1
|
Kerth G, Wolf JM. In-situ responses of temperate-zone bats to climate change. Ann N Y Acad Sci 2025; 1546:23-34. [PMID: 40112255 PMCID: PMC11998482 DOI: 10.1111/nyas.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There is growing evidence that human-induced climate change poses a major threat to bats. As climate change progresses, we can only hope to mitigate its negative effects on bat populations by gaining a more comprehensive understanding of the complex interactions of all the factors involved. Drawing on recent evidence, largely from long-term field studies of individually marked bats, we discuss the multiple impacts-positive and negative-of climate change on temperate heterothermic bats and their responses to climate change in situ. For example, there is increasing evidence that warmer summers and milder winters are leading to changes in the seasonal phenology of bats, which in turn may lead to species-specific changes in demography, morphology, physiology, food availability, and roost use. We also highlight open research questions on the responses of bats to climate change. This includes better data on population trends and the underlying direct and indirect climate-related causes for changes in mortality and reproductive success. In order to assess the long-term impacts of climate change on bats, more information is needed about the relative importance of phenotypic plasticity and evolutionary adaptation in the responses of bats to climate change.
Collapse
Affiliation(s)
- Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Janis M. Wolf
- Applied Zoology and Nature Conservation, Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
2
|
Ryding S, McQueen A, Klaassen M, Tattersall GJ, Symonds MRE. Long- and short-term responses to climate change in body and appendage size of diverse Australian birds. GLOBAL CHANGE BIOLOGY 2024; 30:e17517. [PMID: 39421932 DOI: 10.1111/gcb.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Changes to body size and shape have been identified as potential adaptive responses to climate change, but the pervasiveness of these responses has been questioned. To address this, we measured body and appendage size from 5013 museum bird skins of 78 ecologically and evolutionary diverse Australian species. We found that morphological change is a shared response to climate change across birds. Birds increased relative bill surface area, tarsus length, and relative wing length through time, consistent with expectations of increasing appendage size as climates warm. Furthermore, birds decreased in absolute wing length, consistent with the expectation of decreasing body size in warmer climates. Interestingly, these trends were generally consistent across different diets and migratory and thermoregulatory behaviors. Shorter term responses to higher temperatures were contrary to long-term effects for appendages, wherein relative appendage size decreased after hotter years, indicating the complex selective pressures acting on birds as temperatures rise with climate change. Overall, our findings support the notion that morphological adaptation is a widespread response to climate change in birds that is independent of other ecological traits.
Collapse
Affiliation(s)
- Sara Ryding
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Alexandra McQueen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
3
|
Russo D, Jones G, Martinoli A, Preatoni DG, Spada M, Pereswiet‐Soltan A, Cistrone L. Climate is changing, are European bats too? A multispecies analysis of trends in body size. Ecol Evol 2024; 14:e10872. [PMID: 38333101 PMCID: PMC10850807 DOI: 10.1002/ece3.10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Animal size, a trait sensitive to spatial and temporal variables, is a key element in ecological and evolutionary dynamics. In the context of climate change, there is evidence that some bat species are increasing their body size via phenotypic responses to higher temperatures at maternity roosts. To test the generality of this response, we conducted a >20-year study examining body size changes in 15 bat species in Italy, analysing data from 4393 individual bats captured since 1995. In addition to examining the temporal effect, we considered the potential influence of sexual dimorphism and, where relevant, included latitude and altitude as potential drivers of body size change. Contrary to initial predictions of a widespread increase in size, our findings challenge this assumption, revealing a nuanced interplay of factors contributing to the complexity of bat body size dynamics. Specifically, only three species (Myotis daubentonii, Nyctalus leisleri, and Pipistrellus pygmaeus) out of the 15 exhibited a discernible increase in body size over the studied period, prompting a reassessment of bats as reliable indicators of climate change based on alterations in body size. Our investigation into influencing factors highlighted the significance of temperature-related variables, with latitude and altitude emerging as crucial drivers. In some cases, this mirrored patterns consistent with Bergmann's rule, revealing larger bats recorded at progressively higher latitudes (Plecotus auritus, Myotis mystacinus, and Miniopterus schreibersii) or altitudes (Pipistrellus kuhlii). We also observed a clear sexual dimorphism effect in most species, with females consistently larger than males. The observed increase in size over time in three species suggests the occurrence of phenotypic plasticity, raising questions about potential long-term selective pressures on larger individuals. The unresolved question of whether temperature-related changes in body size reflect microevolutionary processes or phenotypic plastic responses adds further complexity to our understanding of body size patterns in bats over time and space.
Collapse
Affiliation(s)
- Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
- School of Biological SciencesUniversity of BristolBristolUK
| | - Gareth Jones
- School of Biological SciencesUniversity of BristolBristolUK
| | - Adriano Martinoli
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | - Damiano G. Preatoni
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | | | | | - Luca Cistrone
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
| |
Collapse
|
4
|
Wood H, Cousins SAO. Variability in bat morphology is influenced by temperature and forest cover and their interactions. Ecol Evol 2023; 13:e9695. [PMID: 36726877 PMCID: PMC9884614 DOI: 10.1002/ece3.9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Multiple climatic and landscape drivers have been linked to variations in bat body size and wing functional traits. Most previous studies used proxies rather than actual climate and land-use data, and their interactions are rarely explored. We investigate whether higher summer average temperatures are driving decreasing bat body size as predicted by Bergmann's rule or increasing appendage size as per Allen's rule. We also explore whether temperature or resource availability (namely forest cover) is responsible for changes in wing functional traits. Using land-use data from historical maps and national statistics combined with climatic data, we assessed the effect of temperature and resource availability on bat morphology. We used 464 museum specimens of three bat species (Eptesicus nilssonii, Pipistrellus pygmaeus, and Plecotus auritus), spanning 180 years, across a 1200 km latitudinal gradient. We found no evidence of higher summer average temperatures driving decreases in body size in bats. Jaw sizes of P. auritus and P. pygmaeus changed over time but in different directions. The geographical variation of forest cover was also related to differences in wing functional traits in two species. Crucially, there was a significant antagonistic interactive effect of forest and temperature on tip index in P. pygmaeus whereby above 14.5°C the relationship between forest and tip index actually reversed. This could indicate that higher temperatures promote more pointed wings, which may provide energetic benefits. Our results show the importance of including both climatic and land-use variables when assessing trends in bat morphology and exploring interactions. Encouragingly, all three species have shown an ability to adapt their body size and functional traits to different conditions, and it could demonstrate their potential to overcome future negative impacts of climate and land-use change.
Collapse
Affiliation(s)
- Heather Wood
- Landscape, Environment & Geomatics, Department of Physical GeographyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Sara A. O. Cousins
- Landscape, Environment & Geomatics, Department of Physical GeographyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| |
Collapse
|
5
|
Theriot MK, Lanier HC, Olson LE. Harnessing natural history collections to detect trends in body‐size change as a response to warming: a critique and review of best practices. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Miranda K. Theriot
- Sam Noble Oklahoma Museum of Natural History, 2401 Chautauqua Ave Norman,, Oklahoma, 73072 USA
- Department of Biology University of Oklahoma 730 Van Vleet Oval, Room 314, Norman, Oklahoma 73019 USA
- University of Alaska Museum 1962 Yukon Dr, Fairbanks, AK 99775 USA
- Department of Biology and Wildlife University of Alaska Fairbanks 101 Murie 2090 Koyukuk Drive, Fairbanks, AK 99709 USA
| | - Hayley C. Lanier
- Sam Noble Oklahoma Museum of Natural History, 2401 Chautauqua Ave Norman,, Oklahoma, 73072 USA
- Department of Biology University of Oklahoma 730 Van Vleet Oval, Room 314, Norman, Oklahoma 73019 USA
| | - Link E. Olson
- University of Alaska Museum 1962 Yukon Dr, Fairbanks, AK 99775 USA
- Department of Biology and Wildlife University of Alaska Fairbanks 101 Murie 2090 Koyukuk Drive, Fairbanks, AK 99709 USA
| |
Collapse
|
6
|
Ryding S, Klaassen M, Tattersall GJ, Gardner JL, Symonds MRE. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol Evol 2021; 36:1036-1048. [PMID: 34507845 DOI: 10.1016/j.tree.2021.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Many animal appendages, such as avian beaks and mammalian ears, can be used to dissipate excess body heat. Allen's rule, wherein animals in warmer climates have larger appendages to facilitate more efficient heat exchange, reflects this. We find that there is widespread evidence of 'shape-shifting' (changes in appendage size) in endotherms in response to climate change and its associated climatic warming. We re-examine studies of morphological change over time within a thermoregulatory context, finding evidence that temperature can be a strong predictor of morphological change independently of, or combined with, other environmental changes. Last, we discuss how Allen's rule, the degree of temperature change, and other ecological factors facilitate morphological change and make predictions about what animals will show shape-shifting.
Collapse
Affiliation(s)
- Sara Ryding
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, Saint Catharines, Ontario L2S 3A1, Canada
| | - Janet L Gardner
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
7
|
Moroz M, Jackson ISC, Ramirez D, Kemp ME. Divergent morphological responses to millennia of climate change in two species of bats from Hall's Cave, Texas, USA. PeerJ 2021; 9:e10856. [PMID: 33777514 PMCID: PMC7971077 DOI: 10.7717/peerj.10856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022] Open
Abstract
How species will respond to ongoing and future climate change is one of the most important questions facing biodiversity scientists today. The fossil record provides unparalleled insight into past ecological and evolutionary responses to climate change, but the resource remains virtually untapped for many organisms. We use geometric morphometrics and a 25,000 year fossil record to quantify changes in body size and mandible shape through time and across climate regimes for two bat species present in Quaternary paleontological deposits of central Texas: Myotis velifer, a bat distributed throughout the Southwestern US and Mexico that is still found in central Texas today, and Eptesicus fuscus, a bat widely distributed throughout North America that has been extirpated in central Texas. Because of ecogeographic rules like Bergmann's rule, which posits that endotherms are larger in colder environments, we hypothesized that both species were larger during cooler time intervals. Additionally, we hypothesized that both species would show variation in dental morphology across the studied sequence as a response to climate change. While we found a decrease in centroid size-a proxy for --body size-through time for both species, we could not establish a clear relationship between centroid size and temperature alone. However, we did find that specimens from drier environments were significantly larger than those from wetter ones. Furthermore, we found significant dental shape variation between environments reflecting different temperature levels for both species. Yet only M. velifer exhibited significant variation between environments of varying precipitation levels. This result was surprising because present-day populations of E. fuscus are highly variable across both temperature and precipitation gradients. We determined that the morphological change experienced by M. velifer through time, and between warmer and cooler temperatures, was associated with the coronoid process, condylar process, and the mandibular symphysis. These parts play a pivotal role in bite force, so changes in these features might relate to changes in diet. We show that long-term datasets derived from fossil material provide invaluable insight not only into the validity of ecogeographic rules, but also into the adaptive capacities of extant taxa when faced with environmental changes. Our results highlight diverging responses to a variety of climate factors that are relevant to consider in biodiversity research given ongoing global change.
Collapse
Affiliation(s)
- Molly Moroz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Illiam S C Jackson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Daniel Ramirez
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Melissa E Kemp
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
8
|
Salinas-Ramos VB, Agnelli P, Bosso L, Ancillotto L, Russo D. Body size of Italian greater horseshoe bats (Rhinolophus ferrumequinum) increased over one century and a half: a response to climate change? Mamm Biol 2021. [DOI: 10.1007/s42991-021-00112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Body Size Variation in Italian Lesser Horseshoe Bats Rhinolophus hipposideros over 147 Years: Exploring the Effects of Climate Change, Urbanization and Geography. BIOLOGY 2020; 10:biology10010016. [PMID: 33396640 PMCID: PMC7824098 DOI: 10.3390/biology10010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/17/2022]
Abstract
Body size in animals commonly shows geographic and temporal variations that may depend upon several environmental drivers, including climatic conditions, productivity, geography and species interactions. The topic of body size trends across time has gained momentum in recent years since this has been proposed as a third universal response to climate change along with changes in distribution and phenology. However, disentangling the genuine effects of climate change from those of other environmental factors is often far from trivial. In this study, we tested a set of hypotheses concerning body size variation across time and space in Italian populations of a rhinolophid bat, the lesser horseshoe bat Rhinolophus hipposideros. We examined forearm length (FAL) and cranial linear traits in a unique historical collection of this species covering years from 1869 to 2016, representing, to the best of our knowledge, the longest time series ever considered in a morphological assessment of a bat species. No temporal changes occurred, rejecting the hypotheses that body size varied in response to climate change or urbanization (light pollution). We found that FAL increased with latitude following a Bergmann's rule trend, whereas the width of upper incisors, likely a diet-related trait, showed an opposite pattern which awaits explanation. We also confirmed that FAL is sexually dimorphic in this species and ruled out that insularity has any detectable effect on the linear traits we considered. This suggests that positive responses of body size to latitude do not mean per se that concurring temporal responses to climate change are also expected. Further investigations should explore the occurrence of these patterns over larger spatial scales and more species in order to detect the existence of general patterns across time and space.
Collapse
|