Microbiota and Drug Response in Inflammatory Bowel Disease. Pathogens 2021; 10:211. [PMID: 33669168 PMCID: PMC7919657 DOI: 10.3390/pathogens10020211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in the treatment of IBD can be either beneficial or disadvantageous.
Collapse
Affiliation(s)
- Martina Franzin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Katja Stefančič
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| |
Collapse
|
17
|
Aleksandrova EN, Novikov AA, Lukina GV, Parfenov AI. [Clinical value of antibodies in inflammatory bowel diseases]. TERAPEVT ARKH 2021; 93:228-235. [PMID: 36286642 DOI: 10.26442/00403660.2021.02.200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory bowel disease IBD (Crohns disease CD, ulcerative colitis UC) immune-mediated diseases of the digestive tract of unknown etiology. The basis of the pathogenesis of IBD is a violation of the protective mechanisms of the intestinal barrier as a result of a complex interaction of environmental factors, a genetic predisposition and defects in the activation of the immune response in the lymphoid tissue of the intestinal mucosa. Three groups of antibodies are detected in the sera of IBD patients: autoantibodies, antimicrobial antibodies and antibodies to peptide antigens. In CD, the most useful diagnostic markers are ASCA; in UC patients pANCA. Antibodies are not among the diagnostic criteria for CD and UC, the diagnosis of which is traditionally made on the basis of a complex of clinical, radiological, endoscopic and histological signs, but can be used as useful additional non-invasive markers for early diagnosis, assessment of clinical phenotypes, prognosis and effectiveness of treatment of these diseases.
Collapse
Affiliation(s)
| | - A A Novikov
- Loginov Moscow Clinical Research and Practical Center
| | - G V Lukina
- Loginov Moscow Clinical Research and Practical Center
| | - A I Parfenov
- Loginov Moscow Clinical Research and Practical Center
| |
Collapse
|
18
|
Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, Corthésy B, Paul S. NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn's disease. Nat Commun 2021; 12:261. [PMID: 33431850 PMCID: PMC7801705 DOI: 10.1038/s41467-020-20348-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal microfold cells are the primary pathway for translocation of secretory IgA (SIgA)-pathogen complexes to gut-associated lymphoid tissue. Uptake of SIgA/commensals complexes is important for priming adaptive immunity in the mucosa. This study aims to explore the effect of SIgA retrograde transport of immune complexes in Crohn's disease (CD). Here we report a significant increase of SIgA transport in CD patients with NOD2-mutation compared to CD patients without NOD2 mutation and/or healthy individuals. NOD2 has an effect in the IgA transport through human and mouse M cells by downregulating Dectin-1 and Siglec-5 expression, two receptors involved in retrograde transport. These findings define a mechanism of NOD2-mediated regulation of mucosal responses to intestinal microbiota, which is involved in CD intestinal inflammation and dysbiosis.
Collapse
Affiliation(s)
- Nicolas Rochereau
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| | - Xavier Roblin
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Eva Michaud
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Rémi Gayet
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Blandine Chanut
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Fabienne Jospin
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, 1066, Epalinges, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| |
Collapse
|
19
|
Tong L, Tang C, Cai C, Guan X. Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel-like factor 4 in intestinal sepsis. Bioengineered 2020; 11:1334-1349. [PMID: 33200654 PMCID: PMC8291882 DOI: 10.1080/21655979.2020.1851476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regulatory mechanisms of microRNAs (miRNAs) in the development of intestinal sepsis are unclear. This study investigated the role of rno-miR-146b-5p in sepsis-induced intestinal injury. A rat sepsis model was created using the cecal ligation and puncture method. The expression profiles of miRNA and mRNA in sepsis rats were examined using miRNA and mRNA sequencing; rno-miR-146b was selected for further investigation. The mimics and inhibitors of rno-miR-146b-5p were transfected into IEC-6 cells and then with or without lipopolysaccharide (LPS) treatment, and the expressions of Kruppel-like factor 4 (Klf4) and Cyclin D2 (Ccnd2) were assessed by quantitative real-time transcriptase-polymerase chain reaction (qRT-PCR) and western blotting. Next, cell counting kit-8 assay was used to detect cell viability, and scratch wound healing assay was used to assess cell migration. In sepsis rat model, crypt cell proliferation was inhibited and crypt cell apoptosis was increased. Compared with the sham control, results of miRNA and mRNA sequencing showed that there were 17 miRNAs and 1617 mRNAs that were upregulated and 123 miRNAs and 1917 mRNAs that were downregulated in the sepsis model group. The network diagrams and qRT-PCR validation indicated that rno-miR-146b-5p may inhibit the expression of Klf4. By adjusting the expression of rno-miR-146b-5p in IEC-6 cells with or without LPS treatment, we found that increased expression of rno-miR-146b-5p inhibited cell proliferation and migration and inhibited the expression of Ccnd2. rno-miR-146b-5p may play a vital role in the development of sepsis intestinal injury through targeting Klf4 expression and affecting promoter activity of Ccnd2.
Collapse
Affiliation(s)
- Li Tong
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Chaoxia Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Changjie Cai
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
20
|
Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr 2020; 62:738-763. [DOI: 10.1080/10408398.2020.1828263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
21
|
Xu J, Wu L, Yu P, Sun Y, Lu Y. Effect of T. spiralis Serine protease inhibitors on TNBS-induced experimental colitis mediated by Macrophages. Sci Rep 2020; 10:3147. [PMID: 32081954 PMCID: PMC7035329 DOI: 10.1038/s41598-020-60155-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease with increasing incidence rate, and divided into ulcerative colitis (UC) and Crohn’s disease (CD). And more and more experimental evidence supports that immune disorder is important in the pathogenesis of IBD. Our previous experiments have confirmed that TsKaSPI and TsAdSPI recombinant proteins could relieve TNBS (2,4,6-Trinitrobenzenesulfonic acid solution)-induced colitis. Therefore, we speculate that macrophages play a certain role in the process of recombinant protein relieving colitis. In this experiment, 96 male BALB/c mice aged 6–8 weeks were randomly divided into two groups: the prevention group and the therapy group. Changes of the ratio of M1/M2 phenotypic macrophages in spleens and MLNs, key factors in the IL-33/ST2 and IL-6/JAK2/STAT3 signaling pathway were detected. The purpose is to analyze the specific role played by macrophages and their secreted cytokines in the immunomodulation of colitis by Trichinella spiralis (T. spiralis) Serine protease inhibitors. The results showed that the percentage of M1 phenotypic macrophages was decreased and M2 phenotypic macrophages was increased in the TsKaSPI + TNBS, TsAdSPI + TNBS group compared with the PBS + TNBS group in the prevention group. Meanwhile, the expression of IL-33 and ST2 were significantly decreased. The key factors of IL-6/JAK2/STAT3 signaling pathway were all significantly increased. In addition, in the therapy group, we found similar results. This experiment demonstrated that macrophages have a certain impact during this process of recombinant protein relieving mouse CD model.
Collapse
Affiliation(s)
- Jingyun Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lijia Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Pengcheng Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yichun Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
22
|
Maloupazoa Siawaya AC, Kuissi Kamgaing E, Minto'o Rogombe S, Obiang T, Moungoyi Massala E, Magossou Mbadinga MJV, Leboueny M, Mvoundza Ndjindji O, Mveang-Nzoghe A, Ondo JP, Mintsa Ndong A, N Essone P, Agnandji ST, Kaba M, Ategbo S, Djoba Siawaya JF. HIV-exposed uninfected compared with unexposed infants show the presence of leucocytes, lower lactoferrin levels and antimicrobial-resistant micro-organisms in the stool. Paediatr Int Child Health 2019; 39:249-258. [PMID: 30762489 DOI: 10.1080/20469047.2019.1577063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: HIV-exposed uninfected (HEU)-infants have been shown to be particularly vulnerable to infections. In this population, disturbance of the gut micro-environment might increase their susceptibility to enteric diseases and even favour the translocation of bacteria in the bloodstream. Methods: The gastro-intestinal micro-environment was explored in 22 HEU infants and 16 HIV-unexposed (HU) infants aged 6-24 weeks. Faecal leucocytes, firmicutes (gram-positive bacteria) and gracilicutes (gram-negative bacteria) were assessed by cytology. Faecal lactoferrin and sIgA were measured by ELISA. The spectrum of micro-organisms in infants' stool was analysed by culturing. Results: HEU infants were 14 times more likely to have leucocytes in their stool than HU infants (p < 0.005). The lactoferrin level was significantly lower in HEU infants than in HU infants (p = 0.02). Potentially pathogenic bacteria such as Escherichia coli were more prevalent in HEU than in HU infants (64% vs 23.5%). Also, E. coli strains resistant to key antibiotics including co-trimoxazole, β-lactam (cephalosporins included) and tetraclines were observed in some HEU infants. Conclusion: HEU infants are more likely to present an inflamed digestive tract as highlighted by the presence of leucocytes. In addition, there is a real risk of colonisation of HEU infants' microbiota by resistant micro-organisms.
Collapse
Affiliation(s)
- A C Maloupazoa Siawaya
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Service Laboratoire, Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne Ebori , Libreville , Gabon
| | - E Kuissi Kamgaing
- Département de Pédiatrie, Université des Sciences de la Santé , Libreville , Gabon
| | - S Minto'o Rogombe
- Département de Pédiatrie, Université des Sciences de la Santé , Libreville , Gabon
| | - T Obiang
- Département de Pédiatrie, Université des Sciences de la Santé , Libreville , Gabon
| | - E Moungoyi Massala
- Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku , Franceville , Gabon
| | - M J V Magossou Mbadinga
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Service Laboratoire, Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne Ebori , Libreville , Gabon
| | - M Leboueny
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Service Laboratoire, Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne Ebori , Libreville , Gabon
| | - O Mvoundza Ndjindji
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Service Laboratoire, Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne Ebori , Libreville , Gabon
| | - A Mveang-Nzoghe
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Service Laboratoire, Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne Ebori , Libreville , Gabon
| | - J P Ondo
- Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku , Franceville , Gabon
| | - A Mintsa Ndong
- Laboratoire National de Santé Publique, Unité de Virologie , Libreville , Gabon
| | - P N Essone
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen , Tübingen , Germany
| | - S T Agnandji
- Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen , Tübingen , Germany
| | - M Kaba
- Division of Medical Microbiology, University of Cape Town , Cape Town , South Africa
| | - S Ategbo
- Département de Pédiatrie, Université des Sciences de la Santé , Libreville , Gabon
| | - J F Djoba Siawaya
- Laboratoire National de Santé Publique, Unités de Recherche et de Diagnostics Spécialisés , Libreville , Gabon.,Service Laboratoire, Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne Ebori , Libreville , Gabon
| |
Collapse
|
23
|
Li M, Wang Y, Sun Y, Cui H, Zhu SJ, Qiu HJ. Mucosal vaccines: Strategies and challenges. Immunol Lett 2019; 217:116-125. [PMID: 31669546 DOI: 10.1016/j.imlet.2019.10.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Mucosal immunization has potential benefits over conventional parenteral immunization, eliciting immune defense in both mucosal and systemic tissue for protecting from pathogen invasion at mucosal surfaces. To provide a first line of protection at these entry ports, mucosal vaccines have been developed and hold a significant promise for reducing the burden of infectious diseases. However, until very recently, only limited mucosal vaccines are available. This review summarizes recent advances in selected aspects regarding mucosal vaccination, including appropriate administration routes, reasonable formulations, antigen-sampling and immune responses of mucosal immunity, and the strategies used to improve mucosal vaccine efficacy. Finally, the challenges of developing successful mucosal vaccines and the potential solutions are discussed.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shu J Zhu
- College of Animal Science, Zhejiang University, Hangzhou, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
24
|
Ezzeldin S, El-Wazir A, Enany S, Muhammad A, Johar D, Osama A, Ahmed E, Shikshaky H, Magdeldin S. Current Understanding of Human Metaproteome Association and Modulation. J Proteome Res 2019; 18:3539-3554. [PMID: 31262181 DOI: 10.1021/acs.jproteome.9b00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last decade, metaproteomics has provided a better understanding and functional characterization of the microbiome. A large body of evidence now reveals interspecies, species of bacteria-host interactions, via the secreted modulatory microbial protein "metaproteome". Although high-throughput state-of-art mass spectrometry has recently empowered metaproteomics, its profile remains unclear, and, most importantly, the exact consequences and underlying mechanism of these protein molecules on the host are insufficiently understood. Here we address the current progress in the study of the human metaproteome, suggesting possible modulation, a metaproteome dysbiotic signature, challenges, and future perspectives.
Collapse
Affiliation(s)
- Shahd Ezzeldin
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Aya El-Wazir
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine , Suez Canal University , 41522 Ismailia , Egypt.,Center of Excellence of Molecular and Cellular Medicine , Suez Canal University , 41522 Ismailia , Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy , Suez Canal University , 41522 Ismailia , Egypt
| | - Abdelrahman Muhammad
- Department of Biomedical Engineering , Higher Technological Institute , 44634 Sharqia , Egypt
| | - Dina Johar
- Biomedical Sciences Program, University of Science and Technology , Zewail City of Science and Technology , 12588 Giza , Egypt
| | - Aya Osama
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine , Suez Canal University , 41522 Ismailia , Egypt
| | - Hassan Shikshaky
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt.,Department of Physiology, Faculty of Veterinary Medicine , Suez Canal University , 41522 Ismailia , Egypt
| |
Collapse
|
25
|
Chaffringeon L, De La Cruz J, Dettling V, Eme-Scolan E, Samain J. Les bactériophages, alliés de l’épithélium intestinal contre les bactéries pathogènes. Med Sci (Paris) 2019; 35:581-583. [DOI: 10.1051/medsci/2019114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Role of Microbiome in Modulating Immune Responses in Cancer. Mediators Inflamm 2019; 2019:4107917. [PMID: 31308831 PMCID: PMC6594313 DOI: 10.1155/2019/4107917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
The complex interactions between genes and the environment play important roles in disease susceptibility and progression. One of the chronic diseases that is affected by this gene-environment interplay is cancer. However, our knowledge about these environmental factors remains limited. The microorganisms that inhabit our bodies have recently been acknowledged to play a crucial role as an environmental factor, to which we are constantly exposed. Studies have revealed significant differences in the relative abundance of certain microbes in cancer cases compared with controls. It has been reported that changes in the composition of normal gut microbiota can increase/decrease cancer susceptibility and progression by diverse mechanisms including, but not limited to, inflammation—a well-known hallmark of carcinogenesis. The microbiota can also affect the response to various treatments including immunotherapy. The microbiome-immune-cancer axis will continue to provide insight into the basic mechanisms of carcinogenesis. In this review, we provide a brief understanding of the mechanisms by which microbiota affects cancer development, progression, and treatment.
Collapse
|
27
|
Lan LC, Yang MX, Tang Q, Lu ZL, Yun X, Huang L, Chen XQ, Shan QW. Changes of IL-17 and related cytokines in peripheral blood and intestinal mucosa of children with abdominal Henoch-Schonlein purpura. Shijie Huaren Xiaohua Zazhi 2019; 27:694-702. [DOI: 10.11569/wcjd.v27.i11.694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal mucosal barrier injury and immune system disorder may be important in the pathogenesis of abdominal Henoch-Schonlein purpura (HSP). However, the relationship between immune factors and intestinal mucosal barrier injury remains unclear.
AIM To investigate the role of changes of interleukin-17 (IL-17) and its related cytokines in peripheral blood and intestinal mucosa in the pathogenesis of abdominal HSP, and to analyze the relationship between intestinal dysbacteriosis and the pathogenesis of abdominal HSP.
METHODS Twenty-six children with acute abdominal HSP were included into an observation group and 16 healthy children were included into a healthy control group. Peripheral blood and fecal samples were collected from subjects of the two groups. Twenty children with acute abdominal HSP who underwent gastroscopy were selected as a case group, and eight children without obvious mucosal lesions were selected as a control group. The duodenal mucosal tissues of the two groups were collected. Flow cytometry was used to detect the percentages of Th17 cells and Tc17 cells in peripheral blood mononuclear cells (PBMCs). ELISA was used to detect the contents of IL-17, IL-6, IL-23, and IFN-γ in plasma. HE staining was used to observe the pathological changes in the duodenal mucosa. RT-qPCR and immunohistochemistry were used to detect the mRNA and protein expression levels of IL-17, IL-6, IL-23, and IFN-γ in the duodenal mucosa, respectively. Bacterial 16S rDNA was used to detect the number of Bifidobacterium and Escherichia coli in feces.
RESULTS The percentages of Th17 and Tc17 cells in the observation group were significantly higher than those in the control group (P < 0. 05). Plasma concentrations of IL-17, IL-6, and IL-23 in the observation group were significantly higher than those in the healthy control group (P < 0. 05). The pathological changes in the duodenal mucosa in the case group were non-specific chronic inflammation, with vascular inflammatory lesions observed in some cases. The expression of IL-17, IL-6, and IFN-γ mRNAs and proteins in the duodenal mucosa in the case group were significantly higher than those in the control group (P < 0. 05). The quantity of Bifidobacterium and Bifidobacterium/Escherichia coli ratio in the observation group were significantly lower than those in the healthy control group (P < 0.05).
CONCLUSION IL-17 and its related cytokines are involved in systemic and intestinal mucosal inflammation in children with abdominal HSP. Intestinal dysbacteriosis may promote the IL-17-mediated inflammatory reaction, which is related to the pathogenesis of abdominal HSP and intestinal mucosal barrier injury.
Collapse
Affiliation(s)
- Lian-Cheng Lan
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mei-Xiong Yang
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qing Tang
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Li Lu
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiang Yun
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li Huang
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Qi Chen
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qing-Wen Shan
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
28
|
Lew KN, Starkweather A, Cong X, Judge M. A Mechanistic Model of Gut-Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biol Res Nurs 2019; 21:384-399. [PMID: 31113222 DOI: 10.1177/1099800419849109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.
Collapse
Affiliation(s)
| | | | - Xiaomei Cong
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| | - Michelle Judge
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
29
|
Arthur CM, Nalbant D, Feldman HA, Saeedi BJ, Matthews J, Robinson BS, Kamili NA, Bennett A, Cress GA, Sola-Visner M, Jones RM, Zimmerman MB, Neish AS, Patel RM, Nopoulos P, Georgieff MK, Roback JD, Widness JA, Josephson CD, Stowell SR. Anemia induces gut inflammation and injury in an animal model of preterm infants. Transfusion 2019; 59:1233-1245. [PMID: 30897226 DOI: 10.1111/trf.15254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND While very low birth weight (VLBW) infants often require multiple red blood cell transfusions, efforts to minimize transfusion-associated risks have resulted in more restrictive neonatal transfusion practices. However, whether restrictive transfusion strategies limit transfusions without increasing morbidity and mortality in this population remains unclear. Recent epidemiologic studies suggest that severe anemia may be an important risk factor for the development of necrotizing enterocolitis (NEC). However, the mechanism whereby anemia may lead to NEC remains unknown. STUDY DESIGN AND METHODS The potential impact of anemia on neonatal inflammation and intestinal barrier disruption, two well-characterized predisposing features of NEC, was defined by correlation of hemoglobin values to cytokine levels in premature infants and by direct evaluation of intestinal hypoxia, inflammation and gut barrier disruption using a pre-clinical neonatal murine model of phlebotomy-induced anemia (PIA). RESULTS Increasing severity of anemia in the preterm infant correlated with the level of IFN-gamma, a key pro-inflammatory cytokine that may predispose an infant to NEC. Gradual induction of PIA in a pre-clinical model resulted in significant hypoxia throughout the intestinal mucosa, including areas where intestinal macrophages reside. PIA-induced hypoxia significantly increased macrophage pro-inflammatory cytokine levels, while reducing tight junction protein ZO-1 expression and increasing intestinal barrier permeability. Macrophage depletion reversed the impact of anemia on intestinal ZO-1 expression and barrier function. CONCLUSIONS Taken together, these results suggest that anemia can increase intestinal inflammation and barrier disruption likely through altered macrophage function, leading to the type of predisposing intestinal injury that may increase the risk for NEC.
Collapse
Affiliation(s)
- Connie M Arthur
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - Demet Nalbant
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Bejan J Saeedi
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - Jason Matthews
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - Brian S Robinson
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - Nourine A Kamili
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - Ashley Bennett
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | | | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Rheinallt M Jones
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | | | - Andrew S Neish
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - Ravi M Patel
- Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Peggy Nopoulos
- Department of Psychiatry, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael K Georgieff
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - John D Roback
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| | - John A Widness
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Cassandra D Josephson
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia.,Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Sean R Stowell
- Departments of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Atlanta, Georgia
| |
Collapse
|
30
|
Immunotherapeutic advances in gastrointestinal malignancies. NPJ Precis Oncol 2019; 3:4. [PMID: 30729176 PMCID: PMC6363766 DOI: 10.1038/s41698-018-0076-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is an important global issue with increasing incidence and mortality, placing a substantial burden on the healthcare system. Colorectal cancer is the third most common cancer diagnosed among men and women in US. It is estimated that in 2018 there will be 319,160 new diagnosis and 160,820 deaths related to cancer of the digestive system including both genders in the United States alone. Considering limited success of chemotherapy, radiotherapy, and surgery in treatment of these cancer patients, new therapeutic avenues are under constant investigation. Therapy options have consistently moved away from typical cytotoxic chemotherapy where patients with a given type and stage of the disease were treated similarly, to an individualized approach where a tumor is defined by its specific tissue characteristics /epigenetic profile, protein expression and genetic mutations. This review takes a deeper look at the immune-biological aspects of cancers in the gastrointestinal tract (entire digestive tract extending from esophagus/stomach to rectum, including pancreatico-biliary apparatus) and discusses the different treatment modalities that are available or being developed to target the immune system for better disease outcome.
Collapse
|
31
|
Cai M, Ma S, Hu R, Tomberlin JK, Yu C, Huang Y, Zhan S, Li W, Zheng L, Yu Z, Zhang J. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:634-642. [PMID: 30014941 DOI: 10.1016/j.envpol.2018.06.105] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics can effectively protect livestock from pathogen infection, but residual antibiotics in manure bring risks to ecosystems and public health. Here, we demonstrated that black soldier fly larvae (BSFL) could provide an environmentally friendly manure treatment based on their ability to effectively and rapidly degrade tetracycline (TC). Investigation of the biological mechanisms and degradation pathways of TC by BSFL indicated that nearly 97% of TC was degraded within 12 days in a non-sterile BSFL treatment system, which is up to 1.6-fold faster than that achieved by normal composting. Our results showed that rapid TC-degradation was largely carried out by the intestinal microbiota of the larvae, which doubled the TC-degradation rates compared to those achieved in sterile BSFL systems. This conclusion was further supported by highly-efficient TC-biodegradation both in vivo and in vitro by four larval intestinal isolates. Moreover, detailed microbiome analysis indicated that intestinal bacterial and fungal communities were modified along with significantly increased tet gene copy number in the gut, providing the means to tolerate and degrade TC. Through analysis of TC degradation in vitro, four possible biodegradation products, two hydrolysis products and three conceivable inactivation products were identified, which suggested TC degradation reactions including hydrolysis, oxygenation, deamination, demethylation, ring-cleavage, modification, etc. In conclusion, our studies suggested an estimation of the fate of TC antibiotics in manure treatment by BSFL colonized by gut microbes. These results may provide a strategy for accelerating the degradation of antibiotics by adjusting the intestinal microbiota of BSFL.
Collapse
Affiliation(s)
- Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China
| | - Shiteng Ma
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China
| | - Ruiqi Hu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China
| | | | - Chan Yu
- College of Life Science, Hubei University, China
| | - Yongping Huang
- Institute of Plant Physiology & Ecology, SIBS, CAS, China
| | - Shuai Zhan
- Institute of Plant Physiology & Ecology, SIBS, CAS, China
| | - Wu Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, China.
| |
Collapse
|
32
|
Earl DC, Ferrell PB, Leelatian N, Froese JT, Reisman BJ, Irish JM, Bachmann BO. Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat Commun 2018; 9:39. [PMID: 29295987 PMCID: PMC5750220 DOI: 10.1038/s41467-017-02470-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
Discovering bioactive metabolites within a metabolome is challenging because there is generally little foreknowledge of metabolite molecular and cell-targeting activities. Here, single-cell response profiles and primary human tissue comprise a response platform used to discover novel microbial metabolites with cell-type-selective effector properties in untargeted metabolomic inventories. Metabolites display diverse effector mechanisms, including targeting protein synthesis, cell cycle status, DNA damage repair, necrosis, apoptosis, or phosphoprotein signaling. Arrayed metabolites are tested against acute myeloid leukemia patient bone marrow and molecules that specifically targeted blast cells or nonleukemic immune cell subsets within the same tissue biopsy are revealed. Cell-targeting polyketides are identified in extracts from biosynthetically prolific bacteria, including a previously unreported leukemia blast-targeting anthracycline and a polyene macrolactam that alternates between targeting blasts or nonmalignant cells by way of light-triggered photochemical isomerization. High-resolution cell profiling with mass cytometry confirms response mechanisms and is used to validate initial observations.
Collapse
Affiliation(s)
- David C Earl
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN, 37232, USA
| | - Nalin Leelatian
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-2220 Medical Center North, Nashville, TN, 37232, USA
| | - Jordan T Froese
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - Benjamin J Reisman
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-2220 Medical Center North, Nashville, TN, 37232, USA.
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA.
| |
Collapse
|
33
|
Shibata T, Kawabata SI. Pluripotency and a secretion mechanism of Drosophila transglutaminase. J Biochem 2017; 163:165-176. [DOI: 10.1093/jb/mvx059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Toshio Shibata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Shun-ichiro Kawabata
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
34
|
Abstract
BACKGROUND Human intestinal innate myeloid cells can be divided into 3 subsets: HLA-DRCD14 cells, HLA-DRCD103 dendritic cells (DCs), and HLA-DRCD14CD103 cells. CD103 DCs generate Treg cells and Th17 cells in the ileum, but their function in the colon remains largely unknown. This study characterized CD103 DCs in the colon and investigated whether these cells are implicated in the pathogenesis of ulcerative colitis (UC). METHODS Normal intestinal mucosa was obtained from intact sites of patients with colorectal cancer (n = 24). Noninflamed and inflamed colonic tissues were obtained from surgically resected specimens of patients with UC (n = 13). Among LinCD45HLA-DR intestinal lamina propria cells, CD14 cells and CD103 DCs were sorted and analyzed for microRNA expression of cytokines and toll-like receptors by quantitative real-time polymerase chain reaction. In addition, IL-4/IL-5/IL-13/IL-17/IFN-γ production and Foxp3 expression by naive T cells cultured with CD14 cells and CD103 DCs were analyzed. RESULTS CD103 DCs in the normal colon showed lower expression of toll-like receptors and proinflammatory cytokines than CD14 cells. Coculture with naive T cells revealed that CD103 DCs generated Treg cells. CD103 DCs from patients with UC did not generate Treg cells, but they induced IFN-γ-, IL-13-, and IL-17-producing CD4 T cells and showed higher expression of IL6 (P < 0.0001), IL23A (P < 0.05), IL12p35 (P < 0.05), and TNF (P < 0.05). CONCLUSIONS In patients with UC, CD103 DCs show the impaired ability to generate Treg cells, but exhibit a colitogenic function inducing Th1/Th2/Th17 responses. These findings show how human CD103 DCs could contribute to the pathogenesis of UC.
Collapse
|
35
|
Flagellin: a unique microbe-associated molecular pattern and a multi-faceted immunomodulator. Cell Mol Immunol 2017; 14:862-864. [PMID: 28845044 DOI: 10.1038/cmi.2017.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 01/07/2023] Open
|
36
|
Keane TJ, Dziki J, Sobieski E, Smoulder A, Castleton A, Turner N, White LJ, Badylak SF. Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis. J Crohns Colitis 2017; 11:360-368. [PMID: 27543807 DOI: 10.1093/ecco-jcc/jjw149] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Despite advances in therapeutic options, more than half of all patients with ulcerative colitis [UC] do not achieve long-term remission, many require colectomy, and the disease still has a marked negative impact on quality of life. Extracellular matrix [ECM] bioscaffolds facilitate the functional repair of many soft tissues by mechanisms that include mitigation of pro-inflammatory macrophage phenotype and mobilization of endogenous stem/progenitor cells. The aim of the present study was to determine if an ECM hydrogel therapy could influence outcomes in an inducible rodent model of UC. METHODS The dextran sodium sulphate [DSS]-colitis model was used in male Sprague Dawley rats. Animals were treated via enema with an ECM hydrogel and the severity of colitis was determined by clinical and histological criteria. Lamina propria cells were isolated and the production of inflammatory mediators was quantified. Mucosal permeability was assessed in vivo by administering TRITC-dextran and in vitro using transepithelial electrical resistance [TEER]. RESULTS ECM hydrogel therapy accelerated healing and improved outcome. The hydrogel was adhesive to colonic tissue, which allowed for targeted delivery of the therapy, and resulted in a reduction in clinical and histological signs of disease. ECM hydrogel facilitated functional improvement of colonic epithelial barrier function and the resolution of the pro-inflammatory state of tissue macrophages. CONCLUSIONS The present study shows that a non-surgical and non-pharmacological ECM-based therapy can abate DSS-colitis not by immunosuppression but by promoting phenotypic change in local macrophage phenotype and rapid replacement of the colonic mucosal barrier.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Jenna Dziki
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Eric Sobieski
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Adam Smoulder
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Arthur Castleton
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Neill Turner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J White
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Rajagopala SV, Vashee S, Oldfield LM, Suzuki Y, Venter JC, Telenti A, Nelson KE. The Human Microbiome and Cancer. Cancer Prev Res (Phila) 2017; 10:226-234. [PMID: 28096237 DOI: 10.1158/1940-6207.capr-16-0249] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 11/16/2022]
Abstract
Recent scientific advances have significantly contributed to our understanding of the complex connection between the microbiome and cancer. Our bodies are continuously exposed to microbial cells, both resident and transient, as well as their byproducts, including toxic metabolites. Circulation of toxic metabolites may contribute to cancer onset or progression at locations distant from where a particular microbe resides. Moreover, microbes may migrate to other locations in the human body and become associated with tumor development. Several case-control metagenomics studies suggest that dysbiosis in the commensal microbiota is also associated with inflammatory disorders and various cancer types throughout the body. Although the microbiome influences carcinogenesis through mechanisms independent of inflammation and immune system, the most recognizable link is between the microbiome and cancer via the immune system, as the resident microbiota plays an essential role in activating, training, and modulating the host immune response. Immunologic dysregulation is likely to provide mechanistic explanations as to how our microbiome influences cancer development and cancer therapies. In this review, we discuss recent developments in understanding the human gut microbiome's relationship with cancer and the feasibility of developing novel cancer diagnostics based on microbiome profiles. Cancer Prev Res; 10(4); 226-34. ©2017 AACR.
Collapse
Affiliation(s)
| | - Sanjay Vashee
- J. Craig Venter Institute (JCVI), Rockville, Maryland
| | | | - Yo Suzuki
- J. Craig Venter Institute (JCVI), Rockville, Maryland
| | - J Craig Venter
- J. Craig Venter Institute (JCVI), Rockville, Maryland.,Human Longevity, Inc., San Diego, California
| | - Amalio Telenti
- J. Craig Venter Institute (JCVI), Rockville, Maryland.,Human Longevity, Inc., San Diego, California
| | - Karen E Nelson
- J. Craig Venter Institute (JCVI), Rockville, Maryland. .,Human Longevity, Inc., San Diego, California
| |
Collapse
|
38
|
Alhagamhmad MH, Day AS, Lemberg DA, Leach ST. An overview of the bacterial contribution to Crohn disease pathogenesis. J Med Microbiol 2016; 65:1049-1059. [PMID: 27501828 DOI: 10.1099/jmm.0.000331] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Crohn disease (CD) is a chronic inflammatory condition primarily affecting the gastro-intestinal tract and is characterized by reduced bacterial diversity. The exact cause of disease is unknown; however, evidence suggests that several components, including microbiota, may contribute to the underlying pathology and disease development. Perturbation of the host-microbe commensal relationship is considered the main driving force of tissue destruction and pathological changes seen in CD. Several putative bacterial pathogens including species from Mycobacterium, Campylobacter and Helicobacter are postulated in the aetiology of CD. However, to date, no strong evidence supports a single bacterium contributing overall to CD pathogenesis. Alternatively, dysbiosis or bacterial imbalance is more widely accepted as a leading factor in the disrupted host-immune system cross-talk resulting in subsequent intestinal inflammation. Depletion of symbiont microbes including Firmicutes, Bifidobacterium and Clostridia, in conjunction with an increase in pathobiont microbes from Bacteroidetes and Enterobacteria, is a striking feature observed in CD. No single factor has been identified as driving this dysbiosis, although diet, antibiotic exposure and possible early life events in presence of underlying genetic susceptibility may contribute. The aim of this review is to highlight the current accumulating literature on the proposed role of bacteria in the pathogenesis of CD.
Collapse
Affiliation(s)
- Moftah H Alhagamhmad
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Andrew S Day
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Daniel A Lemberg
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, Sydney, NSW, Australia
| | - Steven T Leach
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-Gut-Bone Marrow Axis: Implications for Hypertension and Related Therapeutics. Circ Res 2016; 118:1327-36. [PMID: 27081113 DOI: 10.1161/circresaha.116.307709] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
Hypertension is the most prevalent modifiable risk factor for cardiovascular disease and disorders directly influencing cardiovascular disease morbidity and mortality, such as diabetes mellitus, chronic kidney disease, obstructive sleep apnea, etc. Despite aggressive attempts to influence lifestyle modifications and advances in pharmacotherapeutics, a large percentage of patients still do not achieve recommended blood pressure control worldwide. Thus, we think that mechanism-based novel strategies should be considered to significantly improve control and management of hypertension. The overall objective of this review is to summarize implications of peripheral- and neuroinflammation as well as the autonomic nervous system-bone marrow communication in hematopoietic cell homeostasis and their impact on hypertension pathophysiology. In addition, we discuss the novel and emerging field of intestinal microbiota and roles of gut permeability and dysbiosis in cardiovascular disease and hypertension. Finally, we propose a brain-gut-bone marrow triangular interaction hypothesis and discuss its potential in the development of novel therapies for hypertension.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Seungbum Kim
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville.
| |
Collapse
|
40
|
OKUMURA R, TAKEDA K. Maintenance of gut homeostasis by the mucosal immune system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:423-435. [PMID: 27840390 PMCID: PMC5328791 DOI: 10.2183/pjab.92.423] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammatory bowel diseases (IBD) are represented by ulcerative colitis (UC) and Crohn's disease (CD), both of which involve chronic intestinal inflammation. Recent evidence has indicated that gut immunological homeostasis is maintained by the interaction between host immunity and intestinal microbiota. A variety of innate immune cells promote or suppress T cell differentiation and activation in response to intestinal bacteria or their metabolites. Some commensal bacteria species or bacterial metabolites enhance or repress host immunity by inducing T helper (Th) 17 cells or regulatory T cells. Intestinal epithelial cells between host immune cells and intestinal microbiota contribute to the separation of these populations and modulate host immune responses to intestinal microbiota. Therefore, the imbalance between host immunity and intestinal microbiota caused by host genetic predisposition or abnormal environmental factors promote susceptibility to intestinal inflammation.
Collapse
Affiliation(s)
- Ryu OKUMURA
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi TAKEDA
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Correspondence should be addressed: K. Takeda, Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan (e-mail: )
| |
Collapse
|