1
|
Chen Z, Luo Z. Management of Insect Pests on Tea Plantations: Safety, Sustainability, and Efficiency. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:359-377. [PMID: 39383439 DOI: 10.1146/annurev-ento-013024-014757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Tea is the second most consumed beverage after water; thus, tea plants are economically important crops in many countries. The frequent application of chemical pesticides over large plantations of tea monoculture has led to pest outbreaks. In recent years, high amounts of highly water-soluble pesticides have been applied because of the proliferation of piercing-sucking insects; however, this method poses health hazards for humans and has negative environmental effects. This review outlines the effects of pesticide applications on the succession of tea pest populations, the risks posed by the use of highly water-soluble pesticides, and the principles of tea pest management. Various pest control techniques, including physical, biological, chemical-ecological, chemical pesticide, and cultural control methods, have been used in the last few decades. We discuss future prospects and challenges for the integrated pest management of tea plantations.
Collapse
Affiliation(s)
- Zongmao Chen
- Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China; ,
| | - Zongxiu Luo
- Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China; ,
| |
Collapse
|
2
|
Liu G, Wang Q, Chen H, Wang Y, Zhou X, Bao D, Wang N, Sun J, Huang F, Yang M, Zhang H, Yan P, Li X, Shi J, Fu J. Plant-derived monoterpene S-linalool and β-ocimene generated by CsLIS and CsOCS-SCZ are key chemical cues for attracting parasitoid wasps for suppressing Ectropis obliqua infestation in Camellia sinensis L. PLANT, CELL & ENVIRONMENT 2024; 47:913-927. [PMID: 38168880 DOI: 10.1111/pce.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Insect-induced plant volatile organic compounds (VOCs) may function as either direct defence molecules to deter insects or indirect defence signals to attract the natural enemies of the invading insects. Tea (Camellia sinensis L.), an important leaf-based beverage crop, is mainly infested by Ectropis obliqua which causes the most serious damage. Here, we report a mechanistic investigation of tea plant-derived VOCs in an indirect defence mechanism against E. obliqua. Parasitoid wasp Parapanteles hyposidrae, a natural enemy of E. obliqua, showed strong electrophysiological response and selection behaviour towards S-linalool and β-ocimene, two monoterpenes with elevated emission from E. obliqua-damaged tea plants. Larvae frass of E. obliqua, which also released S-linalool and β-ocimene, was found to attract both mated female or male Pa. hyposidrae according to gas chromatography-electroantennogram detection and Y-tube olfactometer assays. In a field setting, both S-linalool and β-ocimene were effective in recruiting both female and male Pa. hyposidrae wasps. To understand the molecular mechanism of monoterpenes-mediated indirect defence in tea plants, two novel monoterpene synthase genes, CsLIS and CsOCS-SCZ, involved in the biosynthesis of S-linalool or β-ocimene, respectively, were identified and biochemically characterised. When the expression of these two genes in tea plants was inhibited by antisense oligodeoxynucleotide, both volatile emission and attraction of wasps were reduced. Furthermore, gene expression analysis suggested that the expression of CsLIS and CsOCS-SCZ is regulated by the jasmonic acid signalling pathway in the tea plant.
Collapse
Affiliation(s)
- Guanhua Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Qian Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaogui Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Demeng Bao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Juan Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Fuyin Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Mei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Han Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Peng Yan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jiang Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
3
|
Lun X, Xu X, Zhang Y, Zhang R, Cao Y, Zhang X, Jin M, Zhang Z, Zhao Y. An Antennae-Enriched Odorant-Binding Protein EonuOBP43 Mediate the Behavioral Response of the Tea Green Leafhopper, Empoasca onukii Matsuda to the Host and Nonhost Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20000-20010. [PMID: 38059819 DOI: 10.1021/acs.jafc.3c07144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Olfaction is crucial for Empoasca onukii Matsuda to recognize odors from the host and nonhost plants, and it has been proposed that odorant binding proteins are directly required for odorant discrimination and represent potential targets of interest for pest control. Here, we cloned EonuOBP43 and expressed the recombinant EonuOBP43 protein. Furthermore, competitive fluorescence binding assays with 19 ligands indicated that terpenoids and alkanes showed a relatively higher than for other classes of chemicals. Additionally, ligand docking and site-directed mutagenesis results revealed that seven hydrophobic residues, including Val-86, Met-89, Phe-90, Ile-104, Ile-105, Leu-130, and Val-134, played a key role in the binding of EonuOBP43 to plant volatiles. In olfactometer tests, E. onukii were significantly attracted to α-farnesene and repelled to β-caryophyllene, and dsOBP43 treated adult lost response to α-farnesene and β-caryophyllene. In summary, our results demonstrated that EonuOBP43 may function as a carrier in the process of sensing plant compounds of E. onukii.
Collapse
Affiliation(s)
- Xiaoyue Lun
- Shandong Agricultural University, Tai'an 271018, China
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Yu Zhang
- Shandong Agricultural University, Tai'an 271018, China
| | - Ruirui Zhang
- Shandong Agricultural University, Tai'an 271018, China
| | - Yan Cao
- Shandong Agricultural University, Tai'an 271018, China
| | | | - Meina Jin
- Shandong Agricultural University, Tai'an 271018, China
| | | | - Yunhe Zhao
- Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Ali MY, Naseem T, Holopainen JK, Liu T, Zhang J, Zhang F. Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels. Cells 2023; 12:251. [PMID: 36672186 PMCID: PMC9856403 DOI: 10.3390/cells12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland
| | - Tongxian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| |
Collapse
|
5
|
Zhang L, Zhao M, Aikeremu F, Huang H, You M, Zhao Q. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii. Front Physiol 2023; 13:1068543. [PMID: 36685201 PMCID: PMC9845707 DOI: 10.3389/fphys.2022.1068543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules, which are believed to be involved in insect chemoreception. Here, we investigated three CSPs in perception of volatiles in Empoasca onukii. Expression profiles showed that although EonuCSP4, EonuCSP 6-1 and EonuCSP6-2 were ubiquitously expressed in heads, legs, thoraxes and abdomen, they were all highly expressed in the antennae of E. onukii. Further, fluorescence competitive binding assays revealed that EonuCSP4 and 6-1 had binding affinities for three plant volatiles, suggesting their possible involvement in the chemosensory process. Among them, EonuCSP6-1 showed relatively high binding affinities for benzaldehyde. Behavioral assays revealed that the adults of E. onukii showed a significant preference for two compounds including benzaldehyde. The predicted three-dimensional (3D) structures of these 3 CSP have the typical six α-helices, which form the hydrophobic ligand-binding pocket. We therefore suggest that Eoun6-1 might be involved in the chemoreception of the host-related volatiles for E. onukii. Our data may provide a chance of finding a suitable antagonist of alternative control strategies which block the perception of chemosensory signals in pest, preventing the food- orientation behaviors.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Mingxian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Feiruoran Aikeremu
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huoshui Huang
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| |
Collapse
|
6
|
Restored microRNA-519a enhances the radiosensitivity of non-small cell lung cancer via suppressing EphA2. Gene Ther 2022; 29:588-600. [PMID: 33414521 DOI: 10.1038/s41434-020-00213-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Accumulating evidence has demonstrated that microRNA-519a (miR-519a) acts as the tumor suppressor in various cancers, but little is known regarding its intrinsic regulatory mechanisms in non-small cell lung cancer (NSCLC). Here, we aimed to investigate the role of miR-519a-targeted ephrinA2 receptor (EphA2) in radiosensitivity of NSCLC. MiR-519a and EphA2 expression in NSCLC and paracancerous tissues were detected using RT-qPCR and western blot analysis. A549 cell line was cultured and radiation-resistant cell line A549R was constructed using fractionated X-ray irradiation of these cells at 60 Gy. Colony formation ability and radioresistance of parent strain A549 and resistant strain A549R were detected with restored miR-519a and depleted EphA2. MTT assay was used to measure cell proliferation, flow cytometry was performed for determination of cell cycle distribution and apoptosis. The migration and invasion abilities were assessed by Transwell assay. The target relationship between miR-519a and EphA2 was verified. Results suggested that miR-519a was downregulated and EphA2 was upregulated in NSCLC tissues and cells, and miR-519a targeted EphA2. MiR-519a expression declined, while EphA2 expression elevated in A549R cells versus A549 cells. Upregulated miR-519a and downregulated EphA2 suppressed D0, Dq, survival fraction (SF2) and N-value, arrested cells at G0/G1 phase, advanced the apoptosis and attenuated migration, proliferation, and invasion of A549 and A549R cells. Overexpression of EphA2 reversed the promotion of upregulated miR-519a on radiosensitivity of NSCLC cells. Our results revealed that miR-519a enhances radiosensitivity of NSCLC by inhibiting EphA2 expression. Moreover, miR-519a serves as a target for NSCLC treatment.
Collapse
|
7
|
Cai X, Guo Y, Bian L, Luo Z, Li Z, Xiu C, Fu N, Chen Z. Variation in the ratio of compounds in a plant volatile blend during transmission by wind. Sci Rep 2022; 12:6176. [PMID: 35418592 PMCID: PMC9007946 DOI: 10.1038/s41598-022-09450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
For plant volatiles to mediate interactions in tritrophic systems, they must convey accurate and reliable information to insects. However, it is unknown whether the ratio of compounds in plant volatile blends remains stable during wind transmission. In this study, volatiles released from an odor source were collected at different points in a wind tunnel and analyzed. The variation in the amounts of volatiles collected at different points formed a rough cone shape. The amounts of volatiles collected tended to decrease with increasing distance from the odor source. Principal component analyses showed that the volatile profiles were dissimilar among different collection points. The profiles of volatiles collected nearest the odor source were the most similar to the released odor. Higher wind speed resulted in a clearer spatial distribution of volatile compounds. Thus, variations in the ratios of compounds in odor plumes exist even during transport over short distances.
Collapse
Affiliation(s)
- Xiaoming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Yuhang Guo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zongxiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zhaoqun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Chunli Xiu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Nanxia Fu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zongmao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China.
| |
Collapse
|
8
|
Serrão JE, Plata-Rueda A, Martínez LC, Zanuncio JC. Side-effects of pesticides on non-target insects in agriculture: a mini-review. Naturwissenschaften 2022; 109:17. [PMID: 35138481 DOI: 10.1007/s00114-022-01788-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Climate change mediated by anthropogenic activity induces significant alterations on pest abundance and behavior and a potential increase in the use of agrochemicals for crop protection. Pesticides have been a tool in the control of pests, diseases, and weeds of agricultural systems. However, little attention has been given to their toxic effects on beneficial insect communities that contribute to the maintenance and sustainability of agroecosystems. In addition to pesticide-induced direct mortality, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. This review describes the sublethal effects of pesticides on agriculturally beneficial insects and provides new information about the impacts on the behavior and physiology of these insects. The different types of sublethal effects of pesticides used in agriculture on pollinators, predators, parasitoids, and coprophagous insects were detailed.
Collapse
Affiliation(s)
- José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - Angelica Plata-Rueda
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
9
|
DNA Damage in Liver Cells of the Tilapia Fish Oreochromis mossambicus Larva Induced by the Insecticide Cyantraniliprole at Sublethal Doses During Chronic Exposure. Methods Mol Biol 2021. [PMID: 34097270 DOI: 10.1007/978-1-0716-1514-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cyantraniliprole can effectively control lepidopteran pests and has been used all over the world. In general, the risk of cyantraniliprole seems low for fish, but the toxicity selectivity among different fish species was not clear. Here, we present the methods for the acute toxicity and chronic effects of cyantraniliprole by using juvenile tilapia (Oreochromis mossambicus). Based on this test, 96 h LC50 of cyantraniliprole to tilapia was 38.0 mg/L. After exposed for 28 days, specific growth rates of the blank control, solution control, and the treatments of 0.037, 0.37 and 3.7 mg/L of cyantraniliprole were 1.14, 0.95, 0.93, 0.82, and 0.70% per day, respectively. The results of micronucleus experiment and single cell gel electrophoresis showed that cyantraniliprole damaged DNA in liver cells of tilapia larvae. Quantitative PCR results showed that cyantraniliprole could induce the upregulation of Rpa 3 that is responsible for the DNA repair. The significant downregulation of Chk 2 gene was related to p53 pathway. It is therefore proposed that cyantraniliprole causes DNA damage in liver cells of tilapia and activates DNA damage and repair pathways.
Collapse
|
10
|
Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.
Collapse
|
11
|
Hou BH, Tang H, Li JL, Meng X, Ouyang GC. Susceptibility of Selected Tea Shoots to Oviposition by Empoasca onukii (Hemiptera: Cicadellidae) and Feasibility of Egg Removal with Harvesting. INSECTS 2020; 11:insects11060338. [PMID: 32492822 PMCID: PMC7348997 DOI: 10.3390/insects11060338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022]
Abstract
The Empoasca onukii (Hemiptera: Cicadellidae) female lays its eggs inside the epidermis of the tea plant shoots. This has led to speculation that shoot harvesting could represent a method of egg removal. To verify the validity of this hypothesis, we sought to determine which part of the shoot was used for the oviposition and how the value of the harvested shoot affects the cost of the egg removal. In this study, four tea cultivars were chosen to examine the preferences for the site of oviposition. In addition, a mathematical model was used to describe the correlation between the economic value of the selected shoot and eggs laid within the shoot. Our study revealed that the pest preferred the 3rd and 4th leaf order intervals of the shoot as the oviposition sites, and the oviposition preferences was dependent on the leaf order interval class across all tea cultivars. In addition, a significant negative exponential relationship was found between the economic value of the selected shoot and the percentage of the eggs laid within the shoot, indicating that egg removal through shoot harvesting was limited. The findings of this study could be used to better understand the role of shoot harvesting in egg removal and would provide new insights into the understanding of the incidence of this pest.
Collapse
Affiliation(s)
- Bo-Hua Hou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
- Correspondence: (B.-H.H.); (G.-C.O.); Tel.: +86-20-84199129 (B.-H.H.); +86-20-84199129 (G.-C.O.)
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.T.); (J.-L.L.)
| | - Jian-Long Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.T.); (J.-L.L.)
| | - Xiang Meng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Ge-Cheng Ouyang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
- Correspondence: (B.-H.H.); (G.-C.O.); Tel.: +86-20-84199129 (B.-H.H.); +86-20-84199129 (G.-C.O.)
| |
Collapse
|
12
|
Hung KY, McElfresh JS, Zou Y, Wayadande A, Gerry AC. Identification of Volatiles From Plants Infested With Honeydew-Producing Insects, and Attraction of House Flies (Diptera: Muscidae) to These Volatiles. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:667-676. [PMID: 31837224 DOI: 10.1093/jme/tjz232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 06/10/2023]
Abstract
House flies (Musca domestica L.) are mechanical vectors of food-borne pathogens including Salmonella spp., Escherichia coli O157:H7, and Shigella spp., resulting in increased risk of diarrheal disease in areas where flies are abundant. Movement of house flies into food crops may be increased by the presence of honeydew-producing insects feeding on these crops. Using gas chromatography-electroantennogram detection (GC-EAD) and gas chromatography-mass spectrometry (GC-MS), volatile odors that elicited house fly antennal response were identified from naval orange (Osbeck) (Sapindales: Rutaceae) and Marsh grapefruit (Macfad.) (Sapindales: Rutaceae) leaves infested with whitefly (Hemiptera: Aleyrodidae) and from whole faba (L.) (Fabales: Fabaceae) bean plants infested with aphids (Hemiptera: Aphididae). Volatiles identified included benzaldehyde, butyl hexanoate, β-caryophyllene, Δ3-carene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (Z)-3-hexenyl acetate, myrcene, limonene, linalool, and naphthalene. This was followed by semifield bioassays of volatile blends and individual volatiles to determine house fly attraction to these volatiles. Although fly capture rates in the semifield setting were low, benzaldehyde and (Z)-3-hexenyl acetate were consistently attractive to house flies as individual compounds and as components of volatile blends.
Collapse
Affiliation(s)
- Kim Y Hung
- Coachella Valley Mosquito and Vector Control District, Indio, CA
| | - J Steven McElfresh
- Department of Entomology, University of California at Riverside, Riverside, CA
| | - Yunfan Zou
- Department of Entomology, University of California at Riverside, Riverside, CA
| | - Astri Wayadande
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| | - Alec C Gerry
- Department of Entomology, University of California at Riverside, Riverside, CA
| |
Collapse
|
13
|
Cai X, Luo Z, Meng Z, Liu Y, Chu B, Bian L, Li Z, Xin Z, Chen Z. Primary screening and application of repellent plant volatiles to control tea leafhopper, Empoasca onukii Matsuda. PEST MANAGEMENT SCIENCE 2020; 76:1304-1312. [PMID: 31595641 DOI: 10.1002/ps.5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/31/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The tea leafhopper, Empoasca onukii Matsuda (Hemiptera: Cicadellidae), is a major pest of tea plants in China. Here, we evaluated the repellent properties of eight volatile chemicals alone and in various combinations as tools for the management of this pest in tea gardens. These chemicals were from the Alliaceae and other aromatic plants, and are known to repel various insect species. RESULTS Among the eight volatile compounds, dimethyl disulfide (DMDS), 1,8-cineole and allyl methyl sulfide were significantly repellent towards E. onukii adults. DMDS and 1,8-cineole were mixed to formulate a binary repellent. Under field conditions, spraying and slow-release applications of the mixture significantly decreased the density of E. onukii adults. The repelling effect after spraying was very short, only ∼ 2 days, but the slow-release mixture had a longer term repelling effect on E. onukii adults. High emission of the slow-release mixture, which was achieved by increasing the number of slow-release bottles, had a stronger repellent effect than low emission. Moreover, when the amount emitted was sufficient, the slow-release mixture significantly decreased the number of leafhopper nymphs in a treated tea-plant line, and significantly decreased the number of leafhopper adults and nymphs in a tea-plant line adjacent to the treated area. CONCLUSION This study demonstrates the repellent action of a mixture of DMDS and 1,8-cineole applied by a slow-release method against E. onukii in a tea plantation. This mixture has potential applications in integrated pest management schemes. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zongxiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zhaona Meng
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Yan Liu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Bo Chu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zhaoqun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zhaojun Xin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zongmao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
14
|
McArthur C, Finnerty PB, Schmitt MH, Shuttleworth A, Shrader AM. Plant volatiles are a salient cue for foraging mammals: elephants target preferred plants despite background plant odour. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
He F, Sun S, Tan H, Sun X, Qin C, Ji S, Li X, Zhang J, Jiang X. Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Sci Rep 2019; 9:10328. [PMID: 31316142 PMCID: PMC6637144 DOI: 10.1038/s41598-019-46915-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
Agrotis ipsilon (Lepidoptera: Noctuidae) is a major underground pest that damages many agricultural crops in China and other countries. A diet-incorporation-based bioassay was conducted to evaluate the sublethal effects of the novel anthranilic diamide chlorantraniliprole on the nutritional physiology, enzymatic properties and population parameters of this cutworm. Chlorantraniliprole exhibited signs of active toxicity against third instar larvae of A. ipsilon, and the LC50 was 0.187 μg.g-1 of artificial diet after treatment for 72 h. The development time of the larval, pupal and adult stages was significantly affected after chlorantraniliprole exposure, compared to the control treatment. Relative to the control treatment, chlorantraniliprole decreased pupal and adult emergence rates, fecundity and fertility and increased the proportions of developmental deformities, the adult preoviposition period (APOP) and the total preoviposition period (TPOP). Furthermore, compared to those treated with the control, A. ipsilon larvae treated with low doses of chlorantraniliprole decreased food utilization and nutrient content (protein, lipid, carbohydrate, trehalose), showed lower pupal weights and growth rates. Compared with the control treatment, chlorantraniliprole significantly reduced digestive enzyme activities and observably increased detoxifying and protective enzyme activities and hormone titers. Importantly, these chlorantraniliprole-induced changes affected life table parameters of the cutworm. These results suggest that chlorantraniliprole at low concentrations can impair A. ipsilon development duration, normal food consumption and digestion process, enzymatic properties, hormone levels, fecundity and population levels. Chlorantraniliprole exhibit the potential to be exploited as a control strategy for this cutworm.
Collapse
Affiliation(s)
- Falin He
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shiang Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haili Tan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chao Qin
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shoumin Ji
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiangdong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
16
|
Habitat management as a safe and effective approach for improving yield and quality of tea (Camellia sinensis) leaves. Sci Rep 2019; 9:433. [PMID: 30674986 PMCID: PMC6344551 DOI: 10.1038/s41598-018-36591-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
Tea (Camellia sinensis) leaves are used to make the most widely consumed beverage globally after water. Therefore, the safety and quality of raw tea leaves are important indices for making tea and related products. Habitat management has been widely used as an environmentally friendly method to control pests in agroecosystems. To investigate the impact of habitat management on tea plantation ecosystems, a habitat management approach with intercropping was established. The function of habitat management on pest control was evaluated. Furthermore, metabolome and transcriptome analysis were applied to assay changes in quality-related metabolites. The habitat management approach was found to maintain arthropod biodiversity and develop natural arthropod enemies in the tea plantation. Therefore, the yield of the habitat management-treated tea plantation was increased. Metabolome analysis showed that epigallocatechin-3-gallate, the major catechin in tea leaves, has a significantly increased content in leaves of tea plants under habitat management compared with those in the control tea plantation. The content of L-theanine, the major amino acid in tea leaves, was not significantly changed in tea plants under habitat management. Furthermore, aroma compounds were more abundant in tea leaves from the habitat management-treated tea plantation than those from the chemical pesticide-treated tea plantation. Therefore, habitat management is reported for the first time as a safe and effective approach to improving the yield and quality of tea leaves.
Collapse
|
17
|
Lukaszewicz G, Amé MV, Menone ML. Selection of reference genes for reverse transcription-qPCR analysis in the biomonitor macrophyte Bidens laevis L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:781-792. [PMID: 30150854 PMCID: PMC6103946 DOI: 10.1007/s12298-018-0534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
The RT-qPCR has been the method used to analyze gene expression in plants but its benefits have not been completely exploited in the field of plants ecotoxicology when used as molecular biomarkers. The correct use of RT-qPCR demands to establish a certain number of reference genes (RG) which are expected to be invariable in their expression although it does not always happen. The main goals of this work were to: (1) analyze the stability of six potential RG, (2) establish the optimum number of RG, (3) select the most suitable RG to be applied in Bidens laevis under different test conditions and tissues and (4) confirm its convenience by normalizing the expression of one gene of interest under three different challenges. When all data were pooled together, the geNorm algorithm pointed out beta-actin and beta-tubulin (TUB) as the optimal RG pair while NormFinder algorithm selected nicotinamide adenine dinucleotide dehydrogenase (NADHD) and histone 3 (H3) as possessing the most invariable levels of expression. On the other hand, when data were grouped by tissues, ANOVA test selected H3 and TUB, while data grouped by conditions indicated that H3 and NADHD were the most stable RG under this analysis. Therefore, for a general-purpose set of RG, the overall analysis showed that a set of three RG would be optimum, and H3, TUB and NADHD were the selected ones. On the other hand, as RG can vary depending on the tissues or conditions, results achieved with ANOVA would be more reliable. Thus, appropriate normalization process would clearly need more than one RG.
Collapse
Affiliation(s)
- Germán Lukaszewicz
- Instituto de Investigaciones Marinas y Costeras (IIMyC) UNMDP, CONICET, Mar del Plata, Argentina
- Dto. Bioquímica Clínica—CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - CONICET, Haya de la Torre esq. Medina Allende, 5000 Córdoba, Argentina
| | - María Valeria Amé
- Dto. Bioquímica Clínica—CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - CONICET, Haya de la Torre esq. Medina Allende, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Instituto de Investigaciones Marinas y Costeras (IIMyC) UNMDP, CONICET, Mar del Plata, Argentina
- Dto. Bioquímica Clínica—CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - CONICET, Haya de la Torre esq. Medina Allende, 5000 Córdoba, Argentina
| |
Collapse
|
18
|
Kostromytska OS, Rodriguez-Saona C, Alborn HT, Koppenhöfer AM. Role of Plant Volatiles in Host Plant Recognition by Listronotus maculicollis (Coleoptera: Curculionidae). J Chem Ecol 2018; 44:580-590. [PMID: 29740738 DOI: 10.1007/s10886-018-0964-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Abstract
The annual bluegrass weevil (ABW), Listronotus maculicollis Kirby, is an economically important pest of short cut turfgrass. Annual bluegrass, Poa annua L., is the most preferred and suitable host for ABW oviposition, larval survival and development. We investigated the involvement of grass volatiles in ABW host plant preference under laboratory and field conditions. First, ovipositional and feeding preferences of ABW adults were studied in a sensory deprivation experiment. Clear evidence of involvement of olfaction in host recognition by ABW was demonstrated. Poa annua was preferred for oviposition over three bentgrasses, Agrostis spp., but weevils with blocked antennae did not exhibit significant preferences. ABW behavioral responses to volatiles emitted by Agrostis spp. and P. annua were examined in Y-tube olfactometer assays. Poa annua was attractive to ABW females and preferred to Agrostis spp. cultivars in Y-tube assays. Headspace volatiles emitted by P. annua and four cultivars of Agrostis stolonifera L. and two each of A. capillaris L. and A. canina L. were extracted, identified and compared. No P. annua specific volatiles were found, but Agrostis spp. tended to have larger quantities of terpenoids than P. annua. (Z)-3-hexenyl acetate, phenyl ethyl alcohol and their combination were the most attractive compounds to ABW females in laboratory Y-tube assays. The combination of these compounds as a trap bait in field experiments attracted adults during the spring migration, but was ineffective once the adults were on the short-mown turfgrass. Hence, their usefulness for monitoring weevil populations needs further investigation.
Collapse
Affiliation(s)
- Olga S Kostromytska
- Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ, 08901, USA.
| | - Cesar Rodriguez-Saona
- Department of Entomology, Philip E. Marucci Blueberry and Cranberry Research Center, Rutgers University, 125a Lake Oswego, Chatsworth, NJ, 08019, USA
| | - Hans T Alborn
- USDA, ARS, SEA, CMAVE, 1600-1700 SW 23rd Dr., Gainesville, FL, 32608, USA
| | - Albrecht M Koppenhöfer
- Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ, 08901, USA
| |
Collapse
|