1
|
Zhu R, Yue C, Wu S, Wu M, Xu Z, Liu X, Wang R, Wang M. Alternative Splicing of BnABF4L Mediates Response to Abiotic Stresses in Rapeseed (Brassica napus L.). BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:51. [PMID: 40341108 PMCID: PMC12060344 DOI: 10.1186/s13068-025-02645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
ABRE BINDING FACTOR 4 (ABF4) is a pivotal regulatory gene in the abscisic acid (ABA) signaling pathway, and changes in its expression levels can modulate the plant's stress resistance. To further explore the specific regulatory mechanisms of alternative splicing (AS) in the ABA signaling pathway and to identify new breakthroughs for breeding high stress-resistant varieties of Brassica napus, we identified 17 homologous genes of ABF4 in the genome. Utilizing bioinformatics techniques, we analyzed their motifs, conserved domains, and cis-acting elements of their promoters. Through transcriptome data from the stress-tolerant dwarf strain ndf2 and its parental line 3529, we uncovered a significantly differentially expressed ABF4 gene, which we named BnABF4L. Subsequently, we analyzed the AS events of BnABF4L under normal growth conditions and different abiotic stresses, as well as the impact of different transcript variants' 5' untranslated region (5'UTR) on gene translation. BnABF4L undergoes alternative 3' splice site (A3SS) selection to produce three transcripts (V1-V3) with divergent 5'UTRs. While V1 translation is suppressed by upstream ORFs (uORFs), V2/V3 exhibit enhanced translational efficiency. Under stress, ndf2 shifts splicing toward V3, circumventing uORF-mediated repression to upregulate stress-adapted isoforms. We validated the inhibitory effect of upstream open reading frames (uORFs) on protein-coding open reading frame (pORFs) and, based on the collective experimental results, proposed the flexible regulatory mechanism of AS events of BnABF4L in response to stress. Our findings provide new insights for future studies on stress resistance in rapeseed as well as for research on the regulation of alternative splicing mechanisms in the ABA signaling pathway.
Collapse
Affiliation(s)
- Ruijia Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chu Yue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shifan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingting Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ziyue Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaoqun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
2
|
Wang Y, Xu N, Ndzie Noah ML, Chen L, Zhan X. Pyruvate Kinase M1/2 Proteoformics for Accurate Insights into Energy Metabolism Abnormity to Promote the Overall Management of Ovarian Cancer Towards Predictive, Preventive, and Personalized Medicine Approaches. Metabolites 2025; 15:203. [PMID: 40137167 PMCID: PMC11944880 DOI: 10.3390/metabo15030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ovarian cancer (OC) is a global health problem that frequently presents at advanced stages, is predisposed to recurrence, readily develops resistance to platinum-based drugs, and has a low survival rate. Predictive, preventive, and personalized medicine (PPPM/3PM) offers an integrated solution with the use of genetic, proteomic, and metabolic biomarkers to identify high-risk individuals for early detection. Metabolic reprogramming is one of the key strategies employed by tumor cells to adapt to the microenvironment and support unlimited proliferation. Pyruvate kinases M1 and M2 (PKM1/2) are encoded by the PKM gene, a pivotal enzyme in the last step of the glycolytic pathway, which is at the crossroads of aerobic oxidation and the Warburg effect to serve as a potential regulator of glucose metabolism and influence cellular energy production and metabolic reprogramming. Commonly, the ratio of PKM1-to-PKM2 is changed in tumors compared to normal controls, and PKM2 is highly expressed in OC to induce a high glycolysis rate and participate in the malignant invasion and metastatic characteristics of cancer cells with epithelial/mesenchymal transition (EMT). PKM2 inhibitors suppress the migration and growth of OC cells by interfering with the Warburg effect. Proteoforms are the final structural and functional forms of a gene/protein, and the canonical protein PKM contains all proteoforms encoded by the same PKM gene. The complexity of PKM can be elucidated by proteoformics. The OC-specific PKM proteoform might represent a specific target for therapeutic interventions against OC. In the framework of PPPM/3PM, the OC-specific PKM proteoform might be the early warning and prognosis biomarker. It is important to clarify the molecular mechanisms of PKM proteoforms in cancer metabolism. This review analyzes the expression, function, and molecular mechanisms of PKM proteoforms in OC, which help identify specific biomarkers for OC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Department of Gynecology, Gaotang County Medical Center, Liaocheng 252800, China
| | - Nuo Xu
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Marie Louise Ndzie Noah
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| | - Xianquan Zhan
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| |
Collapse
|
3
|
Grimmett ZW, Zhang R, Zhou HL, Chen Q, Miller D, Qian Z, Lin J, Kalra R, Gross SS, Koch WJ, Premont RT, Stamler JS. The denitrosylase SCoR2 controls cardioprotective metabolic reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642752. [PMID: 40161620 PMCID: PMC11952481 DOI: 10.1101/2025.03.12.642752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality, and therapeutic options remain limited. Endogenously generated nitric oxide (NO) is highly cardioprotective, but protection is not replicated by nitroso-vasodilators (e.g., nitrates, nitroprusside) used in clinical practice, highlighting specificity in NO-based signaling and untapped therapeutic potential. Signaling by NO is mediated largely by S-nitrosylation, entailing specific enzymes that form and degrade S-nitrosothiols in proteins (SNO-proteins), termed nitrosylases and denitrosylases, respectively. SNO-CoA Reductase 2 (SCoR2; product of the Akr1a1 gene) is a recently discovered protein denitrosylase. Genetic variants in SCoR2 have been associated with cardiovascular disease, but its function is unknown. Here we show that mice lacking SCoR2 exhibit robust protection in an animal model of MI. SCoR2 regulates ketolytic energy availability, antioxidant levels and polyol homeostasis via S-nitrosylation of key metabolic effectors. Human cardiomyopathy shows reduced SCoR2 expression and an S-nitrosylation signature of metabolic reprogramming, mirroring SCoR2-/- mice. Deletion of SCoR2 thus coordinately reprograms multiple metabolic pathways-ketone body utilization, glycolysis, pentose phosphate shunt and polyol metabolism-to limit infarct size, establishing SCoR2 as a novel regulator in the injured myocardium and a potential drug target. Impact statement Mice lacking the denitrosylase enzyme SCoR2/AKR1A1 demonstrate robust cardioprotection resulting from reprogramming of multiple metabolic pathways, revealing widespread, coordinated metabolic regulation by SCoR2.
Collapse
Affiliation(s)
- Zachary W. Grimmett
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Rongli Zhang
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Hua-Lin Zhou
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Justin Lin
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Riti Kalra
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham NC, 27710
- Department of Medicine, Duke University School of Medicine, Durham NC, 27710
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland OH, 44106
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland OH, 44106
| |
Collapse
|
4
|
Leclair NK, Brugiolo M, Park S, Devoucoux M, Urbanski L, Angarola BL, Yurieva M, Anczuków O. Antisense oligonucleotide-mediated TRA2β poison exon inclusion induces the expression of a lncRNA with anti-tumor effects. Nat Commun 2025; 16:1670. [PMID: 39955311 PMCID: PMC11829967 DOI: 10.1038/s41467-025-56913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Upregulated expression of the oncogenic splicing factor TRA2β occurs in human tumors partly through decreased inclusion of its autoregulatory non-coding poison exon (PE). Here, we reveal that low TRA2β-PE inclusion negatively impacts patient survival across several tumor types. We demonstrate the ability of splice-switching antisense oligonucleotides (ASOs) to promote TRA2β-PE inclusion and lower TRA2β protein levels in pre-clinical cancer models. TRA2β-PE-targeting ASOs induce anti-cancer phenotypes and widespread transcriptomic alterations with functional impact on RNA processing, mTOR, and p53 signaling pathways. Surprisingly, the effect of TRA2β-PE-targeting ASOs on cell viability are not phenocopied by TRA2β knockdown. Mechanistically, we find that the ASO functions by both decreasing TRA2β protein and inducing the expression of TRA2β-PE-containing transcripts that act as long non-coding RNAs to sequester nuclear proteins. Finally, TRA2β-PE-targeting ASOs are toxic to preclinical 3D organoid and in vivo patient-derived xenograft models. Together, we demonstrate that TRA2β-PE acts both as a regulator of protein expression and a long-noncoding RNA to control cancer cell growth. Drugging oncogenic splicing factors using PE-targeting ASOs is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Maeva Devoucoux
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Liu W, Liu Y, Li H, Wang S, Chen P, Liu Z, Huo X, Tian J. IGF2BP2 orchestrates global expression and alternative splicing profiles associated with glioblastoma development in U251 cells. Transl Oncol 2025; 51:102177. [PMID: 39515086 PMCID: PMC11582445 DOI: 10.1016/j.tranon.2024.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) is a highly invasive and malignant central nervous system tumor with a median survival duration of 15 months despite multimodal therapy. The insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) has been implicated in various cancers and is known to regulate RNA metabolism and alternative splicing (AS). However, its role in GBM remains unclear. Overexpression of IGF2BP2 led to significant alterations in gene expression, with 472 genes upregulated and 99 downregulated. Gene ontology (GO) analysis indicated enrichment in immune-related biological processes. Notably, IGF2BP2 was found to regulate AS events, with 1372 regulated AS genes (RASGs) and 2096 significantly distinct ASEs identified. Furthermore, IGF2BP2 selectively bound to 3' and 5' untranslated regions (UTRs) via GG[AU]C motifs, and IFIH1 was identified as a direct binding partner and upregulated gene upon IGF2BP2 overexpression. Functional enrichment analysis suggested that IGF2BP2 influences pathways related to RNA splicing and immune responses. Our findings demonstrate that IGF2BP2 plays a crucial role in GBM by modulating the transcriptome and AS events. The upregulation of immune-related genes and the regulation of AS by IGF2BP2 highlight its potential as a therapeutic target in GBM, particularly for immunotherapy. The study provides a foundation for further investigation into the molecular mechanisms of IGF2BP2 in GBM and its implications for cancer treatment.
Collapse
Affiliation(s)
- Wenqing Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China; Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haoyuan Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China; Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shixiong Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Pengfei Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhongtao Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jihui Tian
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Núñez-Álvarez Y, Espie-Caullet T, Buhagiar G, Rubio-Zulaika A, Alonso-Marañón J, Luna-Pérez E, Blazquez L, Luco R. A CRISPR-dCas13 RNA-editing tool to study alternative splicing. Nucleic Acids Res 2024; 52:11926-11939. [PMID: 39162234 PMCID: PMC11514487 DOI: 10.1093/nar/gkae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alternative splicing allows multiple transcripts to be generated from the same gene to diversify the protein repertoire and gain new functions despite a limited coding genome. It can impact a wide spectrum of biological processes, including disease. However, its significance has long been underestimated due to limitations in dissecting the precise role of each splicing isoform in a physiological context. Furthermore, identifying key regulatory elements to correct deleterious splicing isoforms has proven equally challenging, increasing the difficulty of tackling the role of alternative splicing in cell biology. In this work, we take advantage of dCasRx, a catalytically inactive RNA targeting CRISPR-dCas13 ortholog, to efficiently switch alternative splicing patterns of endogenous transcripts without affecting overall gene expression levels cost-effectively. Additionally, we demonstrate a new application for the dCasRx splice-editing system to identify key regulatory RNA elements of specific splicing events. With this approach, we are expanding the RNA toolkit to better understand the regulatory mechanisms underlying alternative splicing and its physiological impact in various biological processes, including pathological conditions.
Collapse
Affiliation(s)
- Yaiza Núñez-Álvarez
- Institut de Génétique Humaine, Université de Montpellier, CNRS UMR9002, Montpellier, France
| | - Tristan Espie-Caullet
- Institut de Génétique Humaine, Université de Montpellier, CNRS UMR9002, Montpellier, France
- Institut Curie, Paris-Saclay Research University, CNRS UMR3348, 91401 Orsay, France
- Team supported by la Ligue contre le Cancer, France
| | - Géraldine Buhagiar
- Institut Curie, Paris-Saclay Research University, CNRS UMR3348, 91401 Orsay, France
- Team supported by la Ligue contre le Cancer, France
| | - Ane Rubio-Zulaika
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Josune Alonso-Marañón
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Elvira Luna-Pérez
- Institut Curie, Paris-Saclay Research University, CNRS UMR3348, 91401 Orsay, France
- Team supported by la Ligue contre le Cancer, France
| | - Lorea Blazquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031 Madrid, Spain
| | - Reini F Luco
- Institut de Génétique Humaine, Université de Montpellier, CNRS UMR9002, Montpellier, France
- Institut Curie, Paris-Saclay Research University, CNRS UMR3348, 91401 Orsay, France
- Team supported by la Ligue contre le Cancer, France
| |
Collapse
|
8
|
Wan L, Kral AJ, Voss D, Schäfer B, Sudheendran K, Danielsen M, Caruthers MH, Krainer AR. Screening Splice-Switching Antisense Oligonucleotides in Pancreas-Cancer Organoids. Nucleic Acid Ther 2024; 34:188-198. [PMID: 38716830 PMCID: PMC11387002 DOI: 10.1089/nat.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated or mutated splicing factors, or genetic alterations in splicing-regulatory cis-elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids are a promising platform to recapitulate key aspects of disease states, and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) lipofection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma organoids. This optimized delivery method allows fast and efficient screening of ASOs, e.g., those that reverse oncogenic alternative splicing. In combination with advances in chemical modifications of oligonucleotides and ASO-delivery strategies, this method has the potential to accelerate the discovery of antitumor ASO drugs that target pathological alternative splicing.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Alexander J. Kral
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Dillon Voss
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Balázs Schäfer
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | - Mathias Danielsen
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | |
Collapse
|
9
|
More DA, Singh N, Mishra R, Muralidharan HP, Gopinath KS, Gopal C, Kumar A. Intronic miR-6741-3p targets the oncogene SRSF3: Implications for oral squamous cell carcinoma pathogenesis. PLoS One 2024; 19:e0296565. [PMID: 38781195 PMCID: PMC11115324 DOI: 10.1371/journal.pone.0296565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic silencing through methylation is one of the major mechanisms for downregulation of tumor suppressor miRNAs in various malignancies. The aim of this study was to identify novel tumor suppressor miRNAs which are silenced by DNA hypermethylation and investigate the role of at least one of these in oral squamous cell carcinoma (OSCC) pathogenesis. We treated cells from an OSCC cell line SCC131 with 5-Azacytidine, a DNA methyltransferase inhibitor, to reactivate tumor suppressor miRNA genes silenced/downregulated due to DNA methylation. At 5-day post-treatment, total RNA was isolated from the 5-Azacytidine and vehicle control-treated cells. The expression of 2,459 mature miRNAs was analysed between 5-Azacytidine and control-treated OSCC cells by the microRNA microarray analysis. Of the 50 miRNAs which were found to be upregulated following 5-Azacytidine treatment, we decided to work with miR-6741-3p in details for further analysis, as it showed a mean fold expression of >4.0. The results of qRT-PCR, Western blotting, and dual-luciferase reporter assay indicated that miR-6741-3p directly targets the oncogene SRSF3 at the translational level only. The tumor-suppressive role of miR-6741-3p was established by various in vitro assays and in vivo study in NU/J athymic nude mice. Our results revealed that miR-6741-3p plays a tumor-suppressive role in OSCC pathogenesis, in part, by directly regulating SRSF3. Based on our observations, we propose that miR-6741-3p may serve as a potential biological target in tumor diagnostics, prognostic evaluation, and treatment of OSCC and perhaps other malignancies.
Collapse
Affiliation(s)
- Dhanashree Anil More
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nivedita Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Radha Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
10
|
Li Y, Zhang S, Li Y, Liu J, Li Q, Zang W, Pan Y. The Regulatory Network of hnRNPs Underlying Regulating PKM Alternative Splicing in Tumor Progression. Biomolecules 2024; 14:566. [PMID: 38785973 PMCID: PMC11117501 DOI: 10.3390/biom14050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming in tumor cells, and aerobic glycolysis is the primary mechanism by which glucose is quickly transformed into lactate. As one of the primary rate-limiting enzymes, pyruvate kinase (PK) M is engaged in the last phase of aerobic glycolysis. Alternative splicing is a crucial mechanism for protein diversity, and it promotes PKM precursor mRNA splicing to produce PKM2 dominance, resulting in low PKM1 expression. Specific splicing isoforms are produced in various tissues or illness situations, and the post-translational modifications are linked to numerous disorders, including cancers. hnRNPs are one of the main components of the splicing factor families. However, there have been no comprehensive studies on hnRNPs regulating PKM alternative splicing. Therefore, this review focuses on the regulatory network of hnRNPs on PKM pre-mRNA alternative splicing in tumors and clinical drug research. We elucidate the role of alternative splicing in tumor progression, prognosis, and the potential mechanism of abnormal RNA splicing. We also summarize the drug targets retarding tumorous splicing events, which may be critical to improving the specificity and effectiveness of current therapeutic interventions.
Collapse
Affiliation(s)
- Yuchao Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yuexian Li
- Department of Radiation Oncology Gastrointestinal and Urinary and Musculoskeletal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China;
| | - Junchao Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Wenli Zang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| |
Collapse
|
11
|
Holling GA, Chavel CA, Sharda AP, Lieberman MM, James CM, Lightman SM, Tong JH, Qiao G, Emmons TR, Giridharan T, Hou S, Intlekofer AM, Higashi RM, Fan TWM, Lane AN, Eng KH, Segal BH, Repasky EA, Lee KP, Olejniczak SH. CD8+ T cell metabolic flexibility elicited by CD28-ARS2 axis-driven alternative splicing of PKM supports antitumor immunity. Cell Mol Immunol 2024; 21:260-274. [PMID: 38233562 PMCID: PMC10902291 DOI: 10.1038/s41423-024-01124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.
Collapse
Affiliation(s)
- G Aaron Holling
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Colin A Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anand P Sharda
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mackenzie M Lieberman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Caitlin M James
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Shivana M Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason H Tong
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tiffany R Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Massachusetts Institute of Technology, Boston, MA, 02139, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Shengqi Hou
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard M Higashi
- Center for Environmental Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, Lexington, KY, 40536, USA
| | - Teresa W M Fan
- Center for Environmental Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, Lexington, KY, 40536, USA
| | - Andrew N Lane
- Center for Environmental Systems Biochemistry, Department of Toxicology and Cancer Biology and Markey Cancer Center, Lexington, KY, 40536, USA
| | - Kevin H Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Brahm H Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
12
|
Chen P, Lou L, Sharma B, Li M, Xie C, Yang F, Wu Y, Xiao Q, Gao L. Recent Advances on PKM2 Inhibitors and Activators in Cancer Applications. Curr Med Chem 2024; 31:2955-2973. [PMID: 37455458 DOI: 10.2174/0929867331666230714144851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Metabolic reprogramming of cells, from the normal mode of glucose metabolism named glycolysis, is a pivotal characteristic of impending cancerous cells. Pyruvate kinase M2 (PKM2), an important enzyme that catalyzes the final rate-limiting stage during glycolysis, is highly expressed in numerous types of tumors and aids in development of favorable conditions for the survival of tumor cells. Increasing evidence has suggested that PKM2 is one of promising targets for innovative drug discovery, especially for the developments of antitumor therapeutics. Herein, we systematically summarize the recent advancement on PKM2 modulators including inhibitors and activators in cancer applications. We also discussed the classifications of pyruvate kinases in mammals and the biological functions of PKM2 in this review. We do hope that this review would provide a comprehensive understanding of the current research on PKM2 modulators, which may benefit the development of more potent PKM2-related drug candidates to treat PKM2-associated diseases including cancers in future.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Mengchu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Chengliang Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
13
|
Jobbins AM, Yu S, Paterson HAB, Maude H, Kefala-Stavridi A, Speck C, Cebola I, Vernia S. Pre-RNA splicing in metabolic homeostasis and liver disease. Trends Endocrinol Metab 2023; 34:823-837. [PMID: 37673766 DOI: 10.1016/j.tem.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in sensing nutritional and hormonal inputs to maintain metabolic homeostasis. Recent studies into pre-mRNA splicing and alternative splicing (AS) and their effects on gene expression have revealed considerable transcriptional complexity in the liver, both in health and disease. While the contribution of these mechanisms to cell and tissue identity is widely accepted, their role in physiological and pathological contexts within tissues is just beginning to be appreciated. In this review, we showcase recent studies on the splicing and AS of key genes in metabolic pathways in the liver, the effect of metabolic signals on the spliceosome, and therapeutic intervention points based on RNA splicing.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sijia Yu
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Helen A B Paterson
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Antonia Kefala-Stavridi
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christian Speck
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Santiago Vernia
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
14
|
Jia R, Zheng ZM. Oncogenic SRSF3 in health and diseases. Int J Biol Sci 2023; 19:3057-3076. [PMID: 37416784 PMCID: PMC10321290 DOI: 10.7150/ijbs.83368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Serine/arginine rich splicing factor 3 (SRSF3) is an important multi-functional splicing factor, and has attracted increasing attentions in the past thirty years. The importance of SRSF3 is evidenced by its impressively conserved protein sequences in all animals and alternative exon 4 which represents an autoregulatory mechanism to maintain its proper cellular expression level. New functions of SRSF3 have been continuously discovered recently, especially its oncogenic function. SRSF3 plays essential roles in many cellular processes by regulating almost all aspects of RNA biogenesis and processing of many target genes, and thus, contributes to tumorigenesis when overexpressed or disregulated. This review updates and highlights the gene, mRNA, and protein structure of SRSF3, the regulatory mechanisms of SRSF3 expression, and the characteristics of SRSF3 targets and binding sequences that contribute to SRSF3's diverse molecular and cellular functions in tumorigenesis and human diseases.
Collapse
Affiliation(s)
- Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
15
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
16
|
Zhao W, Li M, Wang S, Li Z, Li H, Li S. CircRNA SRRM4 affects glucose metabolism by regulating PKM alternative splicing via SRSF3 deubiquitination in epilepsy. Neuropathol Appl Neurobiol 2023; 49:e12850. [PMID: 36168302 DOI: 10.1111/nan.12850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Several reports suggest that epigenetic therapy may be a potential method for treating epilepsy, and circular RNAs (circRNAs) play important roles in mediating the epigenetic mechanisms associated with epilepsy; however, currently there are no effective treatment methods to prevent the progression of epileptogenesis. The circRNA serine/arginine repetitive matrix 4 (circSRRM4) was found to exert regulatory effects in temporal lobe epilepsy (TLE); however, the mechanisms involved are still unknown. MATERIALS AND METHODS To elucidate the molecular mechanism of circSRRM4, we investigated human epileptic brain tissue, epileptic rats, neuron and astrocyte cell lines using RT-qPCR, western blot, fluorescence in situ hybridisation, immunofluorescence staining, Nissl stain, micro-PET-CT, RNA-pulldown, liquid chromatography-mass spectrometry, and RBP immunoprecipitation techniques. Furthermore, we evaluated the pyruvate kinase M1/2 (PKM) expression patterns in the human and rat models of TLE. RESULTS We detected the increased circSRRM4 expression in the hypometabolic lesions of patients with TLE and discovered that circSrrm4 has specific spatiotemporal characteristics in rats with kainic acid-induced epilepsy. The decreased PKM1 expression and increased PKM2 expression were similar to the Warburg effect in tumours. Notably, circSrrm4 silencing reduced the incidence and frequency of epilepsy, improved local hypometabolism, and prevented neuronal loss and astrocyte activation. CONCLUSION PKM2 promotes lactic acid production in the astrocytes by inducing glycolysis, thereby contributing to the energy source for epileptic seizures. Notably, circSRRM4 combines with and inhibits serine and arginine rich splicing factor 3 (SRSF3) from joining the ubiquitin-proteasome pathway, improving the SRSF3-regulated alternative splicing of PKM, and consequently stimulating glycolysis in cells.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuang Li
- The Third Department of Neurosurgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
18
|
Lan C, Zhang H, Wang K, Liu X, Zhao Y, Guo Z, Zhang N, Zhou Y, Gao M, Gu F, Ma Y. The alternative splicing of intersectin 1 regulated by PTBP1 promotes human glioma progression. Cell Death Dis 2022; 13:835. [PMID: 36171198 PMCID: PMC9519902 DOI: 10.1038/s41419-022-05238-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/23/2023]
Abstract
Intersectin 1 (ITSN1) contains two isoforms: ITSN1-S and ITSN1-L, which are highly regulated by alternative splicing. Our previous results showed that the two isoforms of ITSN1 displayed opposite functions: ITSN1-S promoted glioma development, while ITSN1-L exerted an inhibitory role in glioma progression. In this study, our transcriptome analysis using a large glioma cohort indicated that the ratio of ITSN1-S/ITSN1-L was positively correlated with glioma grading and poor prognosis. We identified the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) as an ITSN1 pre-mRNA interaction protein through RNA pull-down assay and RNA immunoprecipitation assay. Knockdown of PTBP1 decreased the ratio of ITSN1-S/ITSN1-L. Minigene reporter assay and mutation analyses further confirmed PTBP1 targeted polypyrimidine sequences on ITSN1 exon 30 (TTGCACTTCAGTATTTT) and promoted the inclusion of ITSN1 exon 30. Subsequently, silencing PTBP1 inhibited glioma cell proliferation, migration, and invasion by down-regulating the ratio of ITSN1-S/ITSN1-L. Taken together, our study provides a novel mechanism that PTBP1 modulates the alternative splicing of ITSN1 and promotes glioma proliferation and motility by up-regulating the ratio of ITSN1-S/ITSN1-L, thereby highlighting that PTBP1 may be an attractive therapeutic target for gliomas.
Collapse
Affiliation(s)
- Chungen Lan
- grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Huikun Zhang
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Kezhen Wang
- grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoli Liu
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yawen Zhao
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhifang Guo
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ning Zhang
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yongxia Zhou
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Manzhi Gao
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Gu
- grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yongjie Ma
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
19
|
Nold SP, Sych K, Imre G, Fuhrmann DC, Pfeilschifter J, Vutukuri R, Schnutgen F, Wittig I, Meisterknecht J, Frank S, Goren I. Reciprocal abrogation of
PKM
isoforms: contradictory outcomes and differing impact of splicing signal on
CRISPR
/Cas9 mediates gene editing in keratinocytes. FEBS J 2022; 290:2338-2365. [PMID: 36083715 DOI: 10.1111/febs.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
The healing of wounded skin is a highly organized process involving a massive cell in- and outflux, proliferation and tissue remodelling. It is well accepted that metabolic constraints such as diabetes mellitus, overweight or anorexia impairs wound healing. Indeed, wound inflammation involves a boost of overall metabolic changes. As wound healing converges inflammatory processes that are also common to transformation, we investigate the functional role of the pro-neoplastic factor pyruvate kinase (PK) M2 and its metabolic active splice variant PKM1 in keratinocytes. Particularly, we challenge the impact of reciprocal ablation of PKM1 or two expression. Here, CRISPR/Cas9 genome editing of the PKM gene in HaCaT reveals an unexpected mutational bias at the 3'SS of exon 9, whereas no preference for any particular kind of mutation at exon 10 3' splice, despite the close vicinity (400 nucleotides apart) and sequence similarity between the two sites. Furthermore, as opposed to transient silencing of PKM2, exclusion splicing of PKM2 via genome editing mutually increases PKM1 mRNA and protein expression and compensates for the absence of PKM2, whereas the reciprocal elimination of PKM1 splicing reduces PKM2 expression and impedes cell proliferation, thus unveiling an essential role for PKM1 in growth and metabolic balance of HaCaT keratinocytes.
Collapse
Affiliation(s)
- Simon P. Nold
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| | - Khrystyna Sych
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| | - Gergely Imre
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| | - Dominik C. Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I Goethe University Frankfurt Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| | - Rajkumar Vutukuri
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| | - Frank Schnutgen
- Hematology/Oncology, Faculty of Medicine 2, University Hospital Goethe University Frankfurt Germany
- German Cancer Research Center and German Cancer Consortium Heidelberg Germany
- Frankfurt Cancer Institute (FCI) Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology Goethe University Frankfurt Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhein‐Main Frankfurt Germany
| | - Jana Meisterknecht
- Functional Proteomics, Institute of Cardiovascular Physiology Goethe University Frankfurt Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhein‐Main Frankfurt Germany
| | - Stefan Frank
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| | - Itamar Goren
- Pharmazentrum Frankfurt/ZAFES, General Pharmacology and Toxicology, Faculty of Medicine Goethe University Frankfurt Germany
| |
Collapse
|
20
|
Wan L, Deng M, Zhang H. SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms. Genes (Basel) 2022; 13:1659. [PMID: 36140826 PMCID: PMC9498594 DOI: 10.3390/genes13091659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Substantial emerging evidence supports that dysregulated RNA metabolism is associated with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultraconserved and structurally related proteins that contain a characteristic RS domain rich in arginine and serine residues. SR proteins perform a critical role in spliceosome assembling and conformational transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing, such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been reported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve as potential therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Ledong Wan
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Min Deng
- Department of Pathology, First Peoples Hospital Fuyang, Hangzhou 311400, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
21
|
Optimization of Bifunctional Antisense Oligonucleotides for Regulation of Mutually Exclusive Alternative Splicing of PKM Gene. Molecules 2022; 27:molecules27175682. [PMID: 36080449 PMCID: PMC9457596 DOI: 10.3390/molecules27175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Oligonucleotide tools, as modulators of alternative splicing, have been extensively studied, giving a rise to new therapeutic approaches. In this article, we report detailed research on the optimization of bifunctional antisense oligonucleotides (BASOs), which are targeted towards interactions with hnRNP A1 protein. We performed a binding screening assay, Kd determination, and UV melting experiments to select sequences that can be used as a high potency binding platform for hnRNP A1. Newly designed BASOs were applied to regulate the mutually exclusive alternative splicing of the PKM gene. Our studies demonstrate that at least three repetitions of regulatory sequence are necessary to increase expression of the PKM1 isoform. On the other hand, PKM2 expression can be inhibited by a lower number of regulatory sequences. Importantly, a novel branched type of BASOs was developed, which significantly increased the efficiency of splicing modulation. Herein, we provide new insights into BASOs design and show, for the first time, the possibility to regulate mutually exclusive alternative splicing via BASOs.
Collapse
|
22
|
Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022; 21:417-439. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.
Collapse
|
23
|
Ma WK, Voss DM, Scharner J, Costa ASH, Lin KT, Jeon HY, Wilkinson JE, Jackson M, Rigo F, Bennett CF, Krainer AR. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res 2021; 82:900-915. [PMID: 34921016 DOI: 10.1158/0008-5472.can-20-0948] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The M2 pyruvate kinase (PKM2) isoform is upregulated in most cancers and plays a crucial role in regulation of the Warburg effect, which is characterized by the preference for aerobic glycolysis over oxidative phosphorylation for energy metabolism. PKM2 is an alternative-splice isoform of the PKM gene and is a potential therapeutic target. Antisense oligonucleotides (ASO) that switch PKM splicing from the cancer-associated PKM2 to the PKM1 isoform have been shown to induce apoptosis in cultured glioblastoma cells when delivered by lipofection. Here, we explore the potential of ASO-based PKM splice switching as a targeted therapy for liver cancer. A more potent lead cEt/DNA ASO induced PKM splice-switching and inhibited the growth of cultured hepatocellular carcinoma (HCC) cells. This PKM isoform switch increased pyruvate-kinase activity and altered glucose metabolism. In an orthotopic HCC xenograft mouse model, the lead ASO and a second ASO targeting a non-overlapping site inhibited tumor growth. Finally, in a genetic HCC mouse model, a surrogate mouse-specific ASO induced Pkm splice switching and inhibited tumorigenesis, without observable toxicity. These results lay the groundwork for a potential ASO-based splicing therapy for HCC.
Collapse
Affiliation(s)
| | - Dillon M Voss
- Medical Scientist Training Program (MSTP), Stony Brook University School of Medicine
| | | | - Ana S H Costa
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai
| | | | | | - John E Wilkinson
- Unit for Laboratory Animal Medicine, University of Michigan–Ann Arbor
| | | | | | | | | |
Collapse
|
24
|
Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol 2021; 237:128-148. [PMID: 34311499 DOI: 10.1002/jcp.30536] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung K Min
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kim Cuong Cap
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea.,Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Abu J Hossain
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,National Institute of Biotechnology, Ganakbari, Savar, Dhaka, Bangladesh
| | - Dae R Choi
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Hyun-A Kim
- Department of Internal Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Ahnyang, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang W Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,eLmed Inc. #3419, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
25
|
Choksi A, Parulekar A, Pant R, Shah VK, Nimma R, Firmal P, Singh S, Kundu GC, Shukla S, Chattopadhyay S. Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab 2021; 9:16. [PMID: 33863392 PMCID: PMC8052847 DOI: 10.1186/s40170-021-00252-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Highly proliferating cancer cells exhibit the Warburg effect by regulation of PKM alternative splicing and promoting the expression of PKM2. Majority of the alternative splicing events are known to occur in the nuclear matrix where various MARBPs actively participate in the alternative splicing events. SMAR1, being a MARBP and an important tumor suppressor, is known to regulate the splicing of various cancer-associated genes. This study focuses on the regulation of PKM alternative splicing and inhibition of the Warburg effect by SMAR1. METHODS Immunohistochemistry was performed in breast cancer patient samples to establish the correlation between SMAR1 and PKM isoform expression. Further, expression of PKM isoforms upon modulation in SMAR1 expression in breast cancer cell lines was quantified by qRT-PCR and western blot. The acetylation status of PTBP1 was estimated by immunoprecipitation along with its enrichment on PKM pre-mRNA by CLIP in SMAR1 knockdown conditions. The role of SMAR1 in tumor metabolism and tumorigenesis was explored by in vitro enzymatic assays and functional assays upon SMAR1 knockdown. Besides, in vivo tumor formation by injecting adeno-SMAR1-transduced MDA-MB-231 cells in NOD/SCID mice was performed. RESULTS The expression profile of SMAR1 and PKM isoforms in breast cancer patients revealed that SMAR1 has an inverse correlation with PKM2 and a positive correlation with PKM1. Further quantitative PKM isoform expression upon modulation in SMAR1 expression also reflects that SMAR1 promotes the expression of PKM1 over tumorigenic isoform PKM2. SMAR1 deacetylates PTBP1 via recruitment of HDAC6 resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. SMAR1 inhibits the Warburg effect, tumorigenic potential of cancer cells, and in vivo tumor generation in a PKM2-dependent manner. CONCLUSIONS SMAR1 regulates PKM alternative splicing by causing HDAC6-dependent deacetylation of PTBP1, resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. Additionally, SMAR1 suppresses glucose utilization and lactate production via repression of PKM2 expression. This suggests that tumor suppressor SMAR1 inhibits tumor cell metabolism and tumorigenic properties of cancer cells via regulation of PKM alternative splicing.
Collapse
Affiliation(s)
| | | | - Richa Pant
- National Centre for Cell Science, Pune, 411007, India
| | | | | | | | - Smriti Singh
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Gopal C Kundu
- National Centre for Cell Science, Pune, 411007, India.,Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Sanjeev Shukla
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, 411007, India. .,Birla Institute of Technology and Science, Pilani - K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
26
|
Wang H, Jiang Y. SRp20: A potential therapeutic target for human tumors. Pathol Res Pract 2021; 224:153444. [PMID: 34126370 DOI: 10.1016/j.prp.2021.153444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
As an important member of SR protein family, SRp20 plays a crucial role in alternative splicing. It not only participates in cell cycle regulation, export of mRNA, cleaving of primary microRNAs, homologous recombination-mediated DNA repair, cellular senescence and apoptosis, but also gets involved in the integrity and pluripotency of genome. Alternative splicing maintains a strict balance in the body to ensure the normal physiological function of cells. Once the balance is broken, diseases, even tumors, will follow. Through the analysis of SRp20-related articles, we found that Alzheimer's disease, glaucoma, bipolar disorder and other diseases have a certain relationship with SRp20. More importantly, SRp20 is closely related to the occurrence, proliferation, invasion and metastasis of various tumors, as well as chemotherapy resistance. Some SRp20 inhibitors have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
27
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
28
|
Frederiksen SB, Holm LL, Larsen MR, Doktor TK, Andersen HS, Hastings ML, Hua Y, Krainer AR, Andresen BS. Identification of SRSF10 as a regulator of SMN2 ISS-N1. Hum Mutat 2020; 42:246-260. [PMID: 33300159 DOI: 10.1002/humu.24149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/22/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
Understanding the splicing code can be challenging as several splicing factors bind to many splicing-regulatory elements. The SMN1 and SMN2 silencer element ISS-N1 is the target of the antisense oligonucleotide drug, Spinraza, which is the treatment against spinal muscular atrophy. However, limited knowledge about the nature of the splicing factors that bind to ISS-N1 and inhibit splicing exists. It is likely that the effect of Spinraza comes from blocking binding of these factors, but so far, an unbiased characterization has not been performed and only members of the hnRNP A1/A2 family have been identified by Western blot analysis and nuclear magnetic resonance to bind to this silencer. Employing an MS/MS-based approach and surface plasmon resonance imaging, we show for the first time that splicing factor SRSF10 binds to ISS-N1. Furthermore, using splice-switching oligonucleotides we modulated the splicing of the SRSF10 isoforms generating either the long or the short protein isoform of SRSF10 to regulate endogenous SMN2 exon 7 inclusion. We demonstrate that the isoforms of SRSF10 regulate SMN1 and SMN2 splicing with different strength correlating with the length of their RS domain. Our results suggest that the ratio between the SRSF10 isoforms is important for splicing regulation.
Collapse
Affiliation(s)
- Sabrina B Frederiksen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Lise L Holm
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Henriette S Andersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
29
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
More DA, Kumar A. SRSF3: Newly discovered functions and roles in human health and diseases. Eur J Cell Biol 2020; 99:151099. [PMID: 32800280 DOI: 10.1016/j.ejcb.2020.151099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
The serine/arginine rich proteins (SR proteins) are members of a family of RNA binding proteins involved in regulating various features of RNA metabolism, including pre-mRNA constitutive and alternative splicing. In humans, a total of 12 SR splicing factors (SRSFs) namely SRSF1-SRSF12 have been reported. SRSF3, the smallest member of the SR family and the focus of this review, regulates critical steps in mRNA metabolism and has been shown to have mRNA-independent functions as well. Recent studies on SRSF3 have uncovered its role in a wide array of complex biological processes. We have also reviewed the involvement of SRSF3 in disease conditions like cancer, ageing, neurological and cardiac disorders. Finally, we have discussed in detail the autoregulation of SRSF3 and its implications in cancer and commented on the potential of SRSF3 as a therapeutic target, especially in the context of cancer.
Collapse
Affiliation(s)
- Dhanashree Anil More
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
31
|
Scharner J, Ma WK, Zhang Q, Lin KT, Rigo F, Bennett CF, Krainer AR. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Nucleic Acids Res 2020; 48:802-816. [PMID: 31802121 PMCID: PMC6954394 DOI: 10.1093/nar/gkz1132] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Splice-switching antisense oligonucleotides (ASOs), which bind specific RNA-target sequences and modulate pre-mRNA splicing by sterically blocking the binding of splicing factors to the pre-mRNA, are a promising therapeutic modality to treat a range of genetic diseases. ASOs are typically 15–25 nt long and considered to be highly specific towards their intended target sequence, typically elements that control exon definition and/or splice-site recognition. However, whether or not splice-modulating ASOs also induce hybridization-dependent mis-splicing of unintended targets has not been systematically studied. Here, we tested the in vitro effects of splice-modulating ASOs on 108 potential off-targets predicted on the basis of sequence complementarity, and identified 17 mis-splicing events for one of the ASOs tested. Based on analysis of data from two overlapping ASO sequences, we conclude that off-target effects are difficult to predict, and the choice of ASO chemistry influences the extent of off-target activity. The off-target events caused by the uniformly modified ASOs tested in this study were significantly reduced with mixed-chemistry ASOs of the same sequence. Furthermore, using shorter ASOs, combining two ASOs, and delivering ASOs by free uptake also reduced off-target activity. Finally, ASOs with strategically placed mismatches can be used to reduce unwanted off-target splicing events.
Collapse
Affiliation(s)
| | - Wai Kit Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | |
Collapse
|
32
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
33
|
Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30:300-314. [PMID: 32132672 PMCID: PMC7118080 DOI: 10.1038/s41422-020-0291-z] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The growing field of immunometabolism has taught us how metabolic cellular reactions and processes not only provide a means to generate ATP and biosynthetic precursors, but are also a way of controlling immunity and inflammation. Metabolic reprogramming of immune cells is essential for both inflammatory as well as anti-inflammatory responses. Four anti-inflammatory therapies, DMF, Metformin, Methotrexate and Rapamycin all work by affecting metabolism and/or regulating or mimicking endogenous metabolites with anti-inflammatory effects. Evidence is emerging for the targeting of specific metabolic events as a strategy to limit inflammation in different contexts. Here we discuss these recent developments and speculate on the prospect of targeting immunometabolism in the effort to develop novel anti-inflammatory therapeutics. As accumulating evidence for roles of an intricate and elaborate network of metabolic processes, including lipid, amino acid and nucleotide metabolism provides key focal points for developing new therapies, we here turn our attention to glycolysis and the TCA cycle to provide examples of how metabolic intermediates and enzymes can provide potential novel therapeutic targets.
Collapse
|
34
|
Splicing Dysregulation as Oncogenic Driver and Passenger Factor in Brain Tumors. Cells 2019; 9:cells9010010. [PMID: 31861467 PMCID: PMC7016899 DOI: 10.3390/cells9010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/21/2022] Open
Abstract
Brain tumors are a heterogeneous group of neoplasms ranging from almost benign to highly aggressive phenotypes. The malignancy of these tumors mostly relies on gene expression reprogramming, which is frequently accompanied by the aberrant regulation of RNA processing mechanisms. In brain tumors, defects in alternative splicing result either from the dysregulation of expression and activity of splicing factors, or from mutations in the genes encoding splicing machinery components. Aberrant splicing regulation can generate dysfunctional proteins that lead to modification of fundamental physiological cellular processes, thus contributing to the development or progression of brain tumors. Herein, we summarize the current knowledge on splicing abnormalities in brain tumors and how these alterations contribute to the disease by sustaining proliferative signaling, escaping growth suppressors, or establishing a tumor microenvironment that fosters angiogenesis and intercellular communications. Lastly, we review recent efforts aimed at developing novel splicing-targeted cancer therapies, which employ oligonucleotide-based approaches or chemical modulators of alternative splicing that elicit an impact on brain tumor biology.
Collapse
|
35
|
Yadav S, Bhagat SD, Gupta A, Samaiya A, Srivastava A, Shukla S. Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer. BMC Cancer 2019; 19:1031. [PMID: 31675998 PMCID: PMC6823945 DOI: 10.1186/s12885-019-6257-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The deregulated alternative splicing of key glycolytic enzyme, Pyruvate Kinase muscle isoenzyme (PKM) is implicated in metabolic adaptation of cancer cells. The splicing switch from normal PKM1 to cancer-specific PKM2 isoform allows the cancer cells to meet their energy and biosynthetic demands, thereby facilitating the cancer cells growth. We have investigated the largely unexplored epigenetic mechanism of PKM splicing switch in head and neck cancer (HNC) cells. Considering the reversible nature of epigenetic marks, we have also examined the utility of dietary-phytochemical in reverting the splicing switch from PKM2 to PKM1 isoform and thereby inhibition of HNC tumorigenesis. METHODS We present HNC-patients samples, showing the splicing-switch from PKM1-isoform to PKM2-isoform analyzed via immunoblotting and qRT-PCR. We performed methylated-DNA-immunoprecipitation to examine the DNA methylation level and chromatin-immunoprecipitation to assess the BORIS (Brother of Regulator of Imprinted Sites) recruitment and polII enrichment. The effect of dietary-phytochemical on the activity of denovo-DNA-methyltransferase-3b (DNMT3B) was detected by DNA-methyltransferase-activity assay. We also analyzed the Warburg effect and growth inhibition using lactate, glucose uptake assay, invasion assay, cell proliferation, and apoptosis assay. The global change in transcriptome upon dietary-phytochemical treatment was assayed using Human Transcriptome Array 2.0 (HTA2.0). RESULTS Here, we report the role of DNA-methylation mediated recruitment of the BORIS at exon-10 of PKM-gene regulating the alternative-splicing to generate the PKM2-splice-isoform in HNC. Notably, the reversal of Warburg effect was achieved by employing a dietary-phytochemical, which inhibits the DNMT3B, resulting in the reduced DNA-methylation at exon-10 and hence, PKM-splicing switch from cancer-specific PKM2 to normal PKM1. Global-transcriptome-analysis of dietary-phytochemical-treated cells revealed its effect on alternative splicing of various genes involved in HNC. CONCLUSION This study identifies the epigenetic mechanism of PKM-splicing switch in HNC and reports the role of dietary-phytochemical in reverting the splicing switch from cancer-specific PKM2 to normal PKM1-isoform and hence the reduced Warburg effect and growth inhibition of HNC. We envisage that this approach can provide an effective way to modulate cancer-specific-splicing and thereby aid in the treatment of HNC.
Collapse
Affiliation(s)
- Sandhya Yadav
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Somnath D Bhagat
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Amit Gupta
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Atul Samaiya
- Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India
| | - Aasheesh Srivastava
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
36
|
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J, Bettaieb A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med 2019; 143:176-192. [PMID: 31401304 PMCID: PMC6848794 DOI: 10.1016/j.freeradbiomed.2019.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dina S Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Amal S Humidat
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Victoria D Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
37
|
Amin S, Yang P, Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer 2019; 1871:331-341. [PMID: 30826427 DOI: 10.1016/j.bbcan.2019.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Rewiring glucose metabolism, termed as Warburg effect or aerobic glycolysis, is a common signature of cancer cells to meet their high energetic and biosynthetic demands of rapid growth and proliferation. Pyruvate kinase M2 isoform (PKM2) is a key player in such metabolic reshuffle, which functions as a rate-limiting glycolytic enzyme in the cytosol of highly-proliferative cancer cells. During the recent decades, PKM2 has been extensively studied in non-canonical localizations such as nucleus, mitochondria, and extracellular secretion, and pertained to novel biological functions in tumor progression. Such functions of PKM2 open a new avenue for cancer researchers. This review summarizes up-to-date functions of PKM2 at various subcellular localizations of cancer cells and draws attention to the translocation of PKM2 from cytosol into the nucleus induced by posttranslational modifications. Moreover, PKM2 in tumor cells could have an important role in resistance acquisition processes against various chemotherapeutic drugs, which have raised a concern on PKM2 as a potential therapeutic target. Finally, we summarize the current status and future perspectives to improve the potential of PKM2 as a therapeutic target for the development of anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
38
|
Shinohara H, Sugito N, Kuranaga Y, Heishima K, Minami Y, Naoe T, Akao Y. Potent antiproliferative effect of fatty-acid derivative AIC-47 on leukemic mice harboring BCR-ABL mutation. Cancer Sci 2019; 110:751-760. [PMID: 30548479 PMCID: PMC6361563 DOI: 10.1111/cas.13913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022] Open
Abstract
Therapy based on targeted inhibition of BCR‐ABL tyrosine kinase has greatly improved the prognosis for patients with Philadelphia chromosome (Ph)‐positive leukemia and tyrosine kinase inhibitors (TKI) have become standard therapy. However, some patients acquire resistance to TKI that is frequently associated with point mutations in BCR‐ABL. We previously reported that a medium‐chain fatty‐acid derivative AIC‐47 induced transcriptional suppression of BCR‐ABL and perturbation of the Warburg effect, leading to growth inhibition in Ph‐positive leukemia cells. Herein, we showed that AIC‐47 had anti‐leukemic effects in either wild type (WT)‐ or mutated‐BCR‐ABL‐harboring cells. AIC‐47 suppressed transcription of BCR‐ABL gene regardless of the mutation through downregulation of transcriptional activator, c‐Myc. Reprogramming of the metabolic pathway has been reported to be associated with resistance to anti‐cancer drugs; however, we found that a point mutation of BCR‐ABL was independent of the profile of pyruvate kinase muscle (PKM) isoform expression. Even in T315I‐mutated cells, AIC‐47 induced switching of the expression profile of PKM isoforms from PKM2 to PKM1, suggesting that AIC‐47 disrupted the Warburg effect. In a leukemic mouse model, AIC‐47 greatly suppressed the increase in BCR‐ABLmRNA level and improved hepatosplenomegaly regardless of the BCR‐ABL mutation. Notably, the improvement of splenomegaly by AIC‐47 was remarkable and might be equal to or greater than that of TKI. These findings suggest that AIC‐47 might be a promising agent for overcoming the resistance of Ph‐positive leukemia to therapy.
Collapse
Affiliation(s)
- Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan.,Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, Kobe, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
39
|
Nguyen HM, Nguyen TD, Nguyen TL, Nguyen TA. Orientation of Human Microprocessor on Primary MicroRNAs. Biochemistry 2018; 58:189-198. [DOI: 10.1021/acs.biochem.8b00944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huong Minh Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trung Duc Nguyen
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong, China
| | - Thuy Linh Nguyen
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong, China
| |
Collapse
|
40
|
Stone OA, El-Brolosy M, Wilhelm K, Liu X, Romão AM, Grillo E, Lai JKH, Günther S, Jeratsch S, Kuenne C, Lee IC, Braun T, Santoro MM, Locasale JW, Potente M, Stainier DYR. Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nat Commun 2018; 9:4077. [PMID: 30301887 PMCID: PMC6177464 DOI: 10.1038/s41467-018-06406-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/01/2018] [Indexed: 12/11/2022] Open
Abstract
Despite their inherent proximity to circulating oxygen and nutrients, endothelial cells (ECs) oxidize only a minor fraction of glucose in mitochondria, a metabolic specialization that is poorly understood. Here we show that the glycolytic enzyme pyruvate kinase M2 (PKM2) limits glucose oxidation, and maintains the growth and epigenetic state of ECs. We find that loss of PKM2 alters mitochondrial substrate utilization and impairs EC proliferation and migration in vivo. Mechanistically, we show that the NF-κB transcription factor RELB is responsive to PKM2 loss, limiting EC growth through the regulation of P53. Furthermore, S-adenosylmethionine synthesis is impaired in the absence of PKM2, resulting in DNA hypomethylation, de-repression of endogenous retroviral elements (ERVs) and activation of antiviral innate immune signalling. This work reveals the metabolic and functional consequences of glucose oxidation in the endothelium, highlights the importance of PKM2 for endothelial growth and links metabolic dysfunction with autoimmune activation in ECs.
Collapse
Affiliation(s)
- Oliver A Stone
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany.
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK.
| | - Mohamed El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Kerstin Wilhelm
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ana M Romão
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | | | - Jason K H Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Sylvia Jeratsch
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - I-Ching Lee
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Massimo M Santoro
- Department of Biology, University of Padua, Viale Giuseppe Colombo 3, 10141, Padua, Italy
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| |
Collapse
|
41
|
SRSF3, a Splicer of the PKM Gene, Regulates Cell Growth and Maintenance of Cancer-Specific Energy Metabolism in Colon Cancer Cells. Int J Mol Sci 2018; 19:ijms19103012. [PMID: 30279379 PMCID: PMC6213643 DOI: 10.3390/ijms19103012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023] Open
Abstract
Serine and arginine rich splicing factor 3 (SRSF3), an SR-rich family protein, has an oncogenic function in various kinds of cancer. However, the detailed mechanism of the function had not been previously clarified. Here, we showed that the SRSF3 splicer regulated the expression profile of the pyruvate kinase, which is one of the rate-limiting enzymes in glycolysis. Most cancer cells express pyruvate kinase muscle 2 (PKM2) dominantly to maintain a glycolysis-dominant energy metabolism. Overexpression of SRSF3, as well as that of another splicer, polypyrimidine tract binding protein 1 (PTBP1) and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), in clinical cancer samples supported the notion that these proteins decreased the Pyruvate kinase muscle 1 (PKM1)/PKM2 ratio, which positively contributed to a glycolysis-dominant metabolism. The silencing of SRSF3 in human colon cancer cells induced a marked growth inhibition in both in vitro and in vivo experiments and caused an increase in the PKM1/PKM2 ratio, thus resulting in a metabolic shift from glycolysis to oxidative phosphorylation. At the same time, the silenced cells were induced to undergo autophagy. SRSF3 contributed to PKM mRNA splicing by co-operating with PTBP1 and hnRNPA1, which was validated by the results of RNP immunoprecipitation (RIP) and immunoprecipitation (IP) experiments. These findings altogether indicated that SRSF3 as a PKM splicer played a positive role in cancer-specific energy metabolism.
Collapse
|
42
|
Zhang QY, Zhao W, Tang YJ. Discover the leading compound of 4β-S-(5-fluorobenzoxazole)-4-deoxy-4′-demethylepipodophyllotoxin with millimolar-potency toxicity by modifying the molecule structure of 4′-demethylepipodophyllotoxin. Eur J Med Chem 2018; 158:951-964. [DOI: 10.1016/j.ejmech.2018.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
|
43
|
Biamonti G, Maita L, Montecucco A. The Krebs Cycle Connection: Reciprocal Influence Between Alternative Splicing Programs and Cell Metabolism. Front Oncol 2018; 8:408. [PMID: 30319972 PMCID: PMC6168629 DOI: 10.3389/fonc.2018.00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Lucia Maita
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | |
Collapse
|
44
|
Wiese EK, Hitosugi T. Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 2018; 6:79. [PMID: 30087897 PMCID: PMC6066570 DOI: 10.3389/fcell.2018.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
The Warburg Effect, or aerobic glycolysis, is one of the major metabolic alterations observed in cancer. Hypothesized to increase a cell's proliferative capacity via regenerating NAD+, increasing the pool of glycolytic biosynthetic intermediates, and increasing lactate production that affects the tumor microenvironment, the Warburg Effect is important for the growth and proliferation of tumor cells. The mechanisms by which a cell acquires the Warburg Effect phenotype are regulated by the expression of numerous oncogenes, including oncogenic tyrosine kinases. Oncogenic tyrosine kinases play a significant role in phosphorylating and regulating the activity of numerous metabolic enzymes. Tyrosine phosphorylation of glycolytic enzymes increases the activities of a majority of glycolytic enzymes, thus promoting increased glycolytic rate and tumor cell proliferation. Paradoxically however, tyrosine phosphorylation of pyruvate kinase M2 isoform (PKM2) results in decreased PKM2 activity, and this decrease in PKM2 activity promotes the Warburg Effect. Furthermore, recent studies have shown that PKM2 is also able to act as a protein kinase using phosphoenolpyruvate (PEP) as a substrate to promote tumorigenesis. Therefore, numerous recent studies have investigated both the role of the classical and non-canonical activity of PKM2 in promoting the Warburg Effect and tumor growth, which raise further interesting questions. In this review, we will summarize these recent advances revealing the importance of tyrosine kinases in the regulation of the Warburg Effect as well as the role of PKM2 in the promotion of tumor growth.
Collapse
Affiliation(s)
- Elizabeth K Wiese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
45
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
46
|
Kim K, Nguyen TD, Li S, Nguyen TA. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA (NEW YORK, N.Y.) 2018; 24:892-898. [PMID: 29615481 PMCID: PMC6004053 DOI: 10.1261/rna.065862.118] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/29/2018] [Indexed: 05/22/2023]
Abstract
The Microprocessor complex, consisting of an RNase III DROSHA and the DGCR8 dimer, cleaves primary microRNA transcripts (pri-miRNAs) to initiate microRNA (miRNA) maturation. Pri-miRNAs are stem-loop RNAs, and ∼79% of them contain at least one of the three major and conserved RNA motifs, UG, UGU, and CNNC. We recently demonstrated that the basal UG and apical UGU motifs of pri-miRNAs interact with DROSHA and DGCR8, respectively. They help orient Microprocessor on pri-miRNA in a proper direction in which DROSHA and DGCR8 localize to the basal and apical pri-miRNA junctions, respectively. In addition, CNNC, located at ∼17 nucleotides (nt) from the Microprocessor cleavage site, interacts with SRSF3 (SRp20) to stimulate Microprocessor to process pri-miRNAs. The mechanism underlying this stimulation, however, is unknown. In this study, we discovered that SRSF3 recruits DROSHA to the basal junction in a CNNC-dependent manner, thereby enhancing Microprocessor activity. Furthermore, by generating various pri-miRNA substrates containing CNNC at different locations, we demonstrated that such stimulation only occurs when CNNC is located at ∼17 nt from the Microprocessor cleavage site. Our findings reveal the molecular mechanism of SRSF3 in pri-miRNA processing and support the previously proposed explanation for the highly conserved position of CNNC in SRSF3-enhanced pri-miRNA processing.
Collapse
Affiliation(s)
- Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Trung Duc Nguyen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Shaohua Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
47
|
Do DV, Strauss B, Cukuroglu E, Macaulay I, Wee KB, Hu TX, Igor RDLM, Lee C, Harrison A, Butler R, Dietmann S, Jernej U, Marioni J, Smith CWJ, Göke J, Surani MA. SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. Cell Discov 2018; 4:33. [PMID: 29928511 PMCID: PMC6006335 DOI: 10.1038/s41421-018-0032-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023] Open
Abstract
The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.
Collapse
Affiliation(s)
- Dang Vinh Do
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| | - Bernhard Strauss
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Engin Cukuroglu
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672 Singapore
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH UK
| | - Keng Boon Wee
- Department Fluid Dynamics, Institute of High Performance Computing, 1 Fusionopolis Way, Singapore, 138632 Singapore
- Biomolecular Function Discovery Division, Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671 Singapore
| | - Tim Xiaoming Hu
- EMBL European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK
| | | | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| | - Andrew Harrison
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Sabine Dietmann
- Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR UK
| | - Ule Jernej
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - John Marioni
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Christopher W. J. Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672 Singapore
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| |
Collapse
|
48
|
Jiang H, Zhang S, Song T, Guan X, Zhang R, Chen X. Trichostatin a Protects Dendritic Cells Against Oxygen-Glucose Deprivation via the SRSF3/PKM2/Glycolytic Pathway. Front Pharmacol 2018; 9:612. [PMID: 29942258 PMCID: PMC6004525 DOI: 10.3389/fphar.2018.00612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are important to the immune system and are frequently recruited to hypoxic regions, especially during acute myocardial infarction (AMI). Emerging data indicate that histone deacetylase (HDAC) inhibitors possess immunomodulatory functions. We previously showed in a rat model of AMI that the HDAC inhibitor TSA improved tissue repair, and this was accompanied by increased DC infiltration in the infarct region, suggesting an important role of TSA in modulating DC functions. To study the potential modulatory effect of TSA on DCs, we exploited an in vitro model of hypoxia and glucose deprivation. Culturing of DCs in the presence of 200 nM TSA improved DC survival under hypoxia and glucose deprivation. However, on a phenotypic level, TSA induced the expression of the DC co-stimulatory molecules CD80 and CD86, decreased FITC-dextran uptake, and facilitated DC migration. Moreover, TSA altered cytokine secretion by reducing the pro-inflammatory cytokines IL-1β, IL-10, IL-12, and TGF-β. Furthermore, TSA treatment enhanced HIF-1α-dependent glycolytic gene expression and increased pyruvate kinase M2 by upregulating SRSF3. These results suggest that by TSA alters important DC functions under hypoxia and glucose deprivation, and that TSA is critical for DC function by modulating SRSF3-PKM2-dependent glycolytic pathways.
Collapse
Affiliation(s)
- Hongyun Jiang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin Guan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ruojin Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
49
|
Taniguchi K, Sugito N, Shinohara H, Kuranaga Y, Inomata Y, Komura K, Uchiyama K, Akao Y. Organ-Specific MicroRNAs ( MIR122, 137, and 206) Contribute to Tissue Characteristics and Carcinogenesis by Regulating Pyruvate Kinase M1/2 ( PKM) Expression. Int J Mol Sci 2018; 19:E1276. [PMID: 29695138 PMCID: PMC5983799 DOI: 10.3390/ijms19051276] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase is known as the glycolytic enzyme catalyzing the final step in glycolysis. In mammals, two different forms of it exist, i.e., pyruvate kinase M1/2 (PKM) and pyruvate kinase L/R (PKLR). Also, PKM has two isoforms, i.e., PKM1 and PKM2. These genes have tissue-specific distribution. Namely, PKM1 is distributed in high-energy-demanding organs, such as brain and muscle. Also, PKM2 is distributed in various other organs, such as the colon. On the other hand, PKLR is distributed in liver and red blood cells (RBCs). Interestingly, PKM2 has been recognized as one of the essential genes for the cancer-specific energy metabolism termed the “Warburg effect”. However, the mechanism(s) underlying this fact have remained largely unclear. Recently, we found that some organ-specific microRNAs (miRNAs, MIR) regulate PKM isoform expression through direct targeting of polypyrimidine tract binding protein 1 (PTBP1), which is the splicer responsible for PKM2-dominant expression. In this study, we examined whether this machinery was conserved in the case of other PTBP1- and PKM-targeting miRNAs. We focused on the MIRs 122, 137, and 206, and investigated the expression profiles of each of these miRNAs in tissues from mouse and human organs. Also, we examined the regulatory mechanisms of PKM isoform expression by testing each of these miRNAs in human cancer cell lines. Presently, we found that brain-specific MIR137 and muscle-specific MIR206 predominantly induced PKM1 expression through direct targeting of PTBP1. Also, liver-specific MIR122 suppressed the expression of both PKM1 and PKM2, which action occurred through direct targeting of PKM to enable the expression of PKLR. Moreover, the expression levels of these miRNAs were downregulated in cancer cells that had originated from these tissues, resulting in PKM2 dominance. Our results suggest that the organ-specific distribution of miRNAs is one of the principal means by which miRNA establishes characteristics of a tissue and that dysregulation of these miRNAs results in cancer development through a change in the ratio of PKM isoform expression. Also, our results contribute to cancer diagnosis and will be useful for cancer-specific therapy for the Warburg effect in the near future.
Collapse
Affiliation(s)
- Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
- Translational Research Program, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Kazumasa Komura
- Translational Research Program, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
50
|
Lin JC, Lee YC, Tan TH, Liang YC, Chuang HC, Fann YC, Johnson KR, Lin YJ. RBM4-SRSF3-MAP4K4 splicing cascade modulates the metastatic signature of colorectal cancer cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:259-272. [DOI: 10.1016/j.bbamcr.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|