1
|
Wang Y, Cheng Y, Wang S, Liu D, Gao Y, Li J, Jiang Y, Cui W, Qiao X, Li Y, Wang L. Unraveling the cross-talk between a highly virulent PEDV strain and the host via single-cell transcriptomic analysis. J Virol 2025:e0055525. [PMID: 40396761 DOI: 10.1128/jvi.00555-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe intestinal damage and high mortality in neonatal piglets. The continuous emergence of new strains has brought new challenges to prevention and control. In this study, we isolated and characterized a prevalent PEDV virulent strain and analyzed 19,612 jejunal cells from PEDV-infected and control piglets using single-cell sequencing, revealing significant changes in cellular composition, gene expression, and intercellular communication. In response to PEDV infection, epithelial repair was enhanced through increased proliferation and differentiation of stem cells, transit-amplifying (TA) cells, and intestinal progenitor cells into enterocytes. Additionally, PEDV disrupted intercellular communication, compromising epithelial functionality while triggering immune responses, with IFN-γ and IL-10 signaling activation acting as critical regulators of immune balance and tissue homeostasis. Beyond enterocytes, viral genes were detected in various other cell types. Further experiments confirmed that PEDV could initiate replication in B and T lymphocytes but was unable to produce infectious progeny, with T cells additionally undergoing virus-induced apoptosis. These findings provide new insights into PEDV tropism, immune evasion, and epithelial repair, revealing complex host-pathogen interactions that shape disease progression and tissue regeneration, thereby contributing to a better understanding of enteric coronavirus pathogenesis.IMPORTANCEThe persistent circulation of porcine epidemic diarrhea virus (PEDV) poses a major threat to the swine industry, with emerging strains complicating prevention and control efforts. Currently, no effective measures completely prevent virus transmission, highlighting the need to understand PEDV-host interactions. In this study, we isolated a prevalent virulent strain and used single-cell sequencing to identify new PEDV-infected cell types and explore the complex interplay between the host and PEDV. These findings provide essential insights into viral pathogenesis and facilitate the design of targeted antiviral interventions.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yu Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yueyi Gao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
2
|
Niu ZS, Liu RX, Hu Y, Meng XR, Liu LH, Yang LT, Bai X, Chen MF, Pan DF. Complex causal relationships between genetic predictions of 731 immune cell phenotypes and novel coronavirus: A two-sample Mendelian randomization analysis. J Chin Med Assoc 2025; 88:231-237. [PMID: 39725715 DOI: 10.1097/jcma.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a significant impact on global health. While the virus primarily affects the respiratory system, the intricate interplay between immune cells and the virus remains poorly understood. This study investigates the causal relationship between 731 immune cell phenotypes and COVID-19 using Mendelian randomization (MR) analysis. METHODS A bidirectional two-sample MR analysis was conducted using genetic variants strongly associated with immune cell phenotypes as instrumental variables. Data for 731 immune cell phenotypes were sourced from the Genome-Wide Association Study (GWAS) catalog, while data for COVID-19 susceptibility were obtained from the OPEN GWAS database. Five MR methods (inverse variance weighted [IVW], MR-Egger, weighted median, simple mode, and weighted mode) were used to estimate causal effects, with IVW as the primary analysis method. RESULTS The study identified 57 immune cell phenotypes causally associated with COVID-19 risk across two independent GWAS datasets. Five immune cell phenotypes were consistently associated with COVID-19 risk across both datasets: CD3- lymphocyte %lymphocyte (protective), CD27 on CD20- (protective), CD20 on IgD+ CD38- unsw mem (increased risk), CD27 on IgD- CD38- (increased risk), and CD19 on B cell (increased risk). Sensitivity analyses confirmed the robustness of the findings. CONCLUSION This study provides compelling evidence for a causal relationship between specific immune cell phenotypes and COVID-19 risk. These findings highlight the potential for targeting these immune cell phenotypes as novel therapeutic targets for COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Ze-Su Niu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ru-Xin Liu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Hu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiao-Rui Meng
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Hong Liu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Ting Yang
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Xue Bai
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Meng-Fei Chen
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Dong-Feng Pan
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Okada K, Tagami T, Otaguro T, Hayakawa M, Yamakawa K, Endo A, Ogura T, Hirayama A, Yasunaga H, Hara Y. Early lymphopenia as a predictor of COVID-19 outcomes: A multicenter cohort study. Acute Med Surg 2025; 12:e70044. [PMID: 40125412 PMCID: PMC11928683 DOI: 10.1002/ams2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Lymphopenia is recognized as a biomarker for predicting outcomes in coronavirus disease (COVID-19). However, the optimal timing for its observation remains uncertain. We investigated the association between early lymphopenia and COVID-19 prognosis, as well as the relationship between lymphocyte count trends and disease outcomes. Methods We analyzed data from the J-RECOVER study, a multicenter retrospective cohort study in Japan, encompassing patients with COVID-19 between January and September 2020. The patients were categorized into lymphopenia (LP) (<800 cells/μL) and non-lymphopenia (NL) (≥800 cells/μL) groups based on the lymphocyte counts between days 1 and 4 post-onset. They were further divided into "persistent," "recovered," "exacerbated," and "stable" groups based on lymphocyte counts between days 7 and 10. The primary outcome was the in-hospital mortality. The Cox proportional hazard regression was used for the analysis. Results Of 995 enrolled patients, 212 patients (21.3%) were classified into the LP group. LP was significantly associated with in-hospital mortality (hazard ratio [HR] 2.32, [95% CI 1.39 to 3.87], p-value 0.001). In both the LP and NL groups, lower lymphocyte counts between 7 and 10 days-categorized as the "persistent" and "exacerbated" groups-was associated with in-hospital mortality (HR 4.65, [95% CI 2.07 to 10.47], p-value <0.001, and HR 5.59, [95% CI 2.24 to 13.97], p-value <0.001, respectively). Conclusions Early lymphopenia is predictive of poor prognosis in patients with COVID-19. A declining lymphocyte count trend post-onset further indicates disease deterioration.
Collapse
Affiliation(s)
- Kazuhiro Okada
- Shock and Trauma CenterNippon Medical School Chiba Hokusoh HospitalChibaJapan
- Department of Emergency and Critical Care MedicineNippon Medical SchoolTokyoJapan
| | - Takashi Tagami
- Department of Emergency and Critical Care MedicineNippon Medical SchoolTokyoJapan
- Department of Emergency and Critical Care MedicineNippon Medical School Musashikosugi HospitalKawasakiKanagawaJapan
- Department of Clinical Epidemiology and Health Economics, School of Public HealthThe University of TokyoTokyoJapan
| | - Takanobu Otaguro
- Department of Emergency and Critical Care MedicineNagasaki University HospitalNagasakiJapan
| | - Mineji Hayakawa
- Department of Emergency MedicineHokkaido University HospitalSapporoHokkaidoJapan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Akira Endo
- Department of Acute Critical Care MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Takayuki Ogura
- Tochigi Prefectural Emergency and Critical Care Center, Imperial Gift Foundation SaiseikaiUtsunomiya HospitalTochigiJapan
| | - Atsushi Hirayama
- Public Health, Department of Social Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public HealthThe University of TokyoTokyoJapan
| | - Yoshiaki Hara
- Shock and Trauma CenterNippon Medical School Chiba Hokusoh HospitalChibaJapan
- Department of Emergency and Critical Care MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
4
|
Marin D, Fernandez GJ, Hernandez JC, Taborda N. A systems biology approach unveils different gene expression control mechanisms governing the immune response genetic program in peripheral blood mononuclear cells exposed to SARS-CoV-2. PLoS One 2024; 19:e0314754. [PMID: 39637135 PMCID: PMC11620636 DOI: 10.1371/journal.pone.0314754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024] Open
Abstract
COVID-19 and other pandemic viruses continue being important for public health and the global economy. Therefore, it is essential to explore the pathogenesis of COVID-19 more deeply, particularly its association with inflammatory and antiviral processes. In this study, we used the RNA-seq technique to analyze mRNA and non-coding RNA profiles of human peripheral blood mononuclear cells (PBMCs) from healthy individuals after SARS-CoV-2 in vitro exposure, to identify pathways related to immune response and the regulatory post-transcriptional mechanisms triggered that can serve as possible complementary therapeutic targets. Our analyses show that SARS-CoV-2 induced a significant regulation in the expression of 790 genes in PBMCs, of which 733 correspond to mRNAs and 57 to non-coding RNAs (lncRNAs). The immune response, antiviral response, signaling, cell proliferation and metabolism are the main biological processes involved. Among these, the inflammatory response groups the majority of regulated genes with an increase in the expression of chemokines involved in the recruitment of monocytes, neutrophils and T-cells. Additionally, it was observed that exposure to SARS-CoV-2 induces the expression of genes related to the IL-27 pathway but not of IFN-I or IFN-III, indicating the induction of ISGs through this pathway rather than the IFN genes. Moreover, several lncRNA and RNA binding proteins that can act in the cis-regulation of genes of the IL-27 pathway were identified. Our results indicate that SARS-CoV-2 can regulate the expression of multiple genes in PBMCs, mainly related to the inflammatory and antiviral response. Among these, lncRNAs establish an important mechanism in regulating the immune response to the virus. They could contribute to developing severe forms of COVID-19, constituting a possible therapeutic target.
Collapse
Affiliation(s)
- Damariz Marin
- GIOM, Facultad de Odontología, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Geysson Javier Fernandez
- Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia- UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia- UdeA, Medellín, Colombia
| | - Natalia Taborda
- Corporación Universitaria Remington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| |
Collapse
|
5
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Ferreira RR, Martins RB, Pires I, Marques BL, Costa KC, Lirio PH, Scomparin DS, Scarante FF, Batah SS, Hallak JE, Crippa JA, Rodrigues LC, Tostes RC, Fabro AT, Arruda E, Campos AC. Cardiovascular and kidney diseases are positively associated with neuroinflammation and reduced brain-derived neurotrophic factor in patients with severe COVID-19. Brain Behav Immun Health 2024; 41:100855. [PMID: 39391797 PMCID: PMC11466569 DOI: 10.1016/j.bbih.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Even though respiratory dysfunctions are the primary symptom associated with SARS-CoV-2 infection, cerebrovascular events, and neurological symptoms are described in many patients. However, the connection between the neuroimmune profile and the lung's inflammatory condition during COVID-19 and its association with the neurological symptoms reported by COVID-19 patients still needs further exploration. The present study characterizes the SARS-CoV-2 infectivity profile in postmortem nervous and lung tissue samples of patients who died due to severe COVID-19, and the pro-inflammatory factors present in both nervous and lung tissue samples, via a proteomic profiling array. Additionally, Brain-Derived Neurotrophic Factor (BDNF) levels and intracellular pathways related to neuroplasticity/neuroprotection were assessed in the samples. Out of the 16 samples analyzed, all samples but 1 were positive for the viral genome (genes E or N2, but only 3.9% presented E and N2) in the olfactory brain pathway. The E or N2 gene were also detected in all lung samples, with 43.7% of the samples being positive for the E and N2 genes. In the E/N2 positive brain samples, the Spike protein of SARS-CoV-2 co-localized with TUJ-1+ (neuron-specific class III beta-tubulin) and GFAP+ (glial fibrillary acidic protein) astrocytes. IL-6, but not IL-10, expression was markedly higher in most nervous tissue samples compared to the lung specimens. While intracellular adhesion molecule-1 (ICAM-1), interleukin-8 (IL-8), macrophage migration inhibitory factor (MIF), and plasminogen activator inhibitor 1 (PAI-1) were increased in lung samples from SARS-Cov-2 patients, only MIF and IL-18 were detected in nervous tissue samples. Correlation analysis suggested that high levels of IL-6 are followed by increased levels of IL-10 in the brain, but not in lung samples. Our analysis also demonstrated that the presence of comorbidities, such as cardiovascular disease, hypertension, and hypothyroidism, is associated with neuroinflammation, while chronic kidney conditions predict the presence of neurological symptoms, which correlate with lower levels of BDNF in the brain samples. Our results corroborate the hypothesis that a pro-inflammatory state might further impair neural homeostasis and induce brain abnormalities found in COVID-19 patients.
Collapse
Affiliation(s)
- Rafael R. Ferreira
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Ronaldo B. Martins
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of Sao Paulo, Ribeirão Preto, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil, 14049-900, São Paulo, Brazil
| | - Isabela Pires
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Bruno L. Marques
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Karla C.M. Costa
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Pedro H.C. Lirio
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Davi S. Scomparin
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Franciele F. Scarante
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Sabrina S. Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, 3900, Bandeirantes Avenue - Monte Alegre- Ribeirão Preto-SP-Brazil, 14049-900, Brazil
| | - Jaime E.C. Hallak
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 2650, Tenente Catão Roxo Street - Monte Alegre, Ribeirão Preto – SP- Brazil, 14051-140, São Paulo, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT TM) - CNPQ/FAPESP/CAPES - Brazil
| | - Jose A. Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 2650, Tenente Catão Roxo Street - Monte Alegre, Ribeirão Preto – SP- Brazil, 14051-140, São Paulo, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT TM) - CNPQ/FAPESP/CAPES - Brazil
| | - Livia C.M. Rodrigues
- Department of Physiological Sciences, Health Sciences Center, Universidade Federal do Espírito Santo, Vitória 1468, Marechal Campos Avenue - Maruípe, Vitória, ES, 29047-105, Brazil
| | - Rita C. Tostes
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
| | - Alexandre T. Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, 3900, Bandeirantes Avenue - Monte Alegre- Ribeirão Preto-SP-Brazil, 14049-900, Brazil
| | - Eurico Arruda
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of Sao Paulo, Ribeirão Preto, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil, 14049-900, São Paulo, Brazil
| | - Alline C. Campos
- Department of Pharmacology- Ribeirão Preto Medical School- University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 3900, Bandeirantes Avenue- Monte Alegre- Ribeirão Preto-SP-Brazil - 14049-900
- National Institute of Science and Technology for Translational Medicine (INCT TM) - CNPQ/FAPESP/CAPES - Brazil
| |
Collapse
|
7
|
Cetinkaya PG, Abras IF, Evcili I, Yildirim T, Ceylan Y, Kara Eroglu F, Kayaoglu B, İpekoglu EM, Akarsu A, Yıldırım M, Kahraman T, Cengiz AB, Sahiner UM, Sekerel BE, Ozsurekci Y, Soyer O, Gursel I. Plasma Extracellular Vesicles Derived from Pediatric COVID-19 Patients Modulate Monocyte and T Cell Immune Responses Based on Disease Severity. Immunol Invest 2024; 53:1141-1175. [PMID: 39115924 DOI: 10.1080/08820139.2024.2385992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND The COVID-19 pandemic has caused significant morbidity and mortality globally. The role of plasma-derived extracellular vesicles (EVs) in pediatric COVID-19 patients remains unclear. METHODS We isolated EVs from healthy controls (n = 13) and pediatric COVID-19 patients (n = 104) with varying severity during acute and convalescent phases using serial ultracentrifugation. EV effects on healthy PBMCs, naïve CD4+ T cells, and monocytes were assessed through in vitro assays, flow cytometry, and ELISA. RESULTS Our findings indicate that COVID-19 severity correlates with diverse immune responses. Severe acute cases exhibited increased cytokine levels, decreased IFNγ levels, and lower CD4+ T cell and monocyte counts, suggesting immunosuppression. EVs from severe acute patients stimulated healthy cells to express higher PDL1, increased Th2 and Treg cells, reduced IFNγ secretion, and altered Th1/Th17 ratios. Patient-derived EVs significantly reduced proinflammatory cytokine production by monocytes (p < .001 for mild, p = .0025 for severe cases) and decreased CD4+ T cell (p = .043) and monocyte (p = .033) populations in stimulated healthy PBMCs. CONCLUSION This study reveals the complex relationship between immunological responses and EV-mediated effects, emphasizing the impact of COVID-19 severity. We highlight the potential role of plasma-derived EVs in early-stage immunosuppression in severe COVID-19 patients.
Collapse
Affiliation(s)
- Pınar Gur Cetinkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Irem Fatma Abras
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Irem Evcili
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tugçe Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yasemin Ceylan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Fehime Kara Eroglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Başak Kayaoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Mert İpekoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Aysegul Akarsu
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Muzaffer Yıldırım
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ali Bülent Cengiz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Umit Murat Sahiner
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bulent Enis Sekerel
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Ozsurekci
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ozge Soyer
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
8
|
Ivanov KI, Yang H, Sun R, Li C, Guo D. The emerging role of SARS-CoV-2 nonstructural protein 1 (nsp1) in epigenetic regulation of host gene expression. FEMS Microbiol Rev 2024; 48:fuae023. [PMID: 39231808 PMCID: PMC11418652 DOI: 10.1093/femsre/fuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Guangzhou National Laboratory, Guangzhou, 510320, China
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland
| | - Haibin Yang
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ruixue Sun
- Guangzhou National Laboratory, Guangzhou, 510320, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510320, China
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
9
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
10
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
11
|
McMahon WC, Kwatra G, Izu A, Jones SA, Mbele NJ, Jafta N, Lala R, Shalekoff S, Tiemessen CT, Madhi SA, Nunes MC. T-cell responses to ancestral SARS-CoV-2 and Omicron variant among unvaccinated pregnant and postpartum women living with and without HIV in South Africa. Sci Rep 2024; 14:20348. [PMID: 39223211 PMCID: PMC11369237 DOI: 10.1038/s41598-024-70725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
SARS-CoV-2 cell-mediated immunity remains understudied during pregnancy in unvaccinated Black African women living with HIV (WLWH) from low- and middle-income countries. We investigated SARS-CoV-2-specific T-cell responses 1 month following infection in 24 HIV-uninfected women and 15 WLWH at any stage during pregnancy or postpartum. The full-length spike (FLS) glycoprotein and nucleocapsid (N) protein of wild-type (WT) SARS-CoV-2, as well as mutated spike protein regions found in the Omicron variant (B.1.1.529) were targeted by flow cytometry. WT-specific CD4+ and CD8+ T cells elicited similar FLS- and N-specific responses in HIV-uninfected women and WLWH. SARS-CoV-2-specific T-lymphocytes were predominantly TNF-α monofunctional in pregnant and postpartum women living with and without HIV, with fever cells producing either IFN-γ or IL-2. Furthermore, T-cell responses were unaffected by Omicron-specific spike mutations as similar responses between Omicron and the ancestral virus were detected for CD4+ and CD8+ T cells. Our results collectively demonstrate comparable T-cell responses between WLWH on antiretroviral therapy and HIV-uninfected pregnant and postpartum women who were naïve to Covid-19 vaccination. Additionally, we show that T cells from women infected with the ancestral virus, Beta variant (B.1.351), or Delta variant (B.1.617.2) can cross-recognize Omicron, suggesting an overall preservation of T-cell immunity.
Collapse
Affiliation(s)
- William C McMahon
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Research Chair Initiative in Vaccine Preventable Diseases, Department of Science and Innovation/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA.
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
| | - Alane Izu
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie A Jones
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nkululeko J Mbele
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nwabisa Jafta
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rushil Lala
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- A Division of the National Health Laboratory Service, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- A Division of the National Health Laboratory Service, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Research Chair Initiative in Vaccine Preventable Diseases, Department of Science and Innovation/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon, and Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Compeer B, Neijzen TR, van Lelyveld SFL, Martina BEE, Russell CA, Goeijenbier M. Uncovering the Contrasts and Connections in PASC: Viral Load and Cytokine Signatures in Acute COVID-19 versus Post-Acute Sequelae of SARS-CoV-2 (PASC). Biomedicines 2024; 12:1941. [PMID: 39335455 PMCID: PMC11428903 DOI: 10.3390/biomedicines12091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively. Here, in this review, we offer a virologist's perspective on PASC, highlighting the dynamics of SARS-CoV-2 viral loads, cytokines, and chemokines in different organs of patients across the full clinical spectrum of acute-phase disease. We underline that the probability of severe or critical disease progression correlates with increased viral load levels detected in the upper respiratory tract (URT), lower respiratory tract (LRT), and plasma. Acute-phase viremia is a clear, although not unambiguous, predictor of PASC development. Moreover, both the quantity and diversity of functions of cytokines and chemokines increase with acute-phase disease severity. Specific cytokines remain or become elevated in the PASC phase, although the driving factor of ongoing inflammation found in patients with PASC remains to be investigated. The key findings highlighted in this review contribute to a further understanding of PASC and their differences and overlap with acute disease.
Collapse
Affiliation(s)
- Brandon Compeer
- Artemis Bioservices B.V., 2629 JD Delft, The Netherlands
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Tobias R Neijzen
- Department of Intensive Care Medicine, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands
| | | | | | - Colin A Russell
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Department of Intensive Care, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
14
|
Acchioni C, Sandini S, Acchioni M, Sgarbanti M. Co-Infections and Superinfections between HIV-1 and Other Human Viruses at the Cellular Level. Pathogens 2024; 13:349. [PMID: 38787201 PMCID: PMC11124504 DOI: 10.3390/pathogens13050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Co-infection or superinfection of the host by two or more virus species is a common event, potentially leading to viral interference, viral synergy, or neutral interaction. The simultaneous presence of two or more viruses, even distantly related, within the same cell depends upon viral tropism, i.e., the entry of viruses via receptors present on the same cell type. Subsequently, productive infection depends on the ability of these viruses to replicate efficiently in the same cellular environment. HIV-1 initially targets CCR5-expressing tissue memory CD4+ T cells, and in the absence of early cART initiation, a co-receptor switch may occur, leading to the infection of naïve and memory CXCR4-expressing CD4+ T cells. HIV-1 infection of macrophages at the G1 stage of their cell cycle also occurs in vivo, broadening the possible occurrence of co-infections between HIV-1 and other viruses at the cellular level. Moreover, HIV-1-infected DCs can transfer the virus to CD4+ T cells via trans-infection. This review focuses on the description of reported co-infections within the same cell between HIV-1 and other human pathogenic, non-pathogenic, or low-pathogenic viruses, including HIV-2, HTLV, HSV, HHV-6/-7, GBV-C, Dengue, and Ebola viruses, also discussing the possible reciprocal interactions in terms of virus replication and virus pseudotyping.
Collapse
Affiliation(s)
| | | | | | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| |
Collapse
|
15
|
Lu RXZ, Rafatian N, Zhao Y, Wagner KT, Beroncal EL, Li B, Lee C, Chen J, Churcher E, Vosoughi D, Liu C, Wang Y, Baker A, Trahtemberg U, Li B, Pierro A, Andreazza AC, dos Santos CC, Radisic M. Cardiac tissue model of immune-induced dysfunction reveals the role of free mitochondrial DNA and the therapeutic effects of exosomes. SCIENCE ADVANCES 2024; 10:eadk0164. [PMID: 38536913 PMCID: PMC10971762 DOI: 10.1126/sciadv.adk0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Erika L. Beroncal
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carol Lee
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eryn Churcher
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrew Baker
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Uriel Trahtemberg
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Galilee Medical Center, Nahariya, Israel
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Agostino Pierro
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ana C. Andreazza
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3D5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1
| |
Collapse
|
16
|
Omar MA, El Hawary R, Eldash A, Sadek KM, Soliman NA, Hanna MOF, Shawky SM. Neutrophilic Myeloid-Derived Suppressor Cells and Severity in SARS-CoV-2 Infection. Lab Med 2024; 55:153-161. [PMID: 37352143 DOI: 10.1093/labmed/lmad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND While we strive to live with SARS-CoV-2, defining the immune response that leads to recovery rather than severe disease remains highly important. COVID-19 has been associated with inflammation and a profoundly suppressed immune response. OBJECTIVE To study myeloid-derived suppressor cells (MDSCs), which are potent immunosuppressive cells, in SARS-CoV-2 infection. RESULTS Patients with severe and critical COVID-19 showed higher frequencies of neutrophilic (PMN)-MDSCs than patients with moderate illness and control individuals (P = .005). Severe disease in individuals older and younger than 60 years was associated with distinct PMN-MDSC frequencies, being predominantly higher in patients of 60 years of age and younger (P = .004). However, both age groups showed comparable inflammatory markers. In our analysis for the prediction of poor outcome during hospitalization, MDSCs were not associated with increased risk of death. Still, patients older than 60 years of age (odds ratio [OR] = 5.625; P = .02) with preexisting medical conditions (OR = 2.818; P = .003) showed more severe disease and worse outcome. Among the immunological parameters, increased C-reactive protein (OR = 1.015; P = .04) and lymphopenia (OR = 5.958; P = .04) strongly identified patients with poor prognosis. CONCLUSION PMN-MDSCs are associated with disease severity in COVID-19; however, MDSC levels do not predict increased risk of death during hospitalization.
Collapse
Affiliation(s)
- Mona A Omar
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Rabab El Hawary
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Khaled M Sadek
- Department of Internal Medicine and Nephrology, Cairo University, Cairo, Egypt
| | | | | | - Shereen M Shawky
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Huang X, Kantonen J, Nowlan K, Nguyen NA, Jokiranta ST, Kuivanen S, Heikkilä N, Mahzabin S, Kantele A, Vapalahti O, Myllykangas L, Heinonen S, Mäyränpää MI, Strandin T, Kekäläinen E. Mucosal-Associated Invariant T Cells are not susceptible in vitro to SARS-CoV-2 infection but accumulate into the lungs of COVID-19 patients. Virus Res 2024; 341:199315. [PMID: 38211733 PMCID: PMC10826420 DOI: 10.1016/j.virusres.2024.199315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Prolonged T cell lymphopenia is common in COVID-19, caused by SARS-CoV-2. While the mechanisms of lymphopenia during COVID-19 remain elusive, it is especially pronounced in a specialized innate-like T cell population called Mucosal Associated Invariant T cells (MAITs). MAITs has been suggested to express Angiotensin-Converting Enzyme 2 (ACE2), which is the well-known cellular receptor for SARS-CoV-2. However, it is still unclear if SARS-CoV-2 can infect or affect MAIT cells directly. In this study, we performed multicolor flow cytometry on peripheral blood mononuclear cells obtained from COVID-19 patients to assess the frequencies of CD8+Vα7.2+CD161+ MAIT subsets at acute and convalescent disease phases. The susceptibility of MAITs and T cells to direct exposure by SARS-CoV-2 was analysed using cells isolated from healthy donor buffy coats by viability assays, virus-specific RT-PCR, and flow cytometry. In situ lung immunofluorescence was used to evaluate retention of T cells, especially MAIT cells, in lung tissues during acute COVID-19. Our study confirms previous reports indicating that circulating MAITs are activated, and their frequency is declined in patients with acute SARS-CoV-2 infection, whereas an accumulation of MAITs and T cells was seen in the lung tissue of individuals with fatal COVID-19. However, despite a fraction of MAITs found to express ACE2, no evidence for the susceptibility of MAITs for direct infection or activation by SARS-CoV-2 particles was observed. Thus, their activation and decline in the circulation is most likely explained by indirect mechanisms involving other immune cells and cytokine-induced pro-inflammatory environment but not by direct exposure to viral particles at the infection site.
Collapse
Affiliation(s)
- Xiaobo Huang
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
| | - Jonas Kantonen
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Ngoc Anh Nguyen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi T Jokiranta
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Shamita Mahzabin
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Meilahti Vaccine Research Center, MeVac, Infectious Diseases, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland; Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Santtu Heinonen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland
| |
Collapse
|
18
|
Huang W, Chen X, Yin M, Li J, Luo M, Ai Y, Xie L, Li W, Liu Y, Xie X, Chen Y, Zhang X, He J. Protection effects of mice liver and lung injury induced by coronavirus infection of Qingfei Paidu decoction involve inhibition of the NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117512. [PMID: 38040130 DOI: 10.1016/j.jep.2023.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronavirus Disease 2019 (COVID-19) is a grave and pervasive global infectious malady brought about by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), posing a significant menace to human well-being. Qingfei Paidu decoction (QFPD) represents a pioneering formulation derived from four classical Chinese medicine prescriptions. Substantiated evidence attests to its efficacy in alleviating clinical manifestations, mitigating the incidence of severe and critical conditions, and reducing mortality rates among COVID-19 patients. AIM OF THE STUDY This study aims to investigate the protection effects of QFPD in mice afflicted with a coronavirus infection, with a particular focus on determining whether its mechanism involves the NLRP3 signaling pathway. MATERIALS AND METHODS The coronavirus mice model was established through intranasal infection of Kunming mice with Hepatic Mouse Virus A59 (MHV-A59). In the dose-effect experiment, normal saline, ribavirin (80 mg/kg), or QFPD (5, 10, 20 g/kg) were administered to the mice 2 h following MHV-A59 infection. In the time-effect experiment, normal saline or QFPD (20 g/kg) was administered to mice 2 h post MHV-A59 infection. Following the assessment of mouse body weights, food consumption, and water intake, intragastric administration was conducted once daily at consistent intervals over a span of 5 days. The impact of QFPD on pathological alterations in the livers and lungs of MHV-A59-infected mice was evaluated through H&E staining. The viral loads of MHV-A59 in both the liver and lung were determined using qPCR. The expression levels of genes and proteins related to the NLRP3 pathway in the liver and lung were assessed through qPCR, Western Blot analysis, and immunofluorescence. RESULTS The administration of QFPD was shown to ameliorate the reduced weight gain, decline in food consumption, and diminished water intake, all of which were repercussions of MHV-A59 infection in mice. QFPD treatment exhibited notable efficacy in safeguarding tissue integrity. The extent of hepatic and pulmonary injury, when coupled with QFPD treatment, demonstrated not only a reduction with higher treatment dosages but also a decline with prolonged treatment duration. In the dose-effect experiment, there was a notable, dose-dependent reduction in the viral loads, as well as the expression levels of IL-1β, NLRP3, ASC, Caspase 1, Caspase-1 p20, GSDMD, GSDMD-N, and NF-κB within the liver of the QFPD-treated groups. Additionally, in the time-effects experiments, the viral loads and the expression levels of genes and proteins linked to the NLRP3 pathway were consistently lower in the QFPD-treated groups compared with the model control groups, particularly during the periods when their expressions reached their zenith in the model group. Notably, IL-18 showed only a modest elevation relative to the blank control group following QFPD treatment. CONCLUSIONS To sum up, our current study demonstrated that QFPD treatment has the capacity to alleviate infection-related symptoms, mitigate tissue damage in infected organs, and suppress viral replication in coronavirus-infected mice. The protective attributes of QFPD in coronavirus-infected mice are plausibly associated with its modulation of the NLRP3 signaling pathway. We further infer that QFPD holds substantial promise in the context of coronavirus infection therapy.
Collapse
Affiliation(s)
- Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minyi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wanxi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yatian Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyuan Xie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan Chen
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation. Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
20
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. Sci Rep 2024; 14:2808. [PMID: 38307916 PMCID: PMC10837437 DOI: 10.1038/s41598-024-53117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024] Open
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we propose that RNA-seq should be considered a diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 196 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that-combined with sequence alignments and BLASTp-they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany.
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lina-Liv Willruth
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Dietrich
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | - Nico Trummer
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A Furth
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Markus List
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
21
|
Harte JV, Coleman-Vaughan C, Crowley MP, Mykytiv V. It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19. Crit Rev Clin Lab Sci 2023; 60:595-624. [PMID: 37439130 DOI: 10.1080/10408363.2023.2232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
Collapse
Affiliation(s)
- James V Harte
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | | | - Maeve P Crowley
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- Irish Network for Venous Thromboembolism Research (INViTE), Ireland
| | - Vitaliy Mykytiv
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
22
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564190. [PMID: 38076885 PMCID: PMC10705570 DOI: 10.1101/2023.11.03.564190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we argue that RNA-seq should be considered a routine diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers vital insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 240 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that - combined with sequence alignments and pBLAST - they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Alexander Dietrich
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | | | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A. Furth
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, United States of America
| | - Lothar Hennighausen
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Singh RK, Santos MF, Herndon C, Gieler BA, Lee I, Chen J, Lorico A. Detection by super-resolution microscopy of viral proteins inside bloodborne extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:557-567. [PMID: 39697804 PMCID: PMC11648398 DOI: 10.20517/evcna.2023.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2024]
Abstract
Aim Extracellular vesicles (EVs) are small particles released by all cells, including virally infected cells, into the extracellular space. They play a role in various cellular processes, including intercellular communication, signaling, and immunity, and carry several biomolecules like proteins, lipids, and nucleic acids that can modulate cellular functions mostly by releasing their cargo inside the target cells via the endocytic pathway. One of the most exciting aspects of EV physiology is its potential in liquid biopsy as a diagnostic and prognostic marker. However, due to their extremely small size and lack of a molecular approach to examine intravesicular content or cargo, we cannot fully utilize their potential in healthcare. Methods Here, we present a novel approach that allows examining bloodborne EVs at a single-particle level with the ability to examine their cargo without disrupting structural integrity. Our technique utilizes super-resolution microscopy and a unique permeabilization process that maintains structural integrity while facilitating the examination of EV cargo. We used a mild-detergent-based permeabilization buffer that protects the integrity of EVs, minimizes background, and improves detection. Results Utilizing this approach, we were able to recognize viral proteins of SARS-CoV-2 virus in COVID-19 patients, including spike and nucleocapsid. Surprisingly, we found an almost equal amount of spike protein inside and on the surface of bloodborne EVs. This would have proven difficult to determine using other conventional methods. Conclusion To summarize, we have developed an easy-to-perform, sensitive, and highly efficient method that offers a mechanism to examine bloodborne EV cargo without disrupting their structural integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aurelio Lorico
- Correspondence to: Dr. Aurelio Lorico, Department of Basic Sciences, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA. E-mail:
| |
Collapse
|
24
|
Chen Y, Han P, Gao Y, Jiang R, Tao M, Li X. The value of the neutrophil to lymphocyte ratio and PLT count for the diagnosis and prediction of COVID-19 severity. PLoS One 2023; 18:e0293432. [PMID: 37903087 PMCID: PMC10615267 DOI: 10.1371/journal.pone.0293432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND COVID-19 and influenza A can cause severe respiratory illness. Differentiating between the two diseases and identifying critically ill patients in times of epidemics become a challenge for frontline medical staff. We sought to investigate whether both diseases and their severity could be recognized by routine blood parameters. METHODS Our retrospective study analysed the clinical data and first-time routine blood parameters of 80 influenza A patients and 123 COVID-19 patients. COVID-19 patients were divided into three groups according to treatment modalities and outcomes: outpatient group, inpatient without invasive mechanical ventilation (IMV) group, and inpatient with IMV group. We used the Mann-Whitney and Kruskal-Wallis tests to analyze the differences in routine blood parameters between the two or three groups. Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) were used to assess the diagnostic accuracy. RESULTS Compared with outpatient influenza A patients, outpatient COVID-19 patients had a higher neutrophil to lymphocyte ratio (NLR) (6.63 vs 3.55). ROC analysis showed that the NLR had a high diagnostic value for differentiating COVID-19 from influenza A (AUC = 0.739). The best cut-off point of the NLR was 6.48, the diagnostic sensitivity was 0.523, and the specificity was 0.925. The median platelet (PLT) count in the different COVID-19 groups was as follows: outpatient group (189×109/L), inpatient without IMV group (161×109/L), and inpatient with IMV group (94×109/L). Multivariate logistic regression analysis found a significant association between PLT and treatment modality and outcome in COVID-19 patients (p<0.001). CONCLUSIONS NLR can be used as a potential biological indicator to distinguish COVID-19 and influenza A. Decreased PLT predicts the critical condition of COVID-19 patients and helps stratify the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Pingyang Han
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yunjie Gao
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ruifeng Jiang
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mei Tao
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ximin Li
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
25
|
Tanaka H, Namkoong H, Chubachi S, Irie S, Uwamino Y, Lee H, Azekawa S, Otake S, Nakagawara K, Fukushima T, Watase M, Kusumoto T, Masaki K, Kamata H, Ishii M, Okada Y, Takano T, Imoto S, Koike R, Kimura A, Miyano S, Ogawa S, Kanai T, Sato TA, Fukunaga K. Clinical characteristics of patients with COVID-19 harboring detectable intracellular SARS-CoV-2 RNA in peripheral blood cells. Int J Infect Dis 2023; 135:41-44. [PMID: 37541421 DOI: 10.1016/j.ijid.2023.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVES Although SARS-CoV-2 RNAemia has been reported to strongly impact patients with severe COVID-19, the clinical characteristics of patients with COVID-19 harboring detectable intracellular SARS-CoV-2 RNA remain unknown. METHODS We included adult patients who had developed COVID-19 between February and September 2020. Total white blood cells derived from the buffy coat of peripheral whole blood were used to detect SARS-CoV-2 RNA using the Illumina COVIDSeq test. We compared the clinical characteristics between patients with and without detected viral RNA (detected and undetected groups). RESULTS Among the 390 patients included, 17 harbored SARS-CoV-2 RNA in peripheral white blood cells. All 17 patients required oxygen support during the disease course and had higher intensive care unit admission (52.9% vs 28.9%, P = 0.035), mortality (17.7% vs 3.5%, P = 0.004), kidney dysfunction (severe, 23.5% vs 6.4%, P = 0.029), and corticosteroid treatment rates (76.5% vs 46.5%, P = 0.016) than those of patients in the undetected group. CONCLUSION We propose that patients with circulating intracellular SARS-CoV-2 RNA in the peripheral blood exhibited the most severe disease course.
Collapse
Affiliation(s)
- Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan.
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Yoshifumi Uwamino
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mayuko Watase
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Taka-Aki Sato
- iLAC Co., Ltd., Tsukuba, Ibaraki, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
de Lima TM, Martins RB, Miura CS, Souza MVO, Cassiano MHA, Rodrigues TS, Veras FP, Sousa JDF, Gomes R, de Almeida GM, Melo SR, da Silva GC, Dias M, Capato CF, Silva ML, Luiz VEDDB, Carenzi LR, Zamboni DS, Jorge DMDM, Cunha FDQ, Tamashiro E, Anselmo-Lima WT, Valera FCP, Arruda E. Tonsils are major sites of persistence of SARS-CoV-2 in children. Microbiol Spectr 2023; 11:e0134723. [PMID: 37737615 PMCID: PMC10581087 DOI: 10.1128/spectrum.01347-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
In the present study, we show that SARS-CoV-2 can infect palatine tonsils, adenoids, and secretions in children without symptoms of COVID-19, with no history of recent upper airway infection. We studied 48 children undergoing tonsillectomy due to snoring/OSA or recurrent tonsillitis between October 2020 and September 2021. Nasal cytobrushes, nasal washes, and tonsillar tissue fragments obtained at surgery were tested by RT-qPCR, immunohistochemistry (IHC), flow cytometry, and neutralization assay. We detected the presence of SARS-CoV-2 in at least one specimen tested in 27% of patients. IHC revealed the presence of the viral nucleoprotein in epithelial surface and in lymphoid cells in both extrafollicular and follicular regions, in adenoids and palatine tonsils. Also, IHC for the SARS-CoV-2 non-structural protein NSP-16 indicated the presence of viral replication in 53.8% of the SARS-CoV-2-infected tissues. Flow cytometry showed that CD20+ B lymphocytes were the most infected phenotypes, followed by CD4+ lymphocytes and CD123 dendritic cells, CD8+ T lymphocytes, and CD14+ macrophages. Additionally, IF indicated that infected tonsillar tissues had increased expression of ACE2 and TMPRSS2. NGS sequencing demonstrated the presence of different SARS-CoV-2 variants in tonsils from different tissues. SARS-CoV-2 antigen detection was not restricted to tonsils but was also detected in nasal cells from the olfactory region. Palatine tonsils and adenoids are sites of prolonged RNA presence by SARS-CoV-2 in children, even without COVID-19 symptoms. IMPORTANCE This study shows that SRS-CoV-2 of different lineages can infect tonsils and adenoids in one quarter of children undergoing tonsillectomy. These findings bring advancement to the area of SARS-CoV-2 pathogenesis, by showing that tonsils may be sites of prolonged infection, even without evidence of recent COVID-19 symptoms. SARS-CoV-2 infection of B and T lymphocytes, macrophages, and dendritic cells may interfere with the mounting of immune responses in these secondary lymphoid organs. Moreover, the shedding of SARS-CoV-2 RNA in respiratory secretions from silently infected children raises concern about possible diagnostic confusion in the presence of symptoms of acute respiratory infections caused by other etiologies.
Collapse
Affiliation(s)
- Thais Melquiades de Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Ronaldo Bragança Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo School of Pharmaceutical Sciences, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Sponchiado Miura
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Maria Vitória Oliveira Souza
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Murilo Henrique Anzolini Cassiano
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Tamara Silva Rodrigues
- Department of Biochemistry and Immunology, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Flávio Protásio Veras
- Department of BioMolecular Sciences, University of São Paulo School of Pharmaceutical Sciences, Ribeirão Preto, São Paulo, Brazil
| | - Josane de Freitas Sousa
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Rogério Gomes
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Glaucia Maria de Almeida
- Department of Biochemistry and Immunology, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Stella Rezende Melo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Condé da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Dias
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Fabiano Capato
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Maria Lúcia Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Veridiana Ester Dias de Barros Luiz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Rodrigues Carenzi
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Dario Simões Zamboni
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Macedo de Melo Jorge
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Fernando de Queiroz Cunha
- Department of Pharmacology, University of Sao Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Edwin Tamashiro
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Fabiana Cardoso Pereira Valera
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Eurico Arruda
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, University of São Paulo School of Medicine, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Shivram H, Hackney JA, Rosenberger CM, Teterina A, Qamra A, Onabajo O, McBride J, Cai F, Bao M, Tsai L, Regev A, Rosas IO, Bauer RN. Transcriptomic and proteomic assessment of tocilizumab response in a randomized controlled trial of patients hospitalized with COVID-19. iScience 2023; 26:107597. [PMID: 37664617 PMCID: PMC10470387 DOI: 10.1016/j.isci.2023.107597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
High interleukin (IL)-6 levels are associated with greater COVID-19 severity. IL-6 receptor blockade by tocilizumab (anti-IL6R; Actemra) is used globally for the treatment of severe COVID-19, yet a molecular understanding of the therapeutic benefit remains unclear. We characterized the immune profile and identified cellular and molecular pathways modified by tocilizumab in peripheral blood samples from patients enrolled in the COVACTA study, a phase 3, randomized, double-blind, placebo-controlled trial of the efficacy and safety of tocilizumab in hospitalized patients with severe COVID-19. We identified markers of inflammation, lymphopenia, myeloid dysregulation, and organ injury that predict disease severity and clinical outcomes. Proteomic analysis confirmed a pharmacodynamic effect for tocilizumab and identified novel pharmacodynamic biomarkers. Transcriptomic analysis revealed that tocilizumab treatment leads to faster resolution of lymphopenia and myeloid dysregulation associated with severe COVID-19, indicating greater anti-inflammatory activity relative to placebo and potentially leading to faster recovery in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Aditi Qamra
- Hoffmann-La Roche Ltd, Mississauga, ON L5N 5M8, Canada
| | | | | | - Fang Cai
- Genentech, South San Francisco, CA 94080, USA
| | - Min Bao
- Genentech, South San Francisco, CA 94080, USA
| | - Larry Tsai
- Genentech, South San Francisco, CA 94080, USA
| | - Aviv Regev
- Genentech, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
28
|
Tsiakalos A, Ziakas PD, Polyzou E, Schinas G, Akinosoglou K. Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before-after Analysis. Microorganisms 2023; 11:2073. [PMID: 37630633 PMCID: PMC10459506 DOI: 10.3390/microorganisms11082073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Fluvoxamine, a selective serotonin reuptake inhibitor with anti-inflammatory properties, has gained attention as a repurposed drug to treat COVID-19. We aimed to explore the potential benefit of fluvoxamine on outpatients with early SARS-CoV-2 infection. We performed a retrospective study of fluvoxamine adult outpatients with symptomatic COVID-19 disease of early onset (<5 days), in the context of an infectious diseases private practice, between September-December 2021, in Greece. Patients with disease duration ≥5 days, dyspnea and/or hypoxemia with oxygen saturation <94% in room air and pregnancy were excluded from the analysis. In total, 103 patients, 54 males/49 females with a median age of 47 years (39-56), were included in this study. Patient characteristics were balanced before and after the introduction of fluvoxamine. Two patients in the fluvoxamine arm (3.8%; 95% CI 0.4-13) had clinical deterioration compared to 8 patients in the standard of care group (16%; 95% CI 7.2-29.1, p < 0.04). After controlling for age, sex, body mass index > 30 and vaccination status, fluvoxamine was independently associated with a lower risk of clinical deterioration (adj. OR 0.12; 95% CI 0.02-0.70, p < 0.02). Adding on fluvoxamine to treatment for early symptomatic COVID-19 patients may protect them from clinical deterioration and hospitalization, and it is an appealing low-cost, low-toxicity option in the community setting and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Eleni Polyzou
- Dept of Internal Medicine and Infectious Diseases, Medical School, University General Hospital of Patras, University of Patras, 26504 Rio, Greece; (E.P.); (G.S.); (K.A.)
| | - Georgios Schinas
- Dept of Internal Medicine and Infectious Diseases, Medical School, University General Hospital of Patras, University of Patras, 26504 Rio, Greece; (E.P.); (G.S.); (K.A.)
| | - Karolina Akinosoglou
- Dept of Internal Medicine and Infectious Diseases, Medical School, University General Hospital of Patras, University of Patras, 26504 Rio, Greece; (E.P.); (G.S.); (K.A.)
| |
Collapse
|
29
|
Almeida B, Dias TR, Teixeira AL, Dias F, Medeiros R. MicroRNAs Derived from Extracellular Vesicles: Keys to Understanding SARS-CoV-2 Vaccination Response in Cancer Patients? Cancers (Basel) 2023; 15:4017. [PMID: 37627045 PMCID: PMC10452664 DOI: 10.3390/cancers15164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked a global pandemic identified as coronavirus disease (COVID-19), with millions of deaths worldwide. However, several important questions regarding its impact on public health remain unanswered, such as the impact of vaccination on vulnerable subpopulations such as cancer patients. Cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, being manifested in most immunocompromised individuals. This strong immunosuppression can lead to a dysfunctional antiviral response to natural viral infection and compromised vaccination response. Extracellular vesicles (EVs) are membrane-bound vesicles released from cells that are involved in intercellular communication. EVs carry various molecules including microRNAs that play a crucial role in COVID-19 pathophysiology, influencing cellular responses. This review summarizes the state of the art concerning the role of EV-derived miRNAs in COVID-19 infection and their potential use as prognosis biomarkers for vaccination response in cancer patients.
Collapse
Affiliation(s)
- Beatriz Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia R. Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
- Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Biomedicine Research Center (CEBIMED), Research Inovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, Portuguese League against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| |
Collapse
|
30
|
Brunetti NS, Davanzo GG, de Moraes D, Ferrari AJR, Souza GF, Muraro SP, Knittel TL, Boldrini VO, Monteiro LB, Virgílio-da-Silva JV, Profeta GS, Wassano NS, Nunes Santos L, Carregari VC, Dias AHS, Veras FP, Tavares LA, Forato J, Castro IMS, Silva-Costa LC, Palma AC, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Agrela MV, Moretti ML, Buscaratti LI, Crunfli F, Ludwig RG, Gerhardt JA, Munhoz-Alves N, Marques AM, Sesti-Costa R, Amorim MR, Toledo-Teixeira DA, Parise PL, Martini MC, Bispos-Dos-Santos K, Simeoni CL, Granja F, Silvestrini VC, de Oliveira EB, Faca VM, Carvalho M, Castelucci BG, Pereira AB, Coimbra LD, Dias MMG, Rodrigues PB, Gomes ABSP, Pereira FB, Santos LMB, Bloyet LM, Stumpf S, Pontelli MC, Whelan S, Sposito AC, Carvalho RF, Vieira AS, Vinolo MAR, Damasio A, Velloso L, Figueira ACM, da Silva LLP, Cunha TM, Nakaya HI, Marques-Souza H, Marques RE, Martins-de-Souza D, Skaf MS, Proenca-Modena JL, Moraes-Vieira PMM, Mori MA, Farias AS. SARS-CoV-2 uses CD4 to infect T helper lymphocytes. eLife 2023; 12:e84790. [PMID: 37523305 PMCID: PMC10390044 DOI: 10.7554/elife.84790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.
Collapse
Grants
- #2295/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2021/08354-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2015/15626-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/14465-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #465489/2014-1 Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação
- #01.20.0003.00 Financiadora de Estudos e Projetos
- #306248/2017-4 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #2019/17007-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/04726-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2319/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2274/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2266/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2458/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2019/16116-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/06372-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04583-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2013/08293-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04579-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2018/14933-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04746-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/00098-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04919-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2017/01184-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04558-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/00194-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/18031- 8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/22398-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/13552-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/05155-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/06459-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2017/23920-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/24163-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/23328-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #310287/2018-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico
Collapse
Affiliation(s)
- Natalia S Brunetti
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Diogo de Moraes
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Allan J R Ferrari
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela F Souza
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thiago L Knittel
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vinicius O Boldrini
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lauar B Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - João Victor Virgílio-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gerson S Profeta
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luana Nunes Santos
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Artur H S Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas (UNICAMP), Campinas, Brazil
| | - Flavio P Veras
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto,, São Paulo, Brazil
| | - Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julia Forato
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Icaro M S Castro
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - André C Palma
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eli Mansour
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raisa G Ulaf
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana F Bernardes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thyago A Nunes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciana C Ribeiro
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcus V Agrela
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Luiza Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas I Buscaratti
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raissa G Ludwig
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jaqueline A Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Munhoz-Alves
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Maria Marques
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Renata Sesti-Costa
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariene R Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus Cavalheiro Martini
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Karina Bispos-Dos-Santos
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Camila L Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Virgínia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo B de Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor M Faca
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Murilo Carvalho
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Bianca G Castelucci
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alexandre B Pereira
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Laís D Coimbra
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marieli M G Dias
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Patricia B Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;, Campinas, Brazil
| | - Arilson Bernardo S P Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;, Campinas, Brazil
| | - Fabricio B Pereira
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leonilda M B Santos
- Neuroimmunology Unit, Department of Genetics, Microbiology and Immunology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM) - Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Louis-Marie Bloyet
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Spencer Stumpf
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Marjorie C Pontelli
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Sean Whelan
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Andrei C Sposito
- Laboratory of Vascular Biology and Arteriosclerosis, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behavior, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Licio Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Carolina M Figueira
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luis L P da Silva
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Mattar Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto,, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael E Marques
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- National Institute of Science and Technology in Biomarkers for Neuropsychiatry (INCTINBION), São Paulo, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas (UNICAMP), Campinas, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo A Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Alessandro S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
31
|
Mallis P. Exploring the Immunomodulatory Properties of Stem Cells in Combating COVID-19: Can We Expect More? Bioengineering (Basel) 2023; 10:803. [PMID: 37508830 PMCID: PMC10376782 DOI: 10.3390/bioengineering10070803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Since the first appearance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in December 2019, the disease has displayed a remarkable interindividual variability in the global population, resulting in different mortality and morbidity rates. Still, an effective cure against SARS-CoV-2 has not been developed, and therefore, alternative therapeutic protocols must also be evaluated. Considering that stem cells, especially Mesenchymal Stromal Cells (MSCs), are characterized by both regenerative and immunomodulatory properties and that their safety and tolerability have been investigated previously, these cells could potentially be applied against coronavirus disease 19 (COVID-19). In addition, an individual's genetic background is further related to disease pathogenesis, especially rare Inborn Errors of Immunity (IEIs), autoantibodies against Interferon type I, and the presence of different Human Leukocyte Antigens (HLA) alleles, which are actively associated with protection or susceptibility in relation to SARS-CoV-2. Herein, the use of MSCs as a potential stem cell therapy will require a deep understanding of their immunomodulatory properties associated with their HLA alleles. In such a way, HLA-restricted MSC lines can be developed and applied precisely, offering more solutions to clinicians in attenuating the mortality of SARS-CoV-2.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; ; Tel.: +30-6971616467
- Immunology Department & National Tissue Typing Center, General Hospital of Athens “Gennimatas”, 154 Mesogeion Ave., 115 27 Athens, Greece
| |
Collapse
|
32
|
Barreto EA, Cruz AS, Veras FP, Martins R, Bernardelli RS, Paiva IM, Lima TM, Singh Y, Guimarães RC, Damasceno S, Pereira N, Alves JM, Gonçalves TT, Forato J, Muraro SP, Souza GF, Batah SS, Proenca-Modena JL, Mori MA, Cunha FQ, Louzada-Junior P, Cunha TM, Nakaya HI, Fabro A, de Oliveira RDR, Arruda E, Réa R, Réa Neto Á, Fernandes da Silva MM, Leiria LO. COVID-19-related hyperglycemia is associated with infection of hepatocytes and stimulation of gluconeogenesis. Proc Natl Acad Sci U S A 2023; 120:e2217119120. [PMID: 37186819 PMCID: PMC10214153 DOI: 10.1073/pnas.2217119120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.
Collapse
Affiliation(s)
- Ester A. Barreto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Amanda S. Cruz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Flavio P. Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Ronaldo Martins
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Rafaella S. Bernardelli
- Federal University of Paraná, Center for Study and Research in Intensive Care Medicine, Curitiba82530-200, Brazil
| | - Isadora M. Paiva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Thais M. Lima
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo05652-900, Brazil
| | - Raphael C. Guimarães
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas13083-970, Brazil
| | - Samara Damasceno
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Nayara Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - João Manoel Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Tiago T. Gonçalves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Julia Forato
- Department of Genetics, Microbiology and Immunology, Laboratory of Emerging Viruses, Institute of Biology, University of Campinas, Campinas13083-970, Brazil
| | - Stéfanie P. Muraro
- Department of Genetics, Microbiology and Immunology, Laboratory of Emerging Viruses, Institute of Biology, University of Campinas, Campinas13083-970, Brazil
| | - Gabriela F. Souza
- Department of Genetics, Microbiology and Immunology, Laboratory of Emerging Viruses, Institute of Biology, University of Campinas, Campinas13083-970, Brazil
| | - Sabrina Setembre Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - José L. Proenca-Modena
- Department of Genetics, Microbiology and Immunology, Laboratory of Emerging Viruses, Institute of Biology, University of Campinas, Campinas13083-970, Brazil
- Experimental Medicine Research, Cluster University of Campinas, Campinas13083-970, Brazil
| | - Marcelo A. Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas13083-970, Brazil
- Experimental Medicine Research, Cluster University of Campinas, Campinas13083-970, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas13083-864, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Paulo Louzada-Junior
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Divisions of Clinical Immunology, Emergency, Infectious Diseases, and Intensive Care Unit, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Helder I. Nakaya
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Hospital Israelita Albert Einstein, São Paulo05652-900, Brazil
| | - Alexandre Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Renê D. R. de Oliveira
- Divisions of Clinical Immunology, Emergency, Infectious Diseases, and Intensive Care Unit, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Eurico Arruda
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| | - Rosângela Réa
- Federal University of Paraná, Center for Study and Research in Intensive Care Medicine, Curitiba82530-200, Brazil
- Hospital de Clínicas da Universidade Federal do Paraná, Curitiba80060-900, Brazil
| | - Álvaro Réa Neto
- Federal University of Paraná, Center for Study and Research in Intensive Care Medicine, Curitiba82530-200, Brazil
- Hospital de Clínicas da Universidade Federal do Paraná, Curitiba80060-900, Brazil
| | | | - Luiz Osório Leiria
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil
| |
Collapse
|
33
|
Augello M, Bono V, Rovito R, Tincati C, Marchetti G. Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames? Curr HIV/AIDS Rep 2023; 20:51-75. [PMID: 36680700 PMCID: PMC9860243 DOI: 10.1007/s11904-023-00647-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW HIV/AIDS and COVID-19 have been the major pandemics overwhelming our times. Given the enduring immune disfunction featuring people living with HIV (PLWH) despite combination antiretroviral therapy (cART), concerns for higher incidence and severity of SARS-CoV-2 infection as well as for suboptimal responses to the newly developed vaccines in this population arose early during the pandemics. Herein, we discuss the complex interplay between HIV and SARS-CoV-2, with a special focus on the immune responses to SARS-CoV-2 natural infection and vaccination in PLWH. RECENT FINDINGS Overall, current literature shows that COVID-19 severity and outcomes may be worse and immune responses to infection or vaccination lower in PLWH with poor CD4 + T-cell counts and/or uncontrolled HIV viremia. Data regarding the risk of post-acute sequelae of SARS-CoV-2 infection (PASC) among PLWH are extremely scarce, yet they seem to suggest a higher incidence of such condition. Scarce immunovirological control appears to be the major driver of weak immune responses to SARS-CoV-2 infection/vaccination and worse COVID-19 outcomes in PLWH. Therefore, such individuals should be prioritized for vaccination and should receive additional vaccine doses. Furthermore, given the potentially higher risk of developing long-term sequelae, PLWH who experienced COVID-19 should be ensured a more careful and prolonged follow-up.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
34
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
35
|
Pires De Souza GA, Le Bideau M, Boschi C, Wurtz N, Colson P, Aherfi S, Devaux C, La Scola B. Choosing a cellular model to study SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:1003608. [PMID: 36339347 PMCID: PMC9634005 DOI: 10.3389/fcimb.2022.1003608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 08/04/2023] Open
Abstract
As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.
Collapse
Affiliation(s)
- Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Céline Boschi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nathalie Wurtz
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Biological Sciences (INSB), Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
36
|
Development of an In Vitro Model of SARS-CoV-Induced Acute Lung Injury for Studying New Therapeutic Approaches. Antioxidants (Basel) 2022; 11:antiox11101910. [PMID: 36290634 PMCID: PMC9598130 DOI: 10.3390/antiox11101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
One of the causes of death of patients infected by SARS-CoV-2 is the induced respiratory failure caused by excessive activation of the immune system, the so-called “cytokine storm”, leading to damage to lung tissue. In vitro models reproducing various stages of the disease can be used to explore the pathogenetic mechanisms and therapeutic approaches to treating the consequences of a cytokine storm. We have developed an in vitro test system for simulating damage to the pulmonary epithelium as a result of the development of a hyperinflammatory reaction based on the co-cultivation of pulmonary epithelial cells (A549 cells) and human peripheral blood mononuclear cells (PBMC) primed with lipopolysaccharide (LPS). In this model, after 24 h of co-cultivation, a sharp decrease in the rate of proliferation of A549 cells associated with the intrinsic development of oxidative stress and, ultimately, with the induction of PANoptotic death were observed. There was a significant increase in the concentration of 40 cytokines/chemokines in a conditioned medium, including TNF-α, IFN-α, IL-6, and IL-1a, which corresponded to the cytokine profile in patients with severe manifestation of COVID-19. In order to verify the model, the analysis of the anti-inflammatory effects of well-known substances (dexamethasone, LPS from Rhodobacter sphaeroides (LPS-RS), polymyxin B), as well as multipotent mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) was carried out. Dexamethasone and polymyxin B restored the proliferative activity of A549 cells and reduced the concentration of proinflammatory cytokines. MSC demonstrated an ambivalent effect through stimulated production of both pro-inflammatory cytokines and growth factors that regenerate lung tissue. LPS-RS and EVs showed no significant effect. The developed test system can be used to study molecular and cellular pathological processes and to evaluate the effectiveness of various therapeutic approaches for the correction of hyperinflammatory response in COVID-19 patients.
Collapse
|
37
|
Lucas Garrote B, Lopes LC, Pinzón EF, Mendonça-Natividade FC, Martins RB, Santos A, Arruda E, Bueno PR. Reagentless Quantum-Rate-Based Electrochemical Signal of Graphene for Detecting SARS-CoV-2 Infection Using Nasal Swab Specimens. ACS Sens 2022; 7:2645-2653. [PMID: 36049154 DOI: 10.1021/acssensors.2c01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The quantum-rate model predicts a rate k as a frequency for transporting electrons within molecular structures, which is governed by the ratio between the quantum of conductance G and capacitance Cq, such that k = G/Cq. This frequency, as measured in a single-layer graphene appropriately modified with suitable biological receptors, can be applied as a transducer signal that ranges sensitivities within the attomole for biosensing applications. Here, we applied this label-free and reagentless biosensing transducer signal methodology for the qualitative diagnosis of COVID-19 infections, where this assay methodology was shown to be similar to the gold-standard real-time polymerase chain reaction. The quantum-rate strategy for the diagnosis of COVID-19 was performed by combining the response of the interface for detecting the S and N proteins of SARS-CoV-2 virus as accessed from nasopharyngeal/oropharyngeal patient samples with 80% of sensitivity and 77% of specificity. As a label-free and reagentless biosensing platform, the methodology is decidedly useful for point-of-care and internet-of-things biological assaying technologies, not only because of its real-time ability to measure infections but also because of the capability for miniaturization inherent in reagentless electrochemical methods. This approach effectively permits the rapid development of biological assays for surveillance and control of endemics and pandemics.
Collapse
Affiliation(s)
- Beatriz Lucas Garrote
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University, São Paulo 14800-060, Brazil
| | - Laís C Lopes
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University, São Paulo 14800-060, Brazil
| | - Edgar F Pinzón
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University, São Paulo 14800-060, Brazil
| | - Flávia C Mendonça-Natividade
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University, São Paulo 14800-060, Brazil
| | - Ronaldo B Martins
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Adriano Santos
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University, São Paulo 14800-060, Brazil
| | - Eurico Arruda
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Paulo R Bueno
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University, São Paulo 14800-060, Brazil
| |
Collapse
|
38
|
Affiliation(s)
- Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | |
Collapse
|