1
|
Edgeloe JM, Starko S, Pessarrodona A, Coleman MA, Batley J, Wernberg T, Wood GV. Strong genetic differentiation and low genetic diversity in a habitat-forming fucoid seaweed (Cystophora racemosa) across 850 km of its range. JOURNAL OF PHYCOLOGY 2025. [PMID: 40318169 DOI: 10.1111/jpy.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Temperate seaweed forests are among the most productive and widespread habitats in coastal waters. However, they are under threat from climate change and other anthropogenic stressors. To effectively conserve and manage these ecosystems under these rising pressures, an understanding of the genetic diversity and structure of habitat-forming seaweeds will be necessary. Australia's Great Southern Reef, a global hotspot of endemic diversity, is home to one of the world's most speciose habitat-forming seaweed genera, Cystophora (order Fucales). Despite severe declines in some species, genomic data on this genus remain limited. We used a reduced representation genomic approach (DaRTSeq) to investigate the genetic diversity and structure of Cystophora racemosa, a dominant canopy-forming species, across ~850 km of its range. Our sequencing captured 4741 high-quality single nucleotide polymorphisms (SNPs), and we distinguished neutral loci from those under natural selection (i.e., outlier loci). We identified strong population structure and high genetic differentiation for both neutral (mean FST = 0.404) and outlier loci (mean FST = 0.901). Across populations, genetic diversity was low (neutral: mean HE = 0.046; outlier: HE = 0.042), with high inferred inbreeding (neutral loci mean FIS = 0.531) and no evidence of isolation-by-distance. Several SNPs (n = 70) were observed to be putatively adaptive, with most (97%) correlated with annual maximum sea surface temperature (SST, °C), indicating local adaptation to this key ocean variable. Our results show that C. racemosa populations have low genetic diversity and high differentiation, both of which may increase the vulnerability of this important foundation species to global change.
Collapse
Affiliation(s)
- Jane M Edgeloe
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Starko
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Melinda A Coleman
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Thomas Wernberg
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Norwegian Institute of Marine Research, His, Norway
| | - Georgina V Wood
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Kim KM, Lizano AMD, Toonen RJ, Ravago‐Gotanco R. Genomic Divergence of Sympatric Lineages Within Stichopus cf. horrens (Echinodermata: Stichopodidae): Insights on Reproductive Isolation Inferred From SNP Markers. Ecol Evol 2025; 15:e71283. [PMID: 40297319 PMCID: PMC12034849 DOI: 10.1002/ece3.71283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/05/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
How reproductive barriers arise in early stages of divergence among broadcast spawning organisms that exist in sympatry remains poorly understood. Reproductively isolated lineages (Clade A and B) of Stichopus cf. horrens were previously reported across the western Pacific, with an additional putative cryptic species detected within the Clade B lineage warranting further examination. The present study further examines the hypothesis that the two mitochondrial lineages (Clade A and Clade B) of Stichopus cf. horrens represent putative cryptic species and whether another cryptic species within the Clade B lineage exists using a reduced representation genomic approach. Using double-digest RAD (ddRAD) sequencing, a total of 9788 single nucleotide polymorphism (SNP) markers were used to examine divergence among Stichopus cf. horrens lineages (n = 82). Individuals grouped into three SNP genotype clusters, broadly concordant with their mitochondrial lineages and microsatellite genotype clusters, with limited gene flow inferred among clusters. Outlier analysis recovered highly divergent SNP loci with significant homology to proteins related to rhodopsin and tachykinin receptor signaling, sperm motility, transmembrane transport, and hormone response. This study confirms the existence of three reproductively isolated genotype clusters within Stichopus cf. horrens and highlights gene regions related to reproduction that may contribute to establishing reproductive barriers between broadcast spawning species at an early stage of divergence.
Collapse
Affiliation(s)
- Kenneth M. Kim
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Marine Science InstituteUniversity of the PhilippinesDiliman Quezon CityPhilippines
| | | | - Robert J. Toonen
- Hawaii Institute of Marine Biology, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaKaneoheHawaiiUSA
| | | |
Collapse
|
3
|
Wang H, Yin Y, Zhang C, Li F, Zhao H, Liu Z, Sun W, Zhou L. An Analysis of the Genetic Diversity, Genetic Structure, and Selection Signal of Beagle Dogs Using SNP Chips. Genes (Basel) 2025; 16:358. [PMID: 40282318 PMCID: PMC12026597 DOI: 10.3390/genes16040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Beagle dogs are widely used in biomedical research, but their genetic diversity and population structure require further investigation. This study aimed to assess genetic diversity, population structure, and selection signals in a foundational Beagle breeding population using genome-wide SNP genotyping. METHODS A total of 459 Beagle dogs (108 males, 351 females) were genotyped using the Canine 50K SNP chip. After quality control, 456 individuals and 31,198 SNPs were retained. Genetic diversity indices, principal component analysis (PCA), identity-by-state (IBS) distance, a genomic relationship matrix (G-matrix), runs of homozygosity (ROH), and Tajima's D selection scans were analyzed. RESULTS The average minor allele frequency was 0.224, observed heterozygosity was 0.303, and expected heterozygosity was 0.305. A total of 2990 ROH segments were detected, with a mean inbreeding coefficient of 0.031. Phylogenetic analysis classified 106 stud dogs into 13 lineages. Selection signal analysis identified TTN (muscle function) and DLA-DRA, DLA-DOA, DLA-DMA (immune regulation) under selection. CONCLUSIONS The Beagle population exhibits high genetic diversity and low inbreeding. To maintain genetic stability and ensure the long-term conservation of genetic resources, structured breeding strategies should be implemented based on lineage classifications.
Collapse
Affiliation(s)
- Haolong Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (W.S.)
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzheng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiping Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (W.S.)
| | - Zhen Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (W.S.)
| | - Weili Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (W.S.)
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (W.S.)
| |
Collapse
|
4
|
Gunundu R, Shimelis H, Tesfamariam SA. Genetic diversity and population structure analyses of tropical maize inbred lines using Single Nucleotide Polymorphism markers. PLoS One 2025; 20:e0315463. [PMID: 39854488 PMCID: PMC11760008 DOI: 10.1371/journal.pone.0315463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Analyses of the genetic distance and composition of inbred lines are a prerequisite for parental selection and to exploit heterosis in plant breeding programs. The study aimed to assess genetic diversity and population structure of a maize germplasm panel comprising 182 founder lines and 866 derived inbred lines using Single Nucleotide Polymorphism (SNP) markers to identify genetically unique lines for hybrid breeding. The founder lines were genotyped with 1201 SNPs, and the derived lines with 1484 SNPs. Moderate genetic variation, with genetic diversity ranging from 0.004 to 0.44 with a mean of 0.25, was recorded for the founder lines, while corresponding values of 0.004 to 0.34 with a mean of 0.13 were recorded for the derived lines. Heterozygosity values ranging from 0.00 to 0.24 and a mean of 0.08 were recorded for both lines. Of the SNP markers used, 82% of the 1201 markers and 84% of the 1484 markers exhibited polymorphism information content ranging from 0.25 to 0.50. Analysis of molecular variance revealed significant genetic differences (P ≤ 0.001) among and within populations in the founder and derived lines. Most detected variations, i.e., 97% and 88.38%, were attributed to within populations in the founder and derived lines, respectively. Population structure analysis identified three distinct subpopulations among founder lines and two among derived lines. Cluster analysis supported the population structure The following genetically distant founder and derived inbred lines were selected: G15NL337 and G15NL312 (Cluster 1), 15ARG152 and RGS-PL44 (Cluster 2), RGS-PL44 and 15ARG149 (Cluster 2), and RGS-PL33 and RGS-PL44 (Cluster 2), respectively. The selected lines are genetically distinct and recommended for marker-assisted hybrid maize breeding to exploit the frequency of beneficial alleles. This study provides valuable insights for maize breeding programs, enabling the exploitation of beneficial alleles and contributing to improved crop yields and food security through hybrid breeding.
Collapse
Affiliation(s)
- Rodreck Gunundu
- African Centre for Crop Improvement (ACCI), College of Agriculture, Engineering and Science (CAES), University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- Seed Co, Rattray Arnold Research Station, Harare, Zimbabwe
| | | | | |
Collapse
|
5
|
Kasule F, Alladassi BME, Aru CJ, Adikini S, Biruma M, Ugen MA, Kakeeto R, Esuma W. Genetic diversity, population structure, and a genome-wide association study of sorghum lines assembled for breeding in Uganda. FRONTIERS IN PLANT SCIENCE 2024; 15:1458179. [PMID: 39435028 PMCID: PMC11492802 DOI: 10.3389/fpls.2024.1458179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024]
Abstract
Sorghum is an important source of food and feed worldwide. Developing sorghum core germplasm collections improves our understanding of the evolution and exploitation of genetic diversity in breeding programs. Despite its significance, the characterization of the genetic diversity of local germplasm pools and the identification of genomic loci underlying the variation of critical agronomic traits in sorghum remains limited in most African countries, including Uganda. In this study, we evaluated a collection of 543 sorghum accessions actively used in Ugandan breeding program across two cropping seasons at NaSARRI, Uganda, under natural field conditions. Phenotypic data analysis revealed significant (p<0.01) variation among accessions for days to 50% flowering, plant height, panicle exsertion, and grain yield, with broad-sense heritability (H²) estimates of 0.54, 0.9, 0.81, and 0.48, respectively, indicating a high genetic variability for these traits. We used a newly developed genomic resource of 7,156 single nucleotide polymorphism (SNP) markers to characterize the genetic diversity and population structure of this collection. On average, the SNP markers exhibited moderately high polymorphic information content (PIC = 0.3) and gene diversity (He = 0.3), while observed heterozygosity (Ho = 0.07) was low, typical for self-pollinating crops like sorghum. Admixture-based models, PCA, and cluster analysis all grouped the accessions into two subpopulations with relatively low genetic differentiation. Genome-wide association study (GWAS) identified candidate genes linked to key agronomic traits using a breeding diversity panel from Uganda. GWAS analysis using three different mixed models identified 12 genomic regions associated with days to flowering, plant height, panicle exsertion, grain yield, and glume coverage. Five core candidate genes were co-localized with these significant SNPs. The SNP markers and candidate genes discovered provide valuable insights into the genetic regulation of key agronomic traits and, upon validation, hold promise for genomics-driven breeding strategies in Uganda.
Collapse
Affiliation(s)
- Faizo Kasule
- Interdepartmental Genetics and Genomics (IGG), Iowa State University, Ames, IA, United States
- Department of Agronomy, Iowa State University, Ames, IA, United States
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | | | - Charles John Aru
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Scovia Adikini
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Moses Biruma
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | | | - Ronald Kakeeto
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Williams Esuma
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| |
Collapse
|
6
|
Baldan S, Sölkner J, Gebre KT, Mészáros G, Crooijmans R, Periasamy K, Pichler R, Manaljav B, Baatar N, Purevdorj M. Genetic characterization of cashmere goat ( Capra hircus) populations in Mongolia. Front Genet 2024; 15:1421529. [PMID: 39355687 PMCID: PMC11442248 DOI: 10.3389/fgene.2024.1421529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 10/03/2024] Open
Abstract
Objective Characterization studies of the phenotypic and genetic diversity of Mongolian goats are limited, despite several goat breeds being registered in the country. This study aimed to evaluate the phenotypic and genetic diversity of 14 cashmere goat populations in Mongolia, consisting largely of identified goat breeds. Methods Body weight, cashmere quality, and coat color were the phenotypic traits considered in this study. A linear model was used to fit body weight and cashmere traits, and least squares means (LSMs) were estimated for the region and location classes. Genetic diversity and structure were assessed using a goat 50K SNP array. Results The studied populations exhibited greater phenotypic diversity at the regional level. A very small overall differentiation index (Fst: 0.017) was revealed by Wright's Fst and a very small overall inbreeding index (F ROH1 :0.019) was revealed based on runs of homozygosity. Genetic clustering of populations by principal components showed large variances for the two goat populations of the Russian admixture (Gobi Gurvan Saikhan and Uuliin Bor), and smaller but differentiated clusters for the remaining populations. Similar results were observed in the admixture analysis, which identified populations with the highest (Govi Gurvan Saikhan and Uuliin Bor) and lowest (Tsagaan Ovoo Khar) exotic admixtures. A genomewide association study (GWAS) of body weight and cashmere traits identified a few significant variants on chromosomes 2, 4, 5, 9, and 15, with the strongest variant for cashmere yield on chromosome 4. The GWAS on coat color yielded nine significant variants, with the strongest variants located on chromosomes 6, 13, and 18 and potential associations with KIT, ASIP, and MC1R genes. These signals were also found in other studies on coat color and patterns in goats. Conclusion Mongolian cashmere goats showed relatively low genetic differentiation and low inbreeding levels, possibly caused by the traditional pastoral livestock management system and the practice of trading breeding bucks across provinces, along with a recent increase in the goat population. Further investigation of cashmere traits using larger samples and alternative methods may help identify the genes or genomic regions underlying cashmere quality in goats.
Collapse
Affiliation(s)
- Sergelen Baldan
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Johann Sölkner
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Kahsa Tadel Gebre
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
- Department of Animal, Rangeland and Wildlife Sciences (ARWS), Enda-Eyesus Campus, Mekelle University, Mekelle, Ethiopia
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Richard Crooijmans
- Wageningen University and Research, Animal Breeding and Genomics, Wageningen, Netherlands
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Vienna, Austria
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Vienna, Austria
| | - Bayarjargal Manaljav
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Narantuya Baatar
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Myagmarsuren Purevdorj
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
7
|
Nguyen TBH, Foulongne-Oriol M, Jany JL, le Floch G, Picot A. New insights into mycotoxin risk management through fungal population genetics and genomics. Crit Rev Microbiol 2024:1-22. [PMID: 39188135 DOI: 10.1080/1040841x.2024.2392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily Aspergillus and Fusarium spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | | | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Gaétan le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| |
Collapse
|
8
|
Muharromah AF, Carvajal TM, Regilme MAF, Watanabe K. Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines. Parasit Vectors 2024; 17:233. [PMID: 38769579 PMCID: PMC11107013 DOI: 10.1186/s13071-024-06300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Thaddeus M Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, 1004, Manila, Philippines
| | - Maria Angenica F Regilme
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan.
| |
Collapse
|
9
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
10
|
Coleman JL, Wyffels JT, Penfold LM, Richardson D, Maddox JD. Development of genetic markers for reproductive management of toucans. Zoo Biol 2023; 42:825-833. [PMID: 37338091 DOI: 10.1002/zoo.21792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Retention of genetic diversity in successive generations is key to successful ex situ programs and will become increasingly important to restore wild populations of threatened animals. When animal genealogy is partly unknown or gaps exist in studbook records, the application of molecular resources facilitates informed breeding. Here, we apply molecular resources to an ex situ breeding population of toucans (Ramphastidae), a bird family zoos commonly maintain. Toucans face population declines from illegal poaching and habitat degradation. We developed novel microsatellite markers using blood samples from 15 Keel-billed Toucans (Ramphastos sulfuratus Lesson 1830). Parentage of two individuals was known a priori, but possible sibship among 13 putative founders-including the parents-was unknown. We compared available avian heterologous and novel microsatellite markers to recover known relationships and reconstruct sibship. Eight of 61 heterologous markers amplified consistently and were polymorphic, but less so than the 18 novel markers. Known sibship (and three sibling pairs whose relatedness was unknown a priori) and paternity-though not maternity except in one case-were well-recovered using both likelihood and pairwise relatedness methods, when incorporating novel but not heterologous markers. Zoo researchers seeking microsatellite primer sets for their breeding toucan populations will likely benefit from our heterologous markers, which can be leveraged both to assess relatedness and select breeding pairs. We recommend that zoo biologists rely on species-specific primers and not optimize heterologous primers for toucan species without molecular resources. We conclude with a brief discussion of modern genotyping methods of interest to zoo researchers.
Collapse
Affiliation(s)
- Jeffrey L Coleman
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Jennifer T Wyffels
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, Delaware, USA
- Ripley's Aquariums, Orlando, Florida, USA
| | - Linda M Penfold
- South-East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA
| | | | - J Dylan Maddox
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| |
Collapse
|
11
|
Jia Y, Liu ML, López-Pujol J, Jia RW, Kou YX, Yue M, Guan TX, Li ZH. The hybridization origin of the Chinese endemic herb genus Notopterygium (Apiaceae): Evidence from population genomics and ecological niche analysis. Mol Phylogenet Evol 2023; 182:107736. [PMID: 36805473 DOI: 10.1016/j.ympev.2023.107736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Hybridization is recognized as a major force in species evolution and biodiversity formation, generally leading to the origin and differentiation of new species. Multiple hybridization events cannot easily be reconstructed, yet they offer the potential to study a number of evolutionary processes. Here, we used nuclear expressed sequence tag-simple sequence repeat and large-scale single nucleotide polymorphism variation data, combined with niche analysis, to investigate the putative independent hybridization events in Notopterygium, a group of perennial herb plants endemic to China. Population genomic analysis indicated that the four studied species are genetically well-delimited and that N. forrestii and N. oviforme have originated by hybridization. According to Approximate Bayesian Computation, the best-fit model involved the formation of N. forrestii from the crossing of N. franchetii and N. incisum, with N. forrestii further backcrossing to N. franchetii to form N. oviforme. The niche analyses indicated that niche divergence [likely triggered by the regional climate changes, particularly the intensification of East Asian winter monsoon, and tectonic movements (affecting both Qinghai-Tibetan Plateau and Qinling Mountains)] may have promoted and maintained the reproductive isolation among hybrid species. N. forrestii shows ecological specialization with respect to their parental species, whereas N. oviforme has completely shifted its niche. These results suggested that the climate and environmental factors together triggered the two-step hybridization of the East Asia herb plants. Our study also emphasizes the power of genome-wide SNPs for investigating suspected cases of hybridization, particularly unravelling old hybridization events.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China; Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, Shaanxi, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona 08038, Catalonia, Spain; Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Rui-Wen Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China; Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, Shaanxi, China
| | - Tian-Xia Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China; Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Life Sciences and Engineering, Hexi University, Zhangye 734000, Gansu, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
12
|
Taheri S, Saedi N, Zerehdaran S, Javadmanesh A. Identification of selection signatures in Capra hircus and Capra aegagrus in Iran. Anim Sci J 2023; 94:e13864. [PMID: 37560768 DOI: 10.1111/asj.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 08/11/2023]
Abstract
Identification of selection signatures may provide a better understanding of domestication process and candidate genes contributing to this process. In this study, two populations of domestic and wild goats from Iran were analyzed to identify selection signatures. RSB, iHS, and XP-EHH statistics were used in order to identify robust selection signatures in the goat genome. Genotype data of domestic and wild goats from the NextGen project was used. The data was related to 18 Capra aegagrus (wild goat) and 20 Capra hircus (domestic goat) from Iran. The iHS method indicated 675 and 441 selection signatures in C. aegagrus and C. hircus, respectively. RSB and XP-EHH methods showed about 370 and 447 selection signatures in C. aegagrus and C. hircus, respectively. These selection signatures were mainly associated with milk production, fleece trait, mammary epithelial cells, reproduction, and immune system.
Collapse
Affiliation(s)
- Sadegh Taheri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Naghmeh Saedi
- Centre for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
14
|
Cohen JI, Ruane LG. Conservation genetics of Phlox hirsuta, a serpentine endemic. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zhang L, Dietrich CH, Xu Y, Yang Z, Chen M, Pham TH, Le CCV, Qiao L, Matsumura M, Qin D. Unraveling the hierarchical genetic structure of tea green leafhopper, Matsumurasca onukii, in East Asia based on SSRs and SNPs. Ecol Evol 2022; 12:e9377. [PMID: 36203634 PMCID: PMC9526121 DOI: 10.1002/ece3.9377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Matsumurasca onukii (Matsuda, R. (1952). Oyo-Kontyu Tokyo, 8(1): 19-21), one of the dominant pests in major tea production areas in Asia, currently is known to occur in Japan, Vietnam, and China, and severely threatens tea production, quality, and international trade. To elucidate the population genetic structure of this species, 1633 single nucleotide polymorphisms (SNPs) and 18 microsatellite markers (SSRs) were used to genotype samples from 27 sites representing 18 geographical populations distributed throughout the known range of the species in East Asia. Analyses of both SNPs and SSRs showed that M. onukii populations in Yunnan exhibit high-genetic differentiation and structure compared with the other populations. The Kagoshima (JJ) and Shizuoka (JS) populations from Japan were separated from populations from China by SNPs, but clustered with populations from Jinhua (JH), Yingde (YD), Guilin (GL), Fuzhou (FZ), Hainan (HQ), Leshan (CT), Chongqing (CY), and Zunyi (ZY) tea plantations in China and the Vietnamese Vinh Phuc (VN) population based on the SSR data. In contrast, CT, CY, ZY, and Shaanxi (SX) populations clustered together based on SNPs, but were separated by SSRs. Both marker datasets identified significant geographic differentiation among the 18 populations. Various environmental and anthropogenic factors, including geographical barriers to migration, human transport of hosts (Camellia sinesis [L.] O. Kuntze) and adaptation of M. onukii to various local climatic zones possibly account for the rapid spread of this pest in Asia. The results demonstrate that SNPs from high-throughput genotyping data can be used to reveal subtle genetic substructure at broad scales in r-strategist insects.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
- Institute of Jiangxi Oil‐Tea Camellia, Jiujiang UniversityJiujiangJiangxiChina
| | - Christopher H. Dietrich
- Illinois Natural History SurveyPrairie Research Institute, University of IllinoisChampaignIllinoisUSA
| | - Ye Xu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
- College of Agriculture, Jiangxi Agricultural UniversityNanchangJiangxiChina
| | - Zhaofu Yang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
| | - Maohua Chen
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
| | - Thai H. Pham
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, VASTHueVietnam
- Graduate School of Science and Technology, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Cuong C. V. Le
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, VASTHueVietnam
| | - Li Qiao
- College of Agronomy, Xinyang Agricultural and Forestry UniversityXinyangHenanChina
| | - Masaya Matsumura
- Institute for Plant Protection, National Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
16
|
Lv W, Yuan Q, Huang W, Sun X, Lv W, Zhou W. Asian Swamp eel Monopterus albus Population Structure and Genetic Diversity in China. Front Genet 2022; 13:898958. [PMID: 35719368 PMCID: PMC9198659 DOI: 10.3389/fgene.2022.898958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
The Asian swamp eel (Monopterus albus) is one of the most widely distributed freshwater fish in China. In this study, we identified the single nucleotide polymorphisms (SNPs) of M. albus from 19 wild populations in China using restriction-site associated DNA sequencing (RAD-seq), and used SNP markers to investigate the swamp eel the genetic diversity and population genetic structure. A total of 8941794 SNPs were identified. Phylogenetic and principal component analysis suggested that the 19 populations were clustered into four groups: The Jiaoling County (JL) and Poyang Lake (PYH)populations in Group Ⅰ; the Chengdu City (CD), Dali City (YN), Eli Village (EL), Dongting Lake (DTH), Huoqiu County (HQ), and Chaohu Lake (CH) populations in Group Ⅱ; the Puyang City (PY), Chongming Island (CM), Tai Lake (TH), Gaoyou Lake (GYH), Weishan Lake (WSH), Haimen City (HM), Hongze Lake (HZH), Baiyangdian Lake (BYD), Dagushan (DGS), and Pinghu City (PH) populations in group Ⅲ; and the Lingshui County (LS) populations in Group Ⅳ. All 19 populations may have evolved from four ancestors. The genetic diversity was relatively high in CM, GYH, and HM; and low in LS, EL, and JL. The LS, and CM populations had the highest and lowest differentiation from the other populations, respectively. These findings provide new insights for germplasm resources protection and artificial breeding of M. albus.
Collapse
Affiliation(s)
- Weiwei Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Quan Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Huang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaolin Sun
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiguang Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
17
|
Arriba M, Ezquieta B. Molecular Diagnosis of Steroid 21-Hydroxylase Deficiency: A Practical Approach. Front Endocrinol (Lausanne) 2022; 13:834549. [PMID: 35422767 PMCID: PMC9001848 DOI: 10.3389/fendo.2022.834549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Adrenal insufficiency in paediatric patients is mostly due to congenital adrenal hyperplasia (CAH), a severe monogenic disease caused by steroid 21-hydroxylase deficiency (21-OHD, encoded by the CYP21A2 gene) in 95% of cases. CYP21A2 genotyping requires careful analyses that guaranty gene-specific PCR, accurate definition of pseudogene-gene chimeras, gene duplications and allele dropout avoidance. A small panel of well-established disease-causing alterations enables a high diagnostic yield in confirming/discarding the disorder not only in symptomatic patients but also in those asymptomatic with borderline/positive results of 17-hydroxyprogesterone. Unfortunately, the complexity of this locus makes it today reluctant to high throughput techniques of massive sequencing. The strong relationship existing between the molecular alterations and the degree of enzymatic deficiency has allowed genetic studies to demonstrate its usefulness in predicting/classifying the clinical form of the disease. Other aspects of interest regarding molecular studies include its independence of physiological variations and analytical interferences, its usefulness in the diagnosis of simple virilizing forms in males and its inherent contribution to the genetic counseling, an aspect of great importance taking into account the high carrier frequency of CAH in the general population. Genetic testing of CYP21A2 constitutes an irreplaceable tool to detect severe alleles not just in family members of classical forms but also in mild late-onset forms of the disease and couples. It is also helpful in areas such as assisted reproduction and preimplantation diagnosis. Molecular diagnosis of 21-OHD under expert knowledge definitely contributes to a better management of the disease in every step of the clinical course.
Collapse
Affiliation(s)
- María Arriba
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Begoña Ezquieta
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| |
Collapse
|
18
|
Rahman M, Hoque A, Roy J. Linkage disequilibrium and population structure in a core collection of Brassica napus (L.). PLoS One 2022; 17:e0250310. [PMID: 35231054 PMCID: PMC8887726 DOI: 10.1371/journal.pone.0250310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Estimation of genetic diversity in rapeseed is important for sustainable breeding program to provide an option for the development of new breeding lines. The objective of this study was to elucidate the patterns of genetic diversity within and among different structural groups, and measure the extent of linkage disequilibrium (LD) of 383 globally distributed rapeseed germplasm using 8,502 single nucleotide polymorphism (SNP) markers. We divided the germplasm collection into five subpopulations (P1 to P5) according to geographic and growth habit-related patterns. All subpopulations showed moderate genetic diversity (average H = 0.22 and I = 0.34). The pairwise Fst comparison revealed a great degree of divergence (Fst > 0.24) between most of the combinations. The rutabaga type showed highest divergence with spring and winter types. Higher divergence was also found between winter and spring types. Admixture model based structure analysis, principal component and neighbor-joining tree analysis placed all subpopulations into three distinct clusters. Admixed genotype constituted 29.24% of total genotypes, while remaining 70.76% belongs to identified clusters. Overall, mean linkage disequilibrium was 0.03 and it decayed to its half maximum within < 45 kb distance for whole genome. The LD decay was slower in C genome (< 93 kb); relative to the A genome (< 21 kb) which was confirmed by availability of larger haplotype blocks in C genome than A genome. The findings regarding LD pattern and population structure will help to utilize the collection as an important resource for association mapping efforts to identify genes useful in crop improvement as well as for selection of parents for hybrid breeding.
Collapse
Affiliation(s)
- Mukhlesur Rahman
- Department of Pant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Ahasanul Hoque
- Department of Pant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jayanta Roy
- Department of Pant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
19
|
Pootakham W, Sonthirod C, Naktang C, Kongkachana W, Sangsrakru D, U‐thoomporn S, Maknual C, Meepol W, Promchoo W, Maprasop P, Phormsin N, Tangphatsornruang S. A chromosome‐scale reference genome assembly of yellow mangrove (
Bruguiera parviflora
) reveals a whole genome duplication event associated with the Rhizophoraceae lineage. Mol Ecol Resour 2022; 22:1939-1953. [DOI: 10.1111/1755-0998.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Wirulda Pootakham
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chutima Sonthirod
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chaiwat Naktang
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Wasitthee Kongkachana
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Duangjai Sangsrakru
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Sonicha U‐thoomporn
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Wijarn Meepol
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Waratthaya Promchoo
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Pasin Maprasop
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Nawin Phormsin
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | | |
Collapse
|
20
|
Population genetic structure and dispersal patterns of a cooperative breeding bird in variable environmental conditions. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Choudhury DR, Kumar R, S VD, Singh K, Singh NK, Singh R. Identification of a Diverse Core Set Panel of Rice From the East Coast Region of India Using SNP Markers. Front Genet 2021; 12:726152. [PMID: 34899828 PMCID: PMC8655924 DOI: 10.3389/fgene.2021.726152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
In India, rice (Oryza sativa L.) is cultivated under a variety of climatic conditions. Due to the fragility of the coastal ecosystem, rice farming in these areas has lagged behind. Salinity coupled with floods has added to this trend. Hence, to prevent genetic erosion, conserving and characterizing the coastal rice, is the need of the hour. This work accessed the genetic variation and population structure among 2,242 rice accessions originating from India’s east coast comprising Andhra Pradesh, Orissa, and Tamil Nadu, using 36 SNP markers, and have generated a core set (247 accessions) as well as a mini-core set (30 accessions) of rice germplasm. All the 36 SNP loci were biallelic and 72 alleles found with average two alleles per locus. The genetic relatedness of the total collection was inferred using the un-rooted neighbor-joining tree, which grouped all the genotypes (2,242) into three major clusters. Two groups were obtained with a core set and three groups obtained with a mini core set. The mean PIC value of total collection was 0.24, and those of the core collection and mini core collection were 0.27 and 0.32, respectively. The mean heterozygosity and gene diversity of the overall collection were 0.07 and 0.29, respectively, and the core set and mini core set revealed 0.12 and 0.34, 0.20 and 0.40 values, respectively, representing 99% of distinctiveness in the core and mini core sets. Population structure analysis showed maximum population at K = 4 for total collection and core collection. Accessions were distributed according to their population structure confirmed by PCoA and AMOVA analysis. The identified small and diverse core set panel will be useful in allele mining for biotic and abiotic traits and managing the genetic diversity of the coastal rice collection. Validation of the 36-plex SNP assay was done by comparing the genetic diversity parameters across two different rice core collections, i.e., east coast and northeast rice collection. The same set of SNP markers was found very effective in deciphering diversity at different genetic parameters in both the collections; hence, these marker sets can be utilized for core development and diversity analysis studies.
Collapse
Affiliation(s)
| | - Ramesh Kumar
- Division of Genomic Resources, NBPGR, New Delhi, India
| | - Vimala Devi S
- Division of Germplasm Conservation, NBPGR, New Delhi, India
| | | | | | - Rakesh Singh
- Division of Genomic Resources, NBPGR, New Delhi, India
| |
Collapse
|
22
|
Voicu AA, Krützen M, Bilgin Sonay T. Short Tandem Repeats as a High-Resolution Marker for Capturing Recent Orangutan Population Evolution. FRONTIERS IN BIOINFORMATICS 2021; 1:695784. [PMID: 36303734 PMCID: PMC9581056 DOI: 10.3389/fbinf.2021.695784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The genus Pongo is ideal to study population genetics adaptation, given its remarkable phenotypic divergence and the highly contrasting environmental conditions it’s been exposed to. Studying its genetic variation bears the promise to reveal a motion picture of these great apes’ evolutionary and adaptive history, and also helps us expand our knowledge of the patterns of adaptation and evolution. In this work, we advance the understanding of the genetic variation among wild orangutans through a genome-wide study of short tandem repeats (STRs). Their elevated mutation rate makes STRs ideal markers for the study of recent evolution within a given population. Current technological and algorithmic advances have rendered their sequencing and discovery more accurate, therefore their potential can be finally leveraged in population genetics studies. To study patterns of population variation within the wild orangutan population, we genotyped the short tandem repeats in a population of 21 individuals spanning four Sumatran and Bornean (sub-) species and eight Southeast Asian regions. We studied the impact of sequencing depth on our ability to genotype STRs and found that the STR copy number changes function as a powerful marker, correctly capturing the demographic history of these populations, even the divergences as recent as 10 Kya. Moreover, gene ontology enrichments for genes close to STR variants are aligned with local adaptations in the two islands. Coupled with more advanced STR-compatible population models, and selection tests, genomic studies based on STRs will be able to reduce the gap caused by the missing heritability for species with recent adaptations.
Collapse
Affiliation(s)
| | - Michael Krützen
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Tugce Bilgin Sonay
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
- *Correspondence: Tugce Bilgin Sonay,
| |
Collapse
|
23
|
Gandra M, Assis J, Martins MR, Abecasis D. Reduced Global Genetic Differentiation of Exploited Marine Fish Species. Mol Biol Evol 2021; 38:1402-1412. [PMID: 33290548 PMCID: PMC8042762 DOI: 10.1093/molbev/msaa299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Knowledge on genetic structure is key to understand species connectivity patterns and to define the spatiotemporal scales over which conservation management plans should be designed and implemented. The distribution of genetic diversity (within and among populations) greatly influences species ability to cope and adapt to environmental changes, ultimately determining their long-term resilience to ecological disturbances. Yet, the drivers shaping connectivity and structure in marine fish populations remain elusive, as are the effects of fishing activities on genetic subdivision. To investigate these questions, we conducted a meta-analysis and compiled genetic differentiation data (FST/ΦST estimates) for more than 170 fish species from over 200 published studies globally distributed. We modeled the effects of multiple life-history traits, distance metrics, and methodological factors on observed population differentiation indices and specifically tested whether any signal arising from different exposure to fishing exploitation could be detected. Although the myriad of variables shaping genetic structure makes it challenging to isolate the influence of single drivers, results showed a significant correlation between commercial importance and genetic structure, with widespread lower population differentiation in commercially exploited species. Moreover, models indicate that variables commonly used as proxy for connectivity, such as larval pelagic duration, might be insufficient, and suggest that deep-sea species may disperse further. Overall, these results contribute to the growing body of knowledge on marine genetic connectivity and suggest a potential effect of commercial fisheries on the homogenization of genetic diversity, highlighting the need for additional research focused on dispersal ecology to ensure long-term sustainability of exploited marine species.
Collapse
Affiliation(s)
- Miguel Gandra
- Centre of Marine Sciences (CCMAR), University of the Algarve, Faro, Portugal
| | - Jorge Assis
- Centre of Marine Sciences (CCMAR), University of the Algarve, Faro, Portugal
| | | | - David Abecasis
- Centre of Marine Sciences (CCMAR), University of the Algarve, Faro, Portugal
| |
Collapse
|
24
|
Kawakatsu K, Yagi M, Harada T, Yamaguchi H, Itoh T, Kumagai M, Itoh R, Numa H, Katayose Y, Kanamori H, Kurita K, Fukuta N. Development of an SSR marker-based genetic linkage map and identification of a QTL associated with flowering time in Eustoma. BREEDING SCIENCE 2021; 71:344-353. [PMID: 34776741 PMCID: PMC8573551 DOI: 10.1270/jsbbs.20100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/14/2021] [Indexed: 06/13/2023]
Abstract
Lisianthus (Eustoma grandiflorum) is an important floricultural crop cultivated worldwide. Despite its commercial importance, few DNA markers are available for molecular genetic research. In this study, we constructed a genetic linkage map and to detect quantitative trait loci (QTLs) for important agronomic traits of lisianthus. To develop simple sequence repeat (SSR) markers, we used 454-pyrosequencing technology to obtain genomic shotgun sequences and subsequently identified 8263 putative SSRs. A total of 3990 primer pairs were designed in silico and 1189 unique primer pairs were extracted through a BLAST search. Amplification was successful for more than 1000 primer pairs, and ultimately 278 SSR markers exhibited polymorphism between the two lisianthus accessions evaluated. Based on these markers, a genetic linkage map was constructed using a breeding population derived from crosses between the two accessions, for which flowering time differed (>140 days when grown under 20°C). We detected one QTL associated with flowering time (phenotypic variance, 27%; LOD value, 3.7). The SSR marker located at this QTL may account for variation in flowering time among accessions (i.e., three accessions whose nodes of the first flower were over 30 had late-flowering alleles of this QTL).
Collapse
Affiliation(s)
- Kyoko Kawakatsu
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Masafumi Yagi
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Taro Harada
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Hiroyasu Yamaguchi
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Takeshi Itoh
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Masahiko Kumagai
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Ryutaro Itoh
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Hisataka Numa
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Yuichi Katayose
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Hiroyuki Kanamori
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Kanako Kurita
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Naoko Fukuta
- National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| |
Collapse
|
25
|
Ogbonna AC, Braatz de Andrade LR, Mueller LA, de Oliveira EJ, Bauchet GJ. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1343-1362. [PMID: 33575821 PMCID: PMC8081687 DOI: 10.1007/s00122-021-03775-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300-4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity [Formula: see text], effective population size estimate [Formula: see text]) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava's center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.
Collapse
Affiliation(s)
- Alex C Ogbonna
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | - Lukas A Mueller
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | | |
Collapse
|
26
|
Ogbonna AC, Braatz de Andrade LR, Mueller LA, de Oliveira EJ, Bauchet GJ. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1343-1362. [PMID: 33575821 DOI: 10.1101/2020.07.13.200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 05/25/2023]
Abstract
Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300-4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity [Formula: see text], effective population size estimate [Formula: see text]) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava's center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.
Collapse
Affiliation(s)
- Alex C Ogbonna
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | - Lukas A Mueller
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | | |
Collapse
|
27
|
Guo W, He S, Liang X, Tian C, Dou Y, Lv L. A high-density genetic linkage map for Chinese perch (Siniperca chuatsi) using 2.3K genotyping-by-sequencing SNPs. Anim Genet 2021; 52:311-320. [PMID: 33598959 DOI: 10.1111/age.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
Chinese perch, Siniperca chuatsi (Basilewsky), is one of the most commercially important cultured fishes in China. In the present study, a high-density genetic linkage map of Chinese perch was constructed by genotyping-by-sequencing technique with an F1 mapping panel containing 190 progenies. A total of 2328 SNPs were assigned to 24 linkage groups (LGs), agreeing with the chromosome haploid number in this species (n = 24). The sex-averaged map covered 97.9% of the Chinese perch genome, with the length of 1694.3 cM and a marker density of 0.7 cM/locus. The number of markers per LG ranged from 57 to 222, with a mean of 97. The length of LGs varied from 43.2 to 108.2 cM, with a mean size of 70.6 cM. The recombination rate of females was 1.5:1, which was higher than that of males. To better understand the distribution pattern of segregation distortion between the two sexes of Chinese perch, the skewed markers were retained and used to reconstruct the sex-specific maps. The 16 segregation distortion regions were identified on 10 LGs of the female map, while 12 segregation distortion regions on eight LGs of the male map. Among these LGs, six LGs matched between the sex-specific maps. This high-density linkage map could provide a solid basis for identifying QTL associated with economically important traits, and for implementing marker-assisted selection breeding of Chinese perch.
Collapse
Affiliation(s)
- Wenjie Guo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shan He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xufang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Dou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Liyuan Lv
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T, Mathew I, Shayanowako A. Population structure and genetic diversity analyses of common bean germplasm collections of East and Southern Africa using morphological traits and high-density SNP markers. PLoS One 2020; 15:e0243238. [PMID: 33338076 PMCID: PMC7748271 DOI: 10.1371/journal.pone.0243238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.
Collapse
Affiliation(s)
- Wilson Nkhata
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rob Melis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rowland Chirwa
- International Centre for Tropical Agriculture, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Tenyson Mzengeza
- Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Isack Mathew
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
29
|
Kadoić Balaško M, Mikac KM, Bažok R, Lemic D. Modern Techniques in Colorado Potato Beetle ( Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. INSECTS 2020; 11:insects11090581. [PMID: 32882790 PMCID: PMC7563253 DOI: 10.3390/insects11090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary The Colorado potato beetle (CPB) is one of the most important potato pest worldwide. It is native to U.S. but during the 20th century it has dispersed through Europe, Asia and western China. It continues to expand in an east and southeast direction. Damages are caused by larvae and adults. Their feeding on potato plant leaves can cause complete defoliation and lead to a large yield loss. After the long period of using only chemical control measures, the emergence of resistance increased and some new and different methods come to the fore. The main focus of this review is on new approaches to the old CPB control problem. We describe the use of Bacillus thuringiensis and RNA interference (RNAi) as possible solutions for the future in CPB management. RNAi has proven successful in controlling many pests and shows great potential for CPB control. Better understanding of the mechanisms that affect efficiency will enable the development of this technology and boost potential of RNAi to become part of integrated plant protection in the future. We described also the possibility of using single nucleotide polymorphisms (SNPs) as a way to go deeper into our understanding of resistance and how it influences genotypes. Abstract Colorado potato beetle, CPB (Leptinotarsa decemlineata Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of Bacillus thuringiensis (Bt) have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with Bt crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.
Collapse
Affiliation(s)
- Martina Kadoić Balaško
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
- Correspondence: ; Tel.: +385-1-239-3654
| | - Katarina M. Mikac
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, Australia;
| | - Renata Bažok
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| | - Darija Lemic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| |
Collapse
|
30
|
Hoque A, Fiedler JD, Rahman M. Genetic diversity analysis of a flax (Linum usitatissimum L.) global collection. BMC Genomics 2020; 21:557. [PMID: 32795254 PMCID: PMC7430851 DOI: 10.1186/s12864-020-06922-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
Background A sustainable breeding program requires a minimum level of germplasm diversity to provide varied options for the selection of new breeding lines. To maximize genetic gain of the North Dakota State University (NDSU) flax breeding program, we aimed to increase the genetic diversity of its parental stocks by incorporating diverse genotypes. For this purpose, we analyzed the genetic diversity, linkage disequilibrium, and population sub-structure of 350 globally-distributed flax genotypes with 6200 SNP markers. Results All the genotypes tested clustered into seven sub-populations (P1 to P7) based on the admixture model and the output of neighbor-joining (NJ) tree analysis and principal coordinate analysis were in line with that of structure analysis. The largest sub-population separation arose from a cluster of NDSU/American genotypes with Turkish and Asian genotypes. All sub-populations showed moderate genetic diversity (average H = 0.22 and I = 0.34). The pairwise Fst comparison revealed a great degree of divergence (Fst > 0.25) between most of the combinations. A whole collection mantel test showed significant positive correlation (r = 0.30 and p < 0.01) between genetic and geographic distances, whereas it was non-significant for all sub-populations except P4 and P5 (r = 0.251, 0.349 respectively and p < 0.05). In the entire collection, the mean linkage disequilibrium was 0.03 and it decayed to its half maximum within < 21 kb distance. Conclusions To maximize genetic gain, hybridization between NDSU stock (P5) and Asian individuals (P6) are potentially the best option as genetic differentiation between them is highest (Fst > 0.50). In contrast, low genetic differentiation between P5 and P2 may enhance the accumulation of favorable alleles for oil and fiber upon crossing to develop dual purpose varieties. As each sub-population consists of many genotypes, a Neighbor-Joining tree and kinship matrix assist to identify distantly related genotypes. These results also inform genotyping decisions for future association mapping studies to ensure the identification of a sufficient number of molecular markers to tag all linkage blocks.
Collapse
Affiliation(s)
- Ahasanul Hoque
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Jason D Fiedler
- Cereal Crops Research, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
31
|
Banla EM, Dzidzienyo DK, Diangar MM, Melomey LD, Offei SK, Tongoona P, Desmae H. Molecular and phenotypic diversity of groundnut ( Arachis hypogaea L.) cultivars in Togo. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1489-1504. [PMID: 32647463 PMCID: PMC7326882 DOI: 10.1007/s12298-020-00837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/22/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Diversity assessment of 94 groundnut accessions from Togo and Senegal, using agro-morphological and SNP markers, revealed high variability for many quantitative traits such as late leaf spot (LLS) incidence, number of pods per plant and yield per plant. For qualitative traits, the Simpson Index showed high diversity for primary seed colour (0.75), stem pigmentation (0.60), and Growth habit (0.59). Principal component analysis underscored quantitative traits such as hundred seed weight, days to maturity, and LLS incidence, as the main traits contributing to the divergence. Correlation and path coefficient analysis showed that the number of pods per plant was the main yield-related trait positively affecting yield (r = 0.95, PC = 0.84; p = 0.01). Overall, 990 SNP markers revealed moderate genetic variability in the genotypes and the percentage of heterozygous genotypes varied from 0 to 50% for all loci. Analysis of molecular variance revealed that only 1.1% of the total molecular variance accounted for geographical contribution to the diversity. Co-analysis of phenotypic and SNP data delineated three clusters harbouring useful alleles and interesting phenotypic features such as LLS resistance, large number of pods per plant and early maturity indicating that differences observed at the phenotypic level are underlined by genotypic differences. The phenotypic and genotypic diversity observed could be exploited for the identification of parents with preferred traits for use in the breeding program. However, the low population structure highlights the necessity to improve groundnut diversity in Togo through introduction from various sources.
Collapse
Affiliation(s)
- Essohouna Modom Banla
- Institut Togolais de Recherche Agronomique (ITRA), Lomé, Togo
- West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Legon, Accra, Ghana
- International Crops Research Institute for the Semi-Arid Tropic (ICRISAT-WCA), BP320, Bamako, Mali
| | - Daniel Kwadjo Dzidzienyo
- West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Legon, Accra, Ghana
| | - Mouhamadou Moussa Diangar
- Institut Sénégalais de Recherches Agricoles (ISRA), ISRA CNRA de Bambey, ISRA/Center of Excellence of CERAAS), BP53, Diourbel, Senegal
| | - Leander Dede Melomey
- West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Legon, Accra, Ghana
| | - Samuel Kwame Offei
- West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Legon, Accra, Ghana
| | - Pangirayi Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana (UG), PMB 30, Legon, Accra, Ghana
| | - Haile Desmae
- International Crops Research Institute for the Semi-Arid Tropic (ICRISAT-WCA), BP320, Bamako, Mali
| |
Collapse
|
32
|
Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 2020; 21:382. [PMID: 32487020 PMCID: PMC7268520 DOI: 10.1186/s12864-020-06783-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Use of genomic tools to characterize wildlife populations has increased in recent years. In the past, genetic characterization has been accomplished with more traditional genetic tools (e.g., microsatellites). The explosion of genomic methods and the subsequent creation of large SNP datasets has led to the promise of increased precision in population genetic parameter estimates and identification of demographically and evolutionarily independent groups, as well as questions about the future usefulness of the more traditional genetic tools. At present, few empirical comparisons of population genetic parameters and clustering analyses performed with microsatellites and SNPs have been conducted. RESULTS Here we used microsatellite and SNP data generated from Gunnison sage-grouse (Centrocercus minimus) samples to evaluate concordance of the results obtained from each dataset for common metrics of genetic diversity (HO, HE, FIS, AR) and differentiation (FST, GST, DJost). Additionally, we evaluated clustering of individuals using putatively neutral (SNPs and microsatellites), putatively adaptive, and a combined dataset of putatively neutral and adaptive loci. We took particular interest in the conservation implications of any differences. Generally, we found high concordance between microsatellites and SNPs for HE, FIS, AR, and all differentiation estimates. Although there was strong correlation between metrics from SNPs and microsatellites, the magnitude of the diversity and differentiation metrics were quite different in some cases. Clustering analyses also showed similar patterns, though SNP data was able to cluster individuals into more distinct groups. Importantly, clustering analyses with SNP data suggest strong demographic independence among the six distinct populations of Gunnison sage-grouse with some indication of evolutionary independence in two or three populations; a finding that was not revealed by microsatellite data. CONCLUSION We demonstrate that SNPs have three main advantages over microsatellites: more precise estimates of population-level diversity, higher power to identify groups in clustering methods, and the ability to consider local adaptation. This study adds to a growing body of work comparing the use of SNPs and microsatellites to evaluate genetic diversity and differentiation for a species of conservation concern with relatively high population structure and using the most common method of obtaining SNP genotypes for non-model organisms.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA.
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80526, USA.
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80526, USA
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| |
Collapse
|
33
|
Matthews AE, Rowan C, Stone C, Kellner K, Seal JN. Development, characterization, and cross-amplification of polymorphic microsatellite markers for North American Trachymyrmex and Mycetomoellerius ants. BMC Res Notes 2020; 13:173. [PMID: 32204727 PMCID: PMC7092486 DOI: 10.1186/s13104-020-05015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Objective The objective of this study is to develop and identify polymorphic microsatellite markers for fungus-gardening (attine) ants in the genus Trachymyrmex sensu lato. These ants are important ecosystem engineers and have been a model group for understanding complex symbiotic systems, but very little is understood about the intraspecific genetic patterns across most North American attine species. These microsatellite markers will help to better study intraspecific population genetic structure, gene flow, mating habits, and phylogeographic patterns in these species and potentially other congeners. Results Using next-generation sequencing techniques, we identified 17 and 12 polymorphic microsatellite markers from T. septentrionalis and Mycetomoellerius (formerly Trachymyrmex) turrifex, respectively, and assessed the genetic diversity of each marker. We also analyzed the cross-amplification success of the T. septentrionalis markers in two other closely related Trachymyrmex species, and identified 10 and 12 polymorphic markers for T. arizonensis and T. pomonae, respectively.
Collapse
Affiliation(s)
- Alix E Matthews
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA
| | - Chase Rowan
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA
| | - Colby Stone
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA
| | - Katrin Kellner
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA
| | - Jon N Seal
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA.
| |
Collapse
|
34
|
Pest Management Challenges and Control Practices in Codling Moth: A Review. INSECTS 2020; 11:insects11010038. [PMID: 31947812 PMCID: PMC7023282 DOI: 10.3390/insects11010038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/29/2023]
Abstract
The codling moth, Cydia pomonella L., is a serious insect pest in pome fruit production worldwide with a preference for apple. The pest is known for having developed resistance to several chemical groups of insecticides, making its control difficult. The control and management of the codling moth is often hindered by a lack of understanding about its biology and ecology, including aspects of its population genetics. This review summarizes the information about the origin and biology of the codling moth, describes the mechanisms of resistance in this pest, and provides an overview of current research of resistant pest populations and genetic research both in Europe and globally. The main focus of this review is on non-pesticide control measures and anti-resistance strategies which help to reduce the number of chemical pesticides used and their residues on food and the local environment. Regular monitoring for insecticide resistance is essential for proactive management to mitigate potential insecticide resistance. Here we describe techniques for the detection of resistant variants and possibilities for monitoring resistance populations. Also, we present our present work on developing new methods to maintain effective control using appropriate integrated resistance management (IRM) strategies for this economically important perennial pest.
Collapse
|
35
|
Wang D, Yao H, Li YH, Xu YJ, Ma XF, Wang HP. Global diversity and genetic landscape of natural populations and hatchery stocks of largemouth bass micropterus salmoides across American and Asian regions. Sci Rep 2019; 9:16697. [PMID: 31723171 PMCID: PMC6853949 DOI: 10.1038/s41598-019-53026-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
Although largemouth bass Micropterus salmoides has shown its extremely economic, ecological, and aquacultural significances throughout the North American and Asian continents, systematic evaluation of genetic variation and structure of wild and cultured populations of the species is yet to be documented. In this study, we investigated the genetic structure of M. salmoides from 20 wild populations and five cultured stocks across the United States and China using eight microsatellite loci, which are standard genetic markers for population genetic analysis. Our major findings are as follows: (1) the result of Fst showed largemouth bass had high genetic differentiation, and the gene flow indicated the genetic exchange among wild populations is difficult; (2) AMOVA showed that 14.05% of the variation was among populations, and 85.95% of the variation was within populations; (3) The majority of largemouth bass populations had a significant heterozygosity excess, which is likely to indicate a previous population bottleneck; (4) Allelic richness was lower among cultured populations than among wild populations; (5) Effective population size in hatcheries could promote high levels of genetic variation among individuals and minimize loss of genetic diversity; China’s largemouth bass originated from northern largemouth bass of USA. The information provides valuable basis for development of appropriate conservation policies for fisheries and aquaculture genetic breeding programs in largemouth bass.
Collapse
Affiliation(s)
- Dan Wang
- Aquatic Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio, USA.,Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China.,College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hong Yao
- Aquatic Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio, USA
| | - Yan-He Li
- Aquatic Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio, USA.,College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yong-Jiang Xu
- Aquatic Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio, USA
| | - Xu-Fa Ma
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Han-Ping Wang
- Aquatic Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio, USA.
| |
Collapse
|
36
|
The conservation genomics of the endangered distylous gypsophile Oreocarya crassipes (Boraginaceae). CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01212-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Pleistocene-dated biogeographic barriers drove divergence within the Australo-Papuan region in a sex-specific manner: an example in a widespread Australian songbird. Heredity (Edinb) 2019; 123:608-621. [PMID: 30874632 PMCID: PMC6972870 DOI: 10.1038/s41437-019-0206-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding how environmental change has shaped species evolution can inform predictions of how future climate change might continue to do so. Research of widespread biological systems spanning multiple climates that have been subject to environmental change can yield generalizable inferences about the neutral and adaptive processes driving lineage divergence during periods of environmental change. We contribute to the growing body of multi-locus phylogeographic studies investigating the effect of Pleistocene climate change on species evolution by focusing on a widespread Australo-Papuan songbird with several mitochondrial lineages that diverged during the Pleistocene, the grey shrike-thrush (Colluricincla harmonica). We employed multi-locus phylogenetic, population genetic and coalescent analyses to (1) assess whether nuclear genetic diversity suggests a history congruent with that based on phenotypically defined subspecies ranges, mitochondrial clade boundaries and putative biogeographical barriers, (2) estimate genetic diversity within and genetic differentiation and gene flow among regional populations and (3) estimate population divergence times. The five currently recognized subspecies of grey shrike-thrush are genetically differentiated in nuclear and mitochondrial genomes, but connected by low levels of gene flow. Divergences among these populations are concordant with recognized historical biogeographical barriers and date to the Pleistocene. Discordance in the order of population divergence events based on mitochondrial and nuclear genomes suggests a history of sex-biased gene flow and/or mitochondrial introgression at secondary contacts. This study demonstrates that climate change can impact sexes with different dispersal biology in different ways. Incongruence between population and mitochondrial trees calls for a genome-wide investigation into dispersal, mitochondrial introgression and mitonuclear evolution.
Collapse
|
38
|
Bouteiller XP, Verdu CF, Aikio E, Bloese P, Dainou K, Delcamp A, De Thier O, Guichoux E, Mengal C, Monty A, Pucheu M, van Loo M, Josée Porté A, Lassois L, Mariette S. A few north Appalachian populations are the source of European black locust. Ecol Evol 2019; 9:2398-2414. [PMID: 30891188 PMCID: PMC6405530 DOI: 10.1002/ece3.4776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, it is crucial to identify the source populations of the introduction. Studies in population genetics were carried out on Robinia pseudoacacia L., a North American tree which is now one of the worst invasive tree species in Europe. We realized large-scale sampling in both the invasive and native ranges: 63 populations were sampled and 818 individuals were genotyped using 113 SNPs. We identified clonal genotypes in each population and analyzed between and within range population structure, and then, we compared genetic diversity between ranges, enlarging the number of SNPs to mitigate the ascertainment bias. First, we demonstrated that European black locust was introduced from just a limited number of populations located in the Appalachian Mountains, which is in agreement with the historical documents briefly reviewed in this study. Within America, population structure reflected the effects of long-term processes, whereas in Europe it was largely impacted by human activities. Second, we showed that there is a genetic bottleneck between the ranges with a decrease in allelic richness and total number of alleles in Europe. Lastly, we found more clonality within European populations. Black locust became invasive in Europe despite being introduced from a reduced part of its native distribution. Our results suggest that human activity, such as breeding programs in Europe and the seed trade throughout the introduced range, had a major role in promoting invasion; therefore, the introduction of the missing American genetic cluster to Europe should be avoided.
Collapse
Affiliation(s)
| | - Cindy Frédérique Verdu
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Emmi Aikio
- Department of Genetics and PhysiologyUniversity of OuluOuluFinland
| | - Paul Bloese
- Department of ForestryMichigan State UniversityEast LansingMichigan
| | - Kasso Dainou
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Olivier De Thier
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Coralie Mengal
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Arnaud Monty
- Forest Management Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Marcela van Loo
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Ludivine Lassois
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | |
Collapse
|
39
|
Zhang L, Wang F, Qiao L, Dietrich CH, Matsumura M, Qin D. Population structure and genetic differentiation of tea green leafhopper, Empoasca (Matsumurasca) onukii, in China based on microsatellite markers. Sci Rep 2019; 9:1202. [PMID: 30718743 PMCID: PMC6361905 DOI: 10.1038/s41598-018-37881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
The tea green leafhopper, Empoasca (Matsumurasca) onukii Matsuda, is one of the dominant pests in major tea production regions of East Asia. Recent morphological studies have revealed variation in the male genitalic structures within and among populations. However, the genetic structure of this pest remains poorly understood. This study explores the genetic diversity and population structure of this pest in nineteen populations from the four main Chinese tea production areas using microsatellite markers, with one Japanese population also examined. The results show low to moderate levels of genetic differentiation with populations grouped into four clusters, i.e. the Jiangbei group, the Southwest group 1, the Southwest group 2 and the South China group. Populations from China have a close phylogenetic relationship but show significant isolation by distance. Lower genetic diversity and genetic differentiation of E. (M.) onukii were found in the Kagoshima population of Japan. Evidence for genetic bottlenecks was detected in the South China and Jiangnan populations. Population expansion was found in the Southwest, Jiangbei and Kagoshima populations. This is the most extensive study of the population genetics of this species and contributes to our understanding of its origin and evolutionary history.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuping Wang
- Yangling Xianglin Agricultural Science & Technology Chemical Company Limited, Yangling, Shaanxi, 712100, China
| | - Li Qiao
- College of Agronomy, Xinyang Agricultural and Forestry University, Xinyang, Henan, 464000, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Masaya Matsumura
- Department of Planning and Coordination, Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
40
|
Luo Z, Brock J, Dyer JM, Kutchan T, Schachtman D, Augustin M, Ge Y, Fahlgren N, Abdel-Haleem H. Genetic Diversity and Population Structure of a Camelina sativa Spring Panel. FRONTIERS IN PLANT SCIENCE 2019; 10:184. [PMID: 30842785 PMCID: PMC6391347 DOI: 10.3389/fpls.2019.00184] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
There is a need to explore renewable alternatives (e.g., biofuels) that can produce energy sources to help reduce the reliance on fossil oils. In addition, the consumption of fossil oils adversely affects the environment and human health via the generation of waste water, greenhouse gases, and waste solids. Camelina sativa, originated from southeastern Europe and southwestern Asia, is being re-embraced as an industrial oilseed crop due to its high seed oil content (36-47%) and high unsaturated fatty acid composition (>90%), which are suitable for jet fuel, biodiesel, high-value lubricants and animal feed. C. sativa's agronomic advantages include short time to maturation, low water and nutrient requirements, adaptability to adverse environmental conditions and resistance to common pests and pathogens. These characteristics make it an ideal crop for sustainable agricultural systems and regions of marginal land. However, the lack of genetic and genomic resources has slowed the enhancement of this emerging oilseed crop and exploration of its full agronomic and breeding potential. Here, a core of 213 spring C. sativa accessions was collected and genotyped. The genotypic data was used to characterize genetic diversity and population structure to infer how natural selection and plant breeding may have affected the formation and differentiation within the C. sativa natural populations, and how the genetic diversity of this species can be used in future breeding efforts. A total of 6,192 high-quality single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing (GBS) technology. The average polymorphism information content (PIC) value of 0.29 indicate moderate genetic diversity for the C. sativa spring panel evaluated in this report. Population structure and principal coordinates analyses (PCoA) based on SNPs revealed two distinct subpopulations. Sub-population 1 (POP1) contains accessions that mainly originated from Germany while the majority of POP2 accessions (>75%) were collected from Eastern Europe. Analysis of molecular variance (AMOVA) identified 4% variance among and 96% variance within subpopulations, indicating a high gene exchange (or low genetic differentiation) between the two subpopulations. These findings provide important information for future allele/gene identification using genome-wide association studies (GWAS) and marker-assisted selection (MAS) to enhance genetic gain in C. sativa breeding programs.
Collapse
Affiliation(s)
- Zinan Luo
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, United States
- *Correspondence: Zinan Luo, Hussein Abdel-Haleem,
| | - Jordan Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - John M. Dyer
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, United States
| | - Toni Kutchan
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Daniel Schachtman
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Megan Augustin
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Yufeng Ge
- Department of Biological and Agricultural Engineering, University of Nebraska, Lincoln, NE, United States
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Hussein Abdel-Haleem
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, United States
- *Correspondence: Zinan Luo, Hussein Abdel-Haleem,
| |
Collapse
|
41
|
Two Decades of Invasive Western Corn Rootworm Population Monitoring in Croatia. INSECTS 2018; 9:insects9040160. [PMID: 30423816 PMCID: PMC6316298 DOI: 10.3390/insects9040160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Western corn rootworm (WCR) is the worst pest of maize in the United States, and since its spread through Europe, WCR is now recognized as the most serious pest affecting maize production. After the beetle's first detection in Serbia in 1992, neighboring countries such as Croatia have established a national monitoring program. For more than two decades WCR adult population abundance and variability was monitored. With traditional density monitoring, more recent genetic monitoring, and the newest morphometric monitoring of WCR populations, Croatia possesses a great deal of knowledge about the beetle's invasion process over time and space. Croatia's position in Europe is unique as no other European nation has demonstrated such a detailed and complete understanding of an invasive insect. The combined use of traditional monitoring (attractant cards), which can be effectively used to predict population abundance, and modern monitoring procedures, such as population genetics and geometric morphometrics, has been effectively used to estimate inter- and intra-population variation. The combined application of traditional and modern monitoring techniques will enable more efficient control and management of WCR across Europe. This review summarizes the research on WCR in Croatia from when it was first detected in 1992 until 2018. An outline of future research needs is provided.
Collapse
|
42
|
Borrell JS, Wang N, Nichols RA, Buggs RJA. Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity (Edinb) 2018; 121:304-318. [PMID: 30111882 PMCID: PMC6134035 DOI: 10.1038/s41437-018-0132-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/09/2022] Open
Abstract
Dwarf birch (Betula nana) has a widespread boreal distribution but has declined significantly in Britain where populations are now highly fragmented. We analyzed the genetic diversity of these fragmented populations using markers that differ in mutation rate: conventional microsatellites markers (PCR-SSRs), RADseq generated transition and transversion SNPs (RAD-SNPs), and microsatellite markers mined from RADseq reads (RAD-SSRs). We estimated the current population sizes by census and indirectly, from the linkage-disequilibrium found in the genetic surveys. The two types of estimate were highly correlated. Overall, we found genetic diversity to be only slightly lower in Britain than across a comparable area in Scandinavia where populations are large and continuous. While the ensemble of British fragments maintain diversity levels close to Scandinavian populations, individually they have drifted apart and lost diversity; particularly the smaller populations. An ABC analysis, based on coalescent models, favors demographic scenarios in which Britain maintained high levels of genetic diversity through post-glacial re-colonization. This diversity has subsequently been partitioned into population fragments that have recently lost diversity at a rate corresponding to the current population-size estimates. We conclude that the British population fragments retain sufficient genetic resources to be the basis of conservation and re-planting programmes. Use of markers with different mutation rates gives us greater confidence and insight than one marker set could have alone, and we suggest that RAD-SSRs are particularly useful as high mutation-rate marker set with a well-specified ascertainment bias, which are widely available yet often neglected in existing RAD datasets.
Collapse
Affiliation(s)
- James S Borrell
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- College of Forestry, Shandong Agricultural University, Tai'an city, 271018, Shandong Province, China
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
43
|
Dotsev AV, Deniskova TE, Okhlopkov IM, Mészáros G, Sölkner J, Reyer H, Wimmers K, Brem G, Zinovieva NA. Genome-wide SNP analysis unveils genetic structure and phylogeographic history of snow sheep ( Ovis nivicola) populations inhabiting the Verkhoyansk Mountains and Momsky Ridge (northeastern Siberia). Ecol Evol 2018; 8:8000-8010. [PMID: 30250679 PMCID: PMC6144981 DOI: 10.1002/ece3.4350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge-Tiksi Bay (TIK, n = 22), Orulgan Ridge (ORU, n = 22), the central part of Verkhoyansk Range (VER, n = 15), Suntar-Khayata Ridge (SKH, n = 13), and Momsky Ridge (MOM, n = 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified K = 2 as the most likely number of ancestral populations. A Neighbor-Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population-TIK, and maximum values were observed in the most southern population-SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.
Collapse
Affiliation(s)
- Arsen V. Dotsev
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| | | | - Gabor Mészáros
- Division of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Johann Sölkner
- Division of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Henry Reyer
- Institute of Genome BiologyLeibniz Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Klaus Wimmers
- Institute of Genome BiologyLeibniz Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
- Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine (VMU)ViennaAustria
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| |
Collapse
|
44
|
Alvarado-Serrano DF, Van Etten ML, Chang SM, Baucom RS. The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed. Heredity (Edinb) 2018; 122:29-40. [PMID: 29967398 DOI: 10.1038/s41437-018-0106-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/20/2023] Open
Abstract
Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.
Collapse
Affiliation(s)
- Diego F Alvarado-Serrano
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA.
| | - Megan L Van Etten
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA
| | - Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Rm 3613; 2502 Miller Plant Sciences, Athens, GA, 30602-7271, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
45
|
Giangregorio P, Norman AJ, Davoli F, Spong G. Testing a new SNP-chip on the Alpine and Apennine brown bear (Ursus arctos) populations using non-invasive samples. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1017-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Thrasher DJ, Butcher BG, Campagna L, Webster MS, Lovette IJ. Double-digest RAD sequencing outperforms microsatellite loci at assigning paternity and estimating relatedness: A proof of concept in a highly promiscuous bird. Mol Ecol Resour 2018; 18:953-965. [PMID: 29455472 DOI: 10.1111/1755-0998.12771] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
Information on genetic relationships among individuals is essential to many studies of the behaviour and ecology of wild organisms. Parentage and relatedness assays based on large numbers of single nucleotide polymorphism (SNP) loci hold substantial advantages over the microsatellite markers traditionally used for these purposes. We present a double-digest restriction site-associated DNA sequencing (ddRAD-seq) analysis pipeline that, as such, simultaneously achieves the SNP discovery and genotyping steps and which is optimized to return a statistically powerful set of SNP markers (typically 150-600 after stringent filtering) from large numbers of individuals (up to 240 per run). We explore the trade-offs inherent in this approach through a set of experiments in a species with a complex social system, the variegated fairy-wren (Malurus lamberti) and further validate it in a phylogenetically broad set of other bird species. Through direct comparisons with a parallel data set from a robust panel of highly variable microsatellite markers, we show that this ddRAD-seq approach results in substantially improved power to discriminate among potential relatives and considerably more precise estimates of relatedness coefficients. The pipeline is designed to be universally applicable to all bird species (and with minor modifications to many other taxa), to be cost- and time-efficient, and to be replicable across independent runs such that genotype data from different study periods can be combined and analysed as field samples are accumulated.
Collapse
Affiliation(s)
- Derrick J Thrasher
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Bronwyn G Butcher
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, NY, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Michael S Webster
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Irby J Lovette
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
47
|
Singh B, Singh N, Mishra S, Tripathi K, Singh BP, Rai V, Singh AK, Singh NK. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex. FRONTIERS IN PLANT SCIENCE 2018; 9:123. [PMID: 29467785 PMCID: PMC5808308 DOI: 10.3389/fpls.2018.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more fundamental grouping based on the ancestry closely related to 'Indica' and 'Aus' groups of rice cultivars. The Pro-Indica population has substantial presence in the Eastern Himalayan Region and Lower Gangetic Plains, whereas 'Pro-Aus' sub-population was predominant in the Upper Gangetic Plains, Western Himalayan Region, Gujarat Plains and Hills, and Western Coastal Plains. In contrast 'Mid-Gangetic' population was largely concentrated in the Mid Gangetic Plains. The information presented here will be useful in the utilization of wild rice resources for varietal improvement.
Collapse
Affiliation(s)
- Balwant Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Shefali Mishra
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kabita Tripathi
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Bikram P. Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ashok K. Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
48
|
Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci Rep 2017; 7:17598. [PMID: 29242627 PMCID: PMC5730610 DOI: 10.1038/s41598-017-16810-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
The widespread adoption of RAD-Seq data in phylogeography means genealogical relationships previously evaluated using relatively few genetic markers can now be addressed with thousands of loci. One challenge, however, is that RAD-Seq generates complete genotypes for only a small subset of loci or individuals. Simulations indicate that loci with missing data can produce biased estimates of key population genetic parameters, although the influence of such biases in empirical studies is not well understood. Here we compare microsatellite data (8 loci) and RAD-Seq data (six datasets ranging from 239 to 25,198 loci) from red mangroves (Rhizophora mangle) in Florida to evaluate how different levels of data filtering influence phylogeographic inferences. For all datasets, we calculated population genetic statistics and evaluated population structure, and for RAD-Seq datasets, we additionally examined population structure using coalescence. We found higher FST using microsatellites, but that RAD-Seq-based estimates approached those based on microsatellites as more loci with more missing data were included. Analyses of RAD-Seq datasets resolved the classic Gulf-Atlantic coastal phylogeographic break, which was not significant in the microsatellite analyses. Applying multiple levels of filtering to RAD-Seq datasets can provide a more complete picture of potential biases in the data and elucidate subtle phylogeographic patterns.
Collapse
|
49
|
Lombaert E, Ciosi M, Miller NJ, Sappington TW, Blin A, Guillemaud T. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1566-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Tsykun T, Rellstab C, Dutech C, Sipos G, Prospero S. Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity (Edinb) 2017; 119:371-380. [PMID: 28813039 DOI: 10.1038/hdy.2017.48] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
During the last years, simple sequence repeats (SSRs, also known as microsatellites) and single-nucleotide polymorphisms (SNPs) have become the most popular molecular markers for describing neutral genetic variation in populations of a wide range of organisms. However, only a limited number of studies has focused on comparing the performance of these two types of markers for describing the underlying genetic structure of wild populations. Moreover, none of these studies targeted fungi, the group of organisms with one of the most complex reproductive strategies. We evaluated the utility of SSRs and SNPs for inferring the neutral genetic structure of Armillaria cepistipes (basidiomycetes) at different spatial scales. For that, 407 samples were collected across a small (150 km2) area in the Ukrainian Carpathians and a large (41 000 km2) area in the Swiss Alps. All isolates were analyzed at 17 SSR loci distributed throughout the whole genome and at 24 SNP loci located in different single-copy conserved genes. The two markers showed different patterns of structure within the two spatial scales studied. The multi-allelic SSR markers seemed to be best suited for detecting genetic structure in indigenous fungal populations at a rather small spatial scale (radius of ~50-100 km). The pattern observed at SNP markers rather reflected ancient divergence of distant (~1000 km) populations that in addition are separated by mountain ranges. Despite these differences, both marker types were suitable for detecting the weak genetic structure of the two A. cepistipes populations investigated.
Collapse
Affiliation(s)
- T Tsykun
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - C Rellstab
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - C Dutech
- UMR Biodiversité, Gènes et Ecosystèmes, INRA, University of Bordeaux, Cestas, France
| | - G Sipos
- Research Center for Forestry and Wood Science, University of West Hungary, Sopron, Hungary
| | - S Prospero
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|