1
|
Gouesbet G, Renault D, Derocles SAP, Colinet H. Strong resistance to β-cyfluthrin in a strain of the beetle Alphitobius diaperinus: a de novo transcriptome analysis. INSECT SCIENCE 2025; 32:209-226. [PMID: 38632693 PMCID: PMC11824889 DOI: 10.1111/1744-7917.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
The lesser mealworm, Alphitobius diaperinus, is an invasive tenebrionid beetle and a vector of pathogens. Due to the emergence of insecticide resistance and consequent outbreaks that generate significant phytosanitary and energy costs for poultry farmers, it has become a major insect pest worldwide. To better understand the molecular mechanisms behind this resistance, we studied a strain of A. diaperinus from a poultry house in Brittany that was found to be highly resistant to the β-cyfluthrin. The strain survived β-cyfluthrin exposures corresponding to more than 100 times the recommended dose. We used a comparative de novo RNA-Seq approach to explore genes expression in resistant versus sensitive strains. Our de novo transcriptomic analyses showed that responses to β-cyfluthrin likely involved a whole set of resistance mechanisms. Genes related to detoxification, metabolic resistance, cuticular hydrocarbon biosynthesis and proteolysis were found to be constitutively overexpressed in the resistant compared to the sensitive strain. Follow-up enzymatic assays confirmed that the resistant strain exhibited high basal activities for detoxification enzymes such as cytochrome P450 monooxygenase and glutathione-S-transferase. The in-depth analysis of differentially expressed genes suggests the involvement of complex regulation of signaling pathways. Detailed knowledge of these resistance mechanisms is essential for the establishment of effective pest control.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
| | - David Renault
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05ParisFrance
| | - Stéphane A. P. Derocles
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
| | - Hervé Colinet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
2
|
Yao PH, Mobarak SH, Yang MF, Hu CX. Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation. BMC Genomics 2025; 26:14. [PMID: 39762739 PMCID: PMC11706131 DOI: 10.1186/s12864-024-11185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites. RESULTS A total of 1,995 detoxification-related genes, including cytochrome P450 monooxygenases (CYPs), carboxylesterases (COEs), glutathione S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), and ATP-binding cassette transporters (ABCs), were identified across the genus Spodoptera, including S. littoralis, S. litura, S. picta, S. exigua, and both FAW strains. A higher abundance of phase I detoxification enzymes (CYPs and COEs) and GSTs was observed in Spodoptera species, while FAW strains exhibited fewer detoxification genes, with notable differences in copy numbers between the C and R strains. Analyses at the subfamily level revealed significant variation in gene distribution and expression, particularly within phase I and II detoxification enzymes. Expansions in CYP6AE were detected in the C strain, while contractions in GST-ε, CYP9A, CYP4M, UGT33B, and UGT33F occurred in both strains. In contrast, no substantial variation was observed in phase III ABC enzymes. Functional predictions and protein interaction networks suggest a broader expansion of metabolism-related genes in the R strain compared to the C strain. CONCLUSIONS These findings emphasize the pivotal role of phase I and II detoxification enzymes in host adaptation, providing molecular insights into FAW's capacity for host range expansion, which are crucial for devising targeted and sustainable pest management strategies.
Collapse
Affiliation(s)
- Ping-Hong Yao
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China
| | - Syed Husne Mobarak
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China
| | - Mao-Fa Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China
| | - Chao-Xing Hu
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Nagarjuna Reddy KV, Ramasamy GG, Selvamani SB, Pathak J, Negi N, Thiruvengadam V, Mohan M, Rana DK. Gene expression changes in Maconellicoccus hirsutus in response to sublethal dose of buprofezin. CHEMOSPHERE 2024; 367:143523. [PMID: 39406270 DOI: 10.1016/j.chemosphere.2024.143523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
The pink or hibiscus mealybug, Maconellicoccus hirsutus, is a serious pest of grapes, jute, and mesta, causing severe yield losses in India and other countries. Chemical control remains the foremost choice for farmers to manage this pest. As insecticides break down over time due to biotic and abiotic factors, insects are exposed to varying levels of these exogenous compounds. Several studies have reported that sublethal doses affect insect physiology, but only a few have examined the changes in gene expression at the molecular level. Therefore, the present study was conducted to elucidate the molecular mechanisms in M. hirsutus exposed to sublethal doses of buprofezin 25 SC. Life table analysis revealed increased fecundity in M. hirsutus exposed to the sublethal dose. A total of 1,744 differentially expressed genes were identified between the buprofezin-treated and untreated samples using transcriptome analysis. These genes were primarily associated with ribosomal proteins, proteases, cuticular proteins, and cytoskeletal structures. Ribosomes and phagosomes were the most highly enriched pathways. Interestingly, most of the DEGs were involved in restoring homeostasis rather than detoxification. To validate our RNA-sequencing results, qRT-PCR validation was performed on ten randomly selected genes. Overall, our findings provide valuable insights into intermittent changes in stress-coping genes, apart from detoxification genes.
Collapse
Affiliation(s)
- K V Nagarjuna Reddy
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024; Department of Entomology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India, 492012; School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | | | | | - Jyoti Pathak
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024
| | - Nikita Negi
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024; Department of Entomology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India, 492012
| | | | - Muthugounder Mohan
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024
| | - Dhanendra Kumar Rana
- Department of Entomology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India, 492012
| |
Collapse
|
4
|
Braga LE, Warpechowski LF, Diniz LH, Dallanora A, Reis AC, Farias JR, Bernardi O. Characterizing the differential susceptibility and resistance to insecticides in populations of Chrysodeixis includens and Rachiplusia nu (Lepidoptera: Noctuidae) in Brazil. PEST MANAGEMENT SCIENCE 2024; 80:4853-4862. [PMID: 38801197 DOI: 10.1002/ps.8197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Chrysodeixis includens (Walker) and Rachiplusia nu (Guenée) are major Plusiinae pests of soybean in the Southern Cone region of South America. In recent decades, C. includens was the main defoliator of soybean in Brazil, but from 2021 onwards, R. nu emerged as an important soybean pest in various regions of the country. Here, we characterize the differential susceptibility and resistance to insecticides in these Plusiinae pests from two soybean regions of Brazil. RESULTS Except for spinetoram and chlorfenapyr (comparable lethality against both species) and a Bt-based biopesticide (more lethal for C. includens), the tested insecticides showed higher lethality against R. nu than against C. includens, but populations of the same species, even separated by long distances, presented similar resistance levels. For both species, the 90% lethal concentration (LC90) values of most insecticides were higher than the field-recommended dose. Nevertheless, the field-recommended doses of spinetoram, metaflumizone, emamectin benzoate, cyclaniliprole and chlorfenapyr showed comparable control efficacy against both species, whereas indoxacarb, chlorantraniliprole, flubendiamide, teflubenzuron and chlorfluazuron were more lethal for R. nu, and methoxyfenozide and the Bt-based insecticide were more lethal for C. includens. Thiodicarb, methomyl and lambda-cyhalothrin showed low lethality against both species. CONCLUSIONS Large interspecific differences in the susceptibility to insecticides was found in major Plusiinae pests of soybean in Brazil. Furthermore, variations in susceptibility to insecticides occurred consistently among species and populations, regardless of the collection site and thus despite unequal temporal and spatial exposure to insecticides. These results demonstrate that accurate species identification is essential for effective control of Plusiinae in soybean. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luiz E Braga
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiz F Warpechowski
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Hm Diniz
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Arthur Dallanora
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Alexandre C Reis
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
5
|
Logan RAE, Mäurer JB, Wapler C, Ingham VA. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are associated with insecticide resistance in the major malaria vectors Anopheles gambiae s.l. and Anopheles funestus. Sci Rep 2024; 14:19821. [PMID: 39191827 DOI: 10.1038/s41598-024-70713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.
Collapse
Affiliation(s)
- Rhiannon Agnes Ellis Logan
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Julia Bettina Mäurer
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Charlotte Wapler
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Victoria Anne Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Zolfaghari M, Yin F, Jurat-Fuentes JL, Xiao Y, Peng Z, Wang J, Yang X, Li ZY. Effects of Bacillus thuringiensis Treatment on Expression of Detoxification Genes in Chlorantraniliprole-Resistant Plutella xylostella. INSECTS 2024; 15:595. [PMID: 39194800 DOI: 10.3390/insects15080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Detoxification genes are crucial to insect resistance against chemical pesticides, yet their expression may be altered by exposure to biopesticides such as spores and insecticidal proteins of Bacillus thuringiensis (Bt). Increased enzymatic levels of selected detoxification genes, including glutathione S-transferase (GST), cytochrome P450 (CYP450), and carboxylesterase (CarE), were detected in chlorantraniliprole (CAP)-resistant strains of the diamondback moth (DBM, Plutella xylostella) from China when compared to a reference susceptible strain. These CAP-resistant DBM strains displayed distinct expression patterns of GST 1, CYP6B7, and CarE-6 after treatment with CAP and a Bt pesticide (Bt-G033). In particular, the gene expression analysis demonstrated significant upregulation of the CYP6B7 gene in response to the CAP treatment, while the same gene was downregulated following the Bt-G033 treatment. Downregulation of CYP6B7 using RNAi resulted in increased susceptibility to CAP in resistant DBM strains, suggesting a role of this gene in the resistant phenotype. However, pretreatment with a sublethal dose of Bt-G033 inducing the downregulation of CYP6B7 did not significantly increase CAP potency against the resistant DBM strains. These results identify the DBM genes involved in the metabolic resistance to CAP and demonstrate how their expression is affected by exposure to Bt-G033.
Collapse
Affiliation(s)
- Maryam Zolfaghari
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fei Yin
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yong Xiao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhengke Peng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiale Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiangbing Yang
- Subtropical Horticulture Research Station, USDA-ARS, Miami, FL 33158, USA
| | - Zhen-Yu Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Lee S, Ahn SJ. CRISPR/Cas9-mediated knockout of scarlet gene produces eye color mutants in the soybean looper, Chrysodeixis includens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22100. [PMID: 38500478 DOI: 10.1002/arch.22100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The CRISPR/Cas9 technology has greatly progressed research on non-model organisms, demonstrating successful applications in genome editing for various insects. However, its utilization in the case of the soybean looper, Chrysodeixis includens, a notable pest affecting soybean crops, has not been explored due to constraints such as limited genomic information and the embryonic microinjection technique. This study presents successful outcomes in generating heritable knockout mutants for a pigment transporter gene, scarlet, in C. includens through CRISPR/Cas9-mediated mutagenesis. The scarlet locus identified in the genome assembly of C. includens consists of 14 exons, with a coding sequence extending for 1,986 bp. Two single guide RNAs (sgRNAs) were designed to target the first exon of scarlet. Microinjection of these two sgRNAs along with the Cas9 protein into fresh embryos resulted in the successful production of variable phenotypes, particularly mutant eyes. The observed mutation rate accounted for about 16%. Genotype analysis revealed diverse indel mutations at the target site, presumably originating from double-strand breaks followed by the nonhomologous end joining repair, leading to a premature stop codon due to frame shift. Single-pair mating of the mutant moths produced G1 offspring, and the establishment of a homozygous mutant strain occurred in G2. The mutant moths exhibited lightly greenish or yellowish compound eyes in both sexes, confirming the involvement of scarlet in pigmentation in C. includens. Notably, the CRISPR/Cas9-mediated genome editing technique serves as a visible phenotypic marker, demonstrating its proof-of-concept applicability in C. includens, as other pigment transporter genes have been utilized as visible markers to establish genetic control for various insects. These results provide the first successful case that the CRISPR/Cas9 method effectively induces mutations in C. includes, an economically important soybean insect pest.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
8
|
Isbilir S, Catchot B, Catchot L, Musser FR, Ahn SJ. Molecular characterization and expression patterns of a ryanodine receptor in soybean looper, Chrysodeixis includens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22047. [PMID: 37602813 DOI: 10.1002/arch.22047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diamide insecticides, such as chlorantraniliprole, have been widely used to control insect pests by targeting the insect ryanodine receptor (RyR). Due to the efficacious insecticidal activity of diamides, as well as an increasing number of resistance cases, the molecular structure of RyR has been studied in many economically important insects. However, no research has been conducted on diamide resistance and RyR in the soybean looper, Chrysodeixis includens, a significant crop pest. In this study, we found moderate resistance to chlorantraniliprole in a field population from Puerto Rico and sequenced the full-length cDNA of the C. includens RyR gene, which encodes a 5124 amino acid-long protein. Genomic analysis revealed that the CincRyR gene consists of 113 exons, one of the largest exon numbers reported for RyR. Alternative splicing sites were detected in the cytosolic region. The protein sequence showed high similarity to other noctuid RyRs. Conserved structural features included the selectivity filter motif critical for ryanodine binding and ion conduction, as well as various domains involved in ion transport. Two mutation sites associated with diamide resistance in other insects were screened but not found in the Puerto Rico field populations or in the susceptible lab strain. Gene expression analysis indicated high expression of RyR in the third instar larval stage, particularly in muscle-containing tissues. Furthermore, exposure to a sublethal dose of chlorantraniliprole reduced RyR expression levels after 96 h. This study provides a molecular basis for understanding RyR structure and sheds light on potential mechanisms of diamide resistance in C. includens.
Collapse
Affiliation(s)
- Sena Isbilir
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Beverly Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Lauren Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Fred R Musser
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
9
|
Boff JS, Reis AC, de Oliveira JL, Gross RB, Fraceto LF, Melo AA, Bernardi O. Development and biological evaluation of nanoencapsulated-based pyrethroids with synergists for resistance management of two soybean pests: insights for new insecticide formulations. PEST MANAGEMENT SCIENCE 2023; 79:1204-1212. [PMID: 36412537 DOI: 10.1002/ps.7295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chemical control is commonly used against Euschistus heros (F.) and Chrysodeixis includens (Walker) in soybean fields in South America. However, previous studies reported that these pests have reduced susceptibility to pyrethroids in Brazil. On this basis, we developed and evaluated nanoencapsulated-based bifenthrin (BFT) and λ-cyhalothrin (LAM) with the synergists piperonyl butoxide (PBO) and diethyl maleate (DEM) for insect resistance management (IRM). RESULTS Nanoformulations of BFT and LAM with PBO and DEM presented good physical-chemical characteristics and were stable. The spherical morphology of all systems and the encapsulation efficiency in nanostructured lipid carriers did not change when synergists were added. Nanoencapsulated BFT with DEM applied topically increased the susceptibility of E. heros to BFT by 3.50-fold. Similarly, nanoencapsulated BFT and LAM with PBO in diet-overlay bioassays increased the susceptibility of C. includens to both chemicals by up to 2.16-fold. Nanoencapsulated BFT and LAM with synergists also improve control efficacy of both species, causing higher mortality than commercial products containing these chemistries. CONCLUSIONS It is possible to develop nanoencapsulated-based formulations of BFT and LAM with PBO or DEM, and these nanoformulations have the potential to improve control of E. heros and C. includens with recognized low susceptibility to pyrethroids. This study provides updates for designing new insecticide formulations for IRM. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jéssica S Boff
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Alexandre C Reis
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Renata B Gross
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, SP, Brazil
| | - Adriano A Melo
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
10
|
Fan Q, Liu J, Li Y, Zhang Y. Glutathione S-Transferase May Contribute to the Detoxification of (S)-(-)-Palasonin in Plutella xylostella (L.) via Direct Metabolism. INSECTS 2022; 13:989. [PMID: 36354813 PMCID: PMC9692725 DOI: 10.3390/insects13110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The control of P. xylostella primarily involves chemical insecticides, but overuse has brought about many negative effects. Our previous study reported that (S)-(-)-palasonin (PLN) is a plant-derived active substance with significant insecticidal activity against P. xylostella. However, we noticed a possible cross-resistance between (S)-(-)-palasonin and other insecticides which may be related to metabolic detoxification. In order to further explore the detoxification effect of detoxification enzymes on (S)-(-)-palasonin in P. xylostella, the effects of (S)-(-)-palasonin on enzyme activity and transcription level were determined, and the detoxification and metabolism of GSTs on (S)-(-)-palasonin were studied by in vitro inhibition and metabolism experiments. During this study, GST enzyme activity was significantly increased in P. xylostella after (S)-(-)-palasonin treatment. The expression levels of 19 GSTs genes were significantly increased whereas the expression levels of 1 gene decreased. Furthermore, (S)-(-)-palasonin is shown to be stabilized with GSTs and metabolized GSTs (GSTd1, GSTd2, GSTs1 and GSTs2) in vitro, with the highest metabolic rate of 80.59% for GSTs1. This study advances the beneficial utilization of (S)-(-)-palasonin as a botanical pesticide to control P. xylostella in the field.
Collapse
Affiliation(s)
| | | | - Yifan Li
- Correspondence: (Y.L.); (Y.Z.); Tel.: +86-029-87092190 (Y.Z.)
| | - Yalin Zhang
- Correspondence: (Y.L.); (Y.Z.); Tel.: +86-029-87092190 (Y.Z.)
| |
Collapse
|
11
|
Yang S, Zhang W. Systematic analysis of olfactory protein-protein interactions network of fruitfly, Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21882. [PMID: 35249240 DOI: 10.1002/arch.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Olfaction is one of the physiological traits of insect behavior. Insects have evolved a sophisticated olfactory system and use a combined coding strategy to process general odor. Drosophila melanogaster is a powerful model to reveal the molecular and cellular mechanisms of odor detection. Identifying new olfactory targets through complex interactions will contribute to a better understanding of the functions, interactions, and signaling pathways of olfactory proteins. However, the mechanism of D. melanogaster olfaction is still unclear, and more olfactory proteins are required to be discovered. In this study, we tried to explore essential proteins in the olfactory system of D. melanogaster and conduct protein-protein interactions (PPIs) analysis. We constructed the PPIs network of the olfactory system of D. melanogaster, consisting of 863 proteins and 18,959 interactions. Various methods were used to perform functional enrichment analysis, topological analysis and cluster analysis. Our results confirmed that Class B scavenger receptors (SR-Bs), glutathione S-transferases (GSTs), and UDP-glycosyltransferases (UGTs) play an essential role in olfaction of D. melanogaster. The proteins obtained in this study can be used for subsequent functional identification in D. melanogaster olfactory.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Agriculture, Sun Yat-sen University, Shengzhen, China
| | - WenJun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Dimunová D, Matoušková P, Podlipná R, Boušová I, Skálová L. The role of UDP-glycosyltransferases in xenobiotic-resistance. Drug Metab Rev 2022; 54:282-298. [DOI: 10.1080/03602532.2022.2083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6 - Lysolaje, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Boff JS, Reis AC, Patricia DSG, Pretto VE, Garlet CG, Melo AA, Bernardi O. The Effect of Synergistic Compounds on the Susceptibility of Euschistus heros (Hemiptera: Pentatomidae) and Chrysodeixis includens (Lepidoptera: Noctuidae) to Pyrethroids. ENVIRONMENTAL ENTOMOLOGY 2022; 51:421-429. [PMID: 35137018 DOI: 10.1093/ee/nvac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
The Neotropical brown stink bug, Euschistus heros (F.), and the soybean looper, Chrysodeixis includens (Walker), are key pests of soybean in South America. Low susceptibility to pyrethroids has been reported for both species in Brazil. Here, we evaluate the addition of synergistic compounds piperonyl butoxide (PBO) and diethyl maleate (DEM) to manage E. heros and C. includens with resistance to λ-cyhalothrin and bifenthrin. The LD50 of technical grade and commercial products containing λ-cyhalothrin and bifenthrin decreased against field-collected E. heros exposed to PBO and DEM relative to unexposed insects; synergistic ratios up to 4.75-fold. The mortality also increased when E. heros were exposed to commercial formulations containing λ-cyhalothrin (from 4 to 44%) and bifenthrin (from 44 to 88%) in the presence of synergists. There was also a higher susceptibility of field-collected C. includens to technical grade λ-cyhalothrin when PBO was used; synergistic ratio of 5.50-fold. High lethally of technical grade λ-cyhalothrin was also verified in the presence of PBO, with mortality increasing from 6 to 57%. Our findings indicate the potential utility of synergists in reversing the resistance to λ-cyhalothrin and bifenthrin in E. heros and C. includens and suggest a significant role of metabolic mechanisms underlying the detoxification of both pyrethroids.
Collapse
Affiliation(s)
- Jéssica S Boff
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Alexandre C Reis
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - da S Gubiani Patricia
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Venicius E Pretto
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cínthia G Garlet
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Adriano A Melo
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
14
|
Zhao P, Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura. Int J Biol Macromol 2022; 194:895-902. [PMID: 34843814 DOI: 10.1016/j.ijbiomac.2021.11.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022]
Abstract
Cytochrome P450 monooxygenase (P450 or CYP) plays an important role in the metabolism of insecticides and plant allelochemicals by insects. CYP321B1, a novel Spodoptera litura P450 gene, was identified and characterized. CYP321B1 contains a 1488 bp open reading frame (ORF) that encodes a 495 amino acid protein. In fourth instar larvae, the highest CYP321B1 expression levels were found in the midgut and fat body. In the tannin feeding test, tannin can significantly induce the expression of CYP321B1 in the midgut and fat body of 4th instar larvae. To verify the function of CYP321B1, RNA interference and metabolome analysis were performed. The results showed that silencing CYP321B1 significantly reduced the rate of weight gain under tannin induction. Metabolome analysis showed silencing affected 47 different metabolites, mainly involved in secondary metabolite biosynthesis and amino acid metabolism, including amino acids, lipid fatty acids, organic acids and their derivatives. Henoxyacetic acid and cysteamine are the most highly regulated metabolites, respectively. These findings demonstrate that CYP321B1 plays an important role in tannin detoxification and metabolism. Functional knowledge about metabolite detoxification genes in this major herbivorous insect pest can provide new insights into this biological process and provide new targets for agricultural pest control.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Xue
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Li Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Dongyang Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jichao Ji
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lin Niu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xueke Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Junyu Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
15
|
Dai WT, Li J, Ban LP. Genome-Wide Selective Signature Analysis Revealed Insecticide Resistance Mechanisms in Cydia pomonella. INSECTS 2021; 13:2. [PMID: 35055845 PMCID: PMC8781923 DOI: 10.3390/insects13010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a serious invasive pest of pome fruits. Currently, C. pomonella management mainly relies on the application of insecticides, which have driven the development of resistance in the insect. Understanding the genetic mechanisms of insecticide resistance is of great significance for developing new pest resistance management techniques and formulating effective resistance management strategies. Using existing genome resequencing data, we performed selective sweep analysis by comparing two resistant strains and one susceptible strain of the insect pest and identified seven genes, among which, two (glycine receptor and glutamate receptor) were under strong insecticide selection, suggesting their functional importance in insecticide resistance. We also found that eight genes including CYP6B2, CYP307a1, 5-hydroxytryptamine receptor, cuticle protein, and acetylcholinesterase, are potentially involved in cross-resistance to azinphos-methyl and deltamethrin. Moreover, among several P450s identified as positively selected genes, CYP6B2, CYP4C1, and CYP4d2 showed the highest expression level in larva compared to other stages tested, and CYP6B2 also showed the highest expression level in midgut, supporting the roles they may play in insecticide metabolism. Our results provide several potential genes that can be studied further to advance understanding of complexity of insecticide resistance mechanisms in C. pomonella.
Collapse
Affiliation(s)
| | | | - Li-Ping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (W.-T.D.); (J.L.)
| |
Collapse
|
16
|
Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens. INSECTS 2021; 12:insects12070598. [PMID: 34209276 PMCID: PMC8304518 DOI: 10.3390/insects12070598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Soybean looper (a moth species) is a major pest of soybean plants in the American continent and its larvae need to be kept under economic damage thresholds to guarantee sustainable yields. Soybean looper control relies mostly on the use of insecticides and genetically modified crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Due to the high selection pressure exerted by these control measures, resistance has developed to different insecticides and Bt proteins. Here, we tested the basal sensitivity of a soybean looper laboratory reference strain against two insecticidal proteins and determined the level of expression of potential receptors of these proteins across all (six) larval stages. Furthermore, we identified stable reference genes across all larval stages to normalize gene expression data obtained by quantitative polymerase chain reaction (qPCR). The results presented in this communication are useful to support future studies on insecticide and insecticidal protein resistance in soybean looper. Abstract Soybean looper (SBL), Chrysodeixis includens (Walker), is one of the major lepidopteran pests of soybean in the American continent. SBL control relies mostly on the use of insecticides and genetically modified crops expressing Bacillus thuringiensis (Bt) insecticidal Cry proteins. Due to the high selection pressure exerted by these control measures, resistance has developed to different insecticides and Bt proteins. Nevertheless, studies on the mechanistic background are still scarce. Here, the susceptibility of the laboratory SBL-Benzon strain to the Bt proteins Cry1Ac and Cry1F was determined in diet overlay assays and revealed a greater activity of Cry1Ac than Cry1F, thus confirming results obtained for other sensitive SBL strains. A reference gene study across larval stages with four candidate genes revealed that RPL10 and EF1 were the most stable genes for normalization of gene expression data obtained by RT-qPCR. Finally, the basal expression levels of eight potential Bt protein receptor genes in six larval instars were analyzed, including ATP-binding cassette (ABC) transporters, alkaline phosphatase, aminopeptidases, and cadherin. The results presented here provide fundamental knowledge to support future SBL resistance studies.
Collapse
|