1
|
Chaumeau V, Sawasdichai S, Min TZMMM, Kularbkeeree T, Jaruwan N, Gloria N, Lee NY, Trackoolchengkaew M, Phanaphadungtham M, Rongthong P, Inta A, Watthanaworawit W, Nosten F. Identification of Southeast Asian Anopheles mosquito species with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a cross-correlation approach. Parasit Vectors 2025; 18:8. [PMID: 39819789 PMCID: PMC11737280 DOI: 10.1186/s13071-024-06655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is proposed for mosquito species identification. The absence of public repositories sharing mass spectra and open-source data analysis pipelines for fingerprint matching to mosquito species limits the widespread use of this technology. The objective of this study was to develop a free open-source data analysis pipeline for Anopheles species identification with MALDI-TOF MS. METHODS Anopheles mosquitoes were captured in 33 villages in Karen (Kayin) state in Myanmar. A subset of 403 specimens was selected for inclusion in either the reference or the test panel (270 and 133 specimens, respectively). Three hundred fifty-nine specimens could be identified with DNA barcodes and were assigned to 21 sensu stricto species and five sibling species pairs or complexes. A total of 3584 mass spectra of the head of these specimens identified with DNA barcoding were acquired and the similarity between mass spectra was quantified using a cross-correlation approach adapted from the published literature. A reference mass spectra database was created using all spectra of the PCR-identified specimens assigned to the reference panel. A simulation experiment was carried out by querying the reference database with the spectra of the test panel to evaluate the performance of species identification with MALDI-TOF MS at varying thresholds of the cross-correlation index for the algorithm to output an identification result and with varying numbers of technical replicates for the tested specimens, considering PCR identification results as the reference. RESULTS With one spot and a threshold value of -14 for the cross-correlation index on the log scale, the sensitivity was 0.99 [95% credible interval (CrI): 0.98-1.00], the predictive positive value was 0.99 (95% CrI: 0.98-0.99), and the accuracy was 0.98 (95% CrI: 0.97-0.99). It was not possible to directly estimate the sensitivity and negative predictive value because there was no true negative (i.e., queries of species not referenced in the database) in the assessment. CONCLUSIONS The cross-correlation approach can be used to match mass spectral fingerprints to predefined taxa. MALDI-TOF MS is a valuable tool for rapid, accurate, and affordable identification of Anopheles species.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Thu Zar Ma Ma Moe Min
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Thithiwarada Kularbkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Naw Jaruwan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Naw Gloria
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Naw Yu Lee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Muesuwa Trackoolchengkaew
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Monticha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Patcharamai Rongthong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Aritsara Inta
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Zhang C, Luo C, Yang R, Yang Y, Guo X, Deng Y, Zhou H, Zhang Y. Morphological and molecular identification reveals a high diversity of Anopheles species in the forest region of the Cambodia-Laos border. Parasit Vectors 2022; 15:94. [PMID: 35303948 PMCID: PMC8933986 DOI: 10.1186/s13071-022-05167-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background To develop an effective malaria vector intervention method in forested international border regions within the Greater Mekong Subregion (GMS), more in-depth studies should be conducted on local Anopheles species composition and bionomic features. There is a paucity of comprehensive surveys of biodiversity integrating morphological and molecular species identification conducted within the border of Laos and Cambodia. Methods A total of 2394 adult mosquitoes were trapped in the Cambodia–Laos border region. We first performed morphological identification of Anopheles mosquitoes and subsequently performed molecular identification using 412 recombinant DNA–internal transcribed spacer 2 (rDNA-ITS2) and 391 mitochondrial DNA–cytochrome c oxidase subunit 2 (mtDNA-COII) sequences. The molecular and morphological identification results were compared, and phylogenetic analysis of rDNA-ITS2 and mtDNA-COII was conducted for the sequence divergence among species. Results Thirteen distinct species of Anopheles were molecularly identified in a 26,415 km2 border region in Siem Pang (Cambodia) and Pathoomphone (Laos). According to the comparisons of morphological and molecular identity, the interpretation of local species composition for dominant species in the Cambodia–Laos border (An. dirus, An. maculatus, An. philippinensis, An. kochi and An. sinensis) achieved the highest accuracy of morphological identification, from 98.37 to 100%. In contrast, the other species which were molecularly identified were less frequently identified correctly (0–58.3%) by morphological methods. The average rDNA-ITS2 and mtDNA-COII interspecific divergence was respectively 318 times and 15 times higher than their average intraspecific divergence. The barcoding gap ranged from 0.042 to 0.193 for rDNA-ITS2, and from 0.033 to 0.047 for mtDNA-COII. Conclusions The Cambodia–Laos border hosts a high diversity of Anopheles species. The morphological identification of Anopheles species provides higher accuracy for dominant species than for other species. Molecular methods combined with morphological analysis to determine species composition, population dynamics and bionomic characteristics can facilitate a better understanding of the factors driving malaria transmission and the effects of interventions, and can aid in achieving the goal of eliminating malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05167-0.
Collapse
Affiliation(s)
- Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Chunhai Luo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Yaming Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China.
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhang C, Yang R, Wu L, Luo C, Guo X, Deng Y, Zhou H, Zhang Y. Molecular phylogeny of the Anopheles hyrcanus group (Diptera: Culicidae) based on rDNA-ITS2 and mtDNA-COII. Parasit Vectors 2021; 14:454. [PMID: 34488860 PMCID: PMC8420049 DOI: 10.1186/s13071-021-04971-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Anopheles hyrcanus group, which includes 25 species, is widely distributed in the Oriental and Palaearctic regions. Given the difficulty in identifying cryptic or sibling species based on their morphological characteristics, molecular identification is regarded as an important complementary approach to traditional morphological taxonomy. The aim of this study was to reconstruct the phylogeny of the Hyrcanus group using DNA barcoding markers in order to determine the phylogenetic correlations of closely related taxa and to compare these markers in terms of identification efficiency and genetic divergence among species. METHODS Based on data extracted from the GenBank database and data from the present study, we used 399 rDNA-ITS2 sequences of 19 species and 392 mtDNA-COII sequences of 14 species to reconstruct the molecular phylogeny of the Hyrcanus group across its worldwide range. We also compared the performance of rDNA-ITS2 against that of mtDNA-COII to assess the genetic divergence of closely related species within the Hyrcanus group. RESULTS Average interspecific divergence for the rDNA-ITS2 sequence (0.376) was 125-fold higher than the average intraspecies divergence (0.003), and average interspecific divergence for the mtDNA-COII sequence (0.055) was eightfold higher than the average intraspecies divergence (0.007). The barcoding gap ranged from 0.015 to 0.073 for rDNA-ITS2, and from 0.017 to 0.025 for mtDNA-COII. Two sets of closely related species, namely, Anophels lesteri and An. paraliae, and An. sinensis, An. belenrae and An. kleini, were resolved by rDNA-ITS2. In contrast, the relationship of An. sinensis/An. belenrae/An. kleini was poorly defined in the COII tree. The neutrality test and mismatch distribution revealed that An. peditaeniatus, An. hyrcanus, An. sinensis and An. lesteri were likely to undergo hitchhiking or population expansion in accordance with both markers. In addition, the population of an important vivax malaria vector, An. sinensis, has experienced an expansion after a bottleneck in northern and southern Laos. CONCLUSIONS The topology of the Hyrcanus group rDNA-ITS2 and mtDNA-COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA-ITS2 is considered to be a more reliable diagnostic tool than mtDNA-COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance.
Collapse
Affiliation(s)
- Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Linbo Wu
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Chunhai Luo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
4
|
Systematic studies of Anopheles (Cellia) kochi (Diptera: Culicidae): Morphology, cytogenetics, cross-mating experiments, molecular evidence and susceptibility level to infection with nocturnally subperiodic Brugia malayi. Acta Trop 2020; 205:105300. [PMID: 31846614 DOI: 10.1016/j.actatropica.2019.105300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022]
Abstract
Anopheles kochi Dӧnitz (Diptera: Culicidae) is a malaria vector in some countries in South and Southeast Asia. This is the first report to provide clear evidence that two different cytological forms of An. kochi are conspecific based on systematic studies. Two karyotypic forms, i.e., Form A (X1, X2, Y1) and a novel Form B (X1, X2, Y2) were obtained from a total of 15 iso-female lines collected from five provinces in Thailand. Form A was common in all provinces, whereas Form B was restricted to Ubon Ratchathani province. This study determined whether the two karyotypic variants of An. kochi exist as a single or cryptic species by performing cross-mating experiments in association with the sequencing of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA), and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (mtDNA). Cross-mating experiments between the two karyotypic forms revealed genetic compatibility by providing viable progenies through F2 generations. The two forms showed a high sequence similarity of those two DNA regions (average genetic distances: ITS2 = 0.002-0.005, COI = 0.000-0.009). The phylogenetic trees based on ITS2 and COI sequences also supported that four strains (from Bhutan, Cambodia, Indonesia, and Thailand) were all of the same species. Five sensilla types housed on the antennae of female An. kochi were observed under scanning electron microscopy (SEM). In addition, this study found that An. kochi was a refractory vector, revealed by 0% susceptibility rates to infection with nocturnally subperiodic Brugia malayi. The cibarial armature was a resistant mechanism, as it killed the microfilariae in the foregut before they penetrated into the developmental site.
Collapse
|
5
|
Fang Y, Shi WQ, Zhang Y. Molecular phylogeny of Anopheles hyrcanus group members based on ITS2 rDNA. Parasit Vectors 2017; 10:417. [PMID: 28882174 PMCID: PMC5590201 DOI: 10.1186/s13071-017-2351-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Anopheles hyrcanus group includes 25 species, and is widely distributed in the Oriental and Palaearctic regions. Several species within this group are vectors of malaria, lymphatic filariasis and Japanese encephalitis. It is difficult or impossible to identify cryptic species based on their morphological characteristics, with some closely related species of the Hyrcanus Group have similar adult morphological characteristics. Thus, their molecular identification has been an important complementary method to traditional morphological taxonomy. Methods We used 461 ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) sequences relating to 19 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its range. In addition, we compared the performance of rDNA ITS2 to that of mitochondrial DNA (mtDNA) cytochrome c oxidase subunit 1 gene (cox1) to assess the genetic divergence of Hyrcanus Group sibling species. Results Based on Kimura’s 2-parameter (K2P) distance model, the average conspecific ITS2 divergence was 0.003, whereas sequence divergence between species averaged 0.480. Average ITS2 sequence divergences were almost 160 times higher among the Hyrcanus Group members than within each species. Two sets of sibling species, An. lesteri Baisas & Hu, 1936 and An. paraliae Sandosham, 1959; and An. sinensis Wiedemann, 1828, An. belenrae Rueda, 2005, and An. kleini Rueda, 2005, were resolved by ITS2. Each of these species was represented as an independent lineage in the phylogenetic tree. Results suggest that An. pseudopictus Grassi, 1899 and An. hyrcanus (Pallas, 1771) are most likely a single species. We uncovered two new ITS2 lineages that require further study before resolving their true taxonomic status, and designed a diagnostic polymerase chain reaction (PCR) assay to distinguish five morphologically similar species. Conclusions Nuclear and mitochondrial genes generally provided consistent results for subgroup division. Compared to cox1, ITS2 is a more reliable tool for studying phylogenetic relationships among closely related mosquito taxa. Based on species-specific differences in ITS2 sequences, the multiplex PCR assay developed here can be used to improve the efficiency of vector identification. Thus, this research will promote the progress of malaria vector surveillance in both epidemic and non-epidemic areas of South and East Asia. Electronic supplementary material The online version of this article (10.1186/s13071-017-2351-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China.
| |
Collapse
|