1
|
Yokokawa T, Nishiura K, Katahira M, Sato Y, Miura S, Sato A, Shimizu T, Misaka T, Sato T, Kaneshiro T, Oikawa M, Yoshihisa A, Sugimoto K, Fukushima K, Nakazato K, Takeishi Y. Collagen Triple Helix Repeat-Containing Protein 1 Is a Novel Biomarker of Right Ventricular Involvement in Pulmonary Hypertension. Can J Cardiol 2024; 40:2281-2288. [PMID: 38692430 DOI: 10.1016/j.cjca.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Pulmonary hypertension leads to right ventricular failure, which is a major determinant of prognosis. Circulating biomarkers for right ventricular function are poorly explored in pulmonary hypertension. This study aimed to clarify the significance of collagen triple helix repeat-containing protein 1 (CTHRC1) as a biomarker of right ventricular failure in pulmonary hypertension. METHODS A monocrotaline-induced pulmonary hypertension rat model was used to evaluate right ventricular CTHRC1 expression and its relationship with fibrosis. Next, human plasma CTHRC1 levels were measured in controls (n = 20), pulmonary arterial hypertension (n = 46), and patients with chronic thromboembolic pulmonary hypertension (CTEPH) (n = 64) before the first and after the final balloon pulmonary angioplasty. RESULTS CTHRC1 expression was higher in the right ventricles of rats with monocrotaline-induced pulmonary hypertension than in those of controls. CTHRC1 was colocalized with vimentin and associated with fibrosis in the right ventricles. Plasma CTHRC1 levels were higher in human patients with pulmonary arterial hypertension (P = 0.006) and CTEPH (P = 0.011) than in controls. Plasma CTHRC levels were correlated with B-type natriuretic peptide (R = 0.355, P < 0.001), tricuspid lateral annular peak systolic velocity (R = -0.213, P = 0.029), and right ventricular fractional area change (R = -0.225, P = 0.017). Finally, plasma CTHRC1 levels were decreased after the final balloon pulmonary angioplasty (P < 0.001) in CTEPH. CONCLUSIONS CTHRC1 can be a circulating biomarker associated with right ventricular function and fibrosis in pulmonary hypertension and might reflect the therapeutic efficacy of balloon pulmonary angioplasty in CTEPH.
Collapse
MESH Headings
- Animals
- Male
- Humans
- Rats
- Biomarkers/blood
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/diagnosis
- Extracellular Matrix Proteins/blood
- Extracellular Matrix Proteins/metabolism
- Female
- Disease Models, Animal
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/diagnosis
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/metabolism
- Heart Ventricles/physiopathology
- Heart Ventricles/diagnostic imaging
- Middle Aged
- Pulmonary Embolism/diagnosis
- Pulmonary Embolism/complications
- Rats, Sprague-Dawley
- Angioplasty, Balloon/methods
- Ventricular Function, Right/physiology
Collapse
Affiliation(s)
- Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Kazuto Nishiura
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masataka Katahira
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yu Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shunsuke Miura
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akihiko Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Shimizu
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan; Department of Community Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takamasa Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan; Department of Clinical Laboratory Sciences, Fukushima Medical University, ukushima, Japan
| | - Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kenji Fukushima
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Nakazato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
2
|
Sun X, Liu Y, Cheng C, Sun H, Tian L. CTHRC1 modulates cell proliferation and invasion in hepatocellular carcinoma by DNA methylation. Discov Oncol 2024; 15:347. [PMID: 39134747 PMCID: PMC11319694 DOI: 10.1007/s12672-024-01194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Collagen triple helix repeat containing-1 (CTHRC1), an extracellular matrix protein, is highly expressed in hepatocellular carcinoma (HCC) and linked to poor prognosis. Nevertheless, the precise mechanism of CTHRC1 in HCC is unclear. METHODS Agena MassARRAY® Methylation Analysis assessed the methylation level of CTHRC1 in the promoter region. Functional assays were conducted to investigate the effects of CTHRC1 knockdown in Hep3B2.1 cells. RNA sequencing identified differentially expressed genes and lncRNAs associated with angiogenesis after CTHRC1 knockdown. Furthermore, differential alternative splicing (AS) and gene fusion events were analyzed using rMATS and Arriba. RESULTS In HCC cell lines, CTHRC1 was highly expressed and associated with hypomethylation. Downregulation of CTHRC1 inhibited Hep3B2.1 cell proliferation, migration, and invasion, blocked cells in the G1/S phase, and promoted apoptosis. We obtained 34 mRNAs and 7 lncRNAs differentially expressed between the NC and CTHRC1 inhibitor groups. Additionally, we found 4 angiogenesis-related mRNAs and lncRNAs significantly correlated with CTHRC1. RT-qPCR results showed that knockdown of CTHRC1 in Hep3B2.1 cells resulted in significantly aberrant expression of CXCL6, LINC02127, and AC020978.8. Moreover, the role of CTHRC1 in HCC development may be associated with events, like 12 AS events and 5 pairs of fusion genes. CONCLUSIONS High expressed CTHRC1 is associated with hypomethylation and may promote HCC development, involving events like angiogenesis, alternative splicing, and gene fusion.
Collapse
Affiliation(s)
- Xiangjun Sun
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276000, China
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ye Liu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Changdong Cheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Haoyu Sun
- Weifang Medical University, Weifang, 261053, China
| | - Liqiang Tian
- Department of Neurosurgery, Linyi People's Hospital, Lanshan District, Wohu Mountain Road and Wuhan Road Interchange, Linyi, 276000, China.
| |
Collapse
|
3
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
4
|
Chen X. A Tribute to Professor Jianguo Wu. Viruses 2023; 15:1720. [PMID: 37632062 PMCID: PMC10457838 DOI: 10.3390/v15081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
It has been a couple of months since Professor Jianguo Wu left us [...].
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Liu YJ, Du J, Li J, Tan XP, Zhang Q. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett 2023; 25:266. [PMID: 37216164 PMCID: PMC10193374 DOI: 10.3892/ol.2023.13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Collagen triple helix repeat containing 1 (CTHRC1) is a gene discovered in 2005; it is highly conserved, and no homologous proteins have been disclosed thus far. A number of studies have shown that CTHRC1 is present in normal tissues and organs, and it has vital functions in physiological processes, including participating in the regulation of metabolism, arterial remodeling, bone formation and myelination of the peripheral nervous system. It has been reported that abnormal expression of CTHRC1 is involved in the carcinogenesis of various human organs, such as the breast, colon, pancreas, lung, stomach and liver. Therefore, the present review aims to collate all known findings and results on the regulation of CTHRC1 expression and related signaling pathways. To conclude, this review also provides a hypothesis of the functional mechanism of this gene.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Li
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiao-Ping Tan
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
6
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Al Fayez N, Rouhollahi E, Ong CY, Wu J, Nguyen A, Böttger R, Cullis PR, Witzigmann D, Li SD. Hepatocyte-targeted delivery of imiquimod reduces hepatitis B virus surface antigen. J Control Release 2022; 350:630-641. [PMID: 36058352 DOI: 10.1016/j.jconrel.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022]
Abstract
Hepatitis B virus (HBV) can rapidly replicate in the hepatocytes after transmission, leading to chronic hepatitis, liver cirrhosis and eventually hepatocellular carcinoma. Interferon-α (IFN-α) is included in the standard treatment for chronic hepatitis B (CHB). However, this therapy causes serious side effects. Delivering IFN-α selectively to the liver may enhance its efficacy and safety. Imiquimod (IMQ), a Toll-Like Receptor (TLR) 7 agonist, stimulates the release of IFN-α that exhibits potent antiviral activity. However, the poor solubility and tissue selectivity of IMQ limits its clinical use. Here, we demonstrated the use of lipid-based nanoparticles (LNPs) to deliver IMQ and increase the production of IFN-α in the liver. We encapsulated IMQ in two liver-targeted LNP formulations: phospholipid-free small unilamellar vesicles (PFSUVs) and DSPG-liposomes targeting the hepatocytes and the Kupffer cells, respectively. In vitro drug release/retention, in vivo pharmacokinetics, intrahepatic distribution, IFN-α production, and suppression of serum HBV surface antigen (HBsAg) were evaluated and compared for these two formulations. PFSUVs provided >95% encapsulation efficiency for IMQ at a drug-to-lipid ratio (D/L) of 1/20 (w/w) and displayed stable drug retention in the presence of serum. DSPG-IMQ showed 79% encapsulation of IMQ at 1/20 (D/L) and exhibited ∼30% burst release when incubated with serum. Within the liver, PFSUVs showed high selectivity for the hepatocytes while DSPG-liposomes targeted the Kupffer cells. Finally, in an experimental HBV mouse model, PFSUVs significantly reduced serum levels of HBsAg by 12-, 6.3- and 2.2-fold compared to the control, IFN-α, and DSPG-IMQ groups, respectively. The results suggest that the hepatocyte-targeted PFSUVs loaded with IMQ exhibit significant potential for enhancing therapy of CHB.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chun Yat Ong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anne Nguyen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
8
|
IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection. Viruses 2022; 14:v14040727. [PMID: 35458456 PMCID: PMC9027621 DOI: 10.3390/v14040727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1–3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein–protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.
Collapse
|
9
|
Du X, Zhou D, Zhou J, Xue J, Cheng Z. Marek's Disease Virus and Reticuloendotheliosis Virus Coinfection Enhances Viral Replication and Alters Cellular Protein Profiles. Front Vet Sci 2022; 9:854007. [PMID: 35392111 PMCID: PMC8981388 DOI: 10.3389/fvets.2022.854007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Coinfection with Marek's disease virus (MDV) and reticuloendotheliosis virus (REV) causes synergistic pathogenic effects and serious losses to the poultry industry. However, whether there is a synergism between the two viruses in viral replication and the roles of host factors in regulating MDV and REV coinfection remains elusive. In this study, we found that MDV and REV coinfection increased viral replication in coinfected cells as compared to a single infection in a limited period. Further, we explore the host cell responses to MDV and REV coinfection using tandem mass tag (TMT) peptide labeling coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS). Compared with MDV/REV-infected cells, 38 proteins increased (fold change > 1.2) and 60 decreased (fold change < 0.83) their abundance in MDV and REV coinfected cells. Differentially accumulated proteins (DAPs) were involved in important biological processes involved in the immune system process, cell adhesion and migration, cellular processes, and multicellular organismal systems. STRING analysis found that IRF7, MX1, TIMP3, and AKT1 may be associated with MDV and REV synergistic replication in chicken embryo fibroblasts (CEFs). Western blotting analysis showed that the selected DAPs were identical to the quantitative proteomics data. Taken together, we verified that MDV and REV can synergistically replicate in coinfected cells and revealed the host molecules involved in it. However, the synergistic pathogenesis of MDV and REV needs to be further studied.
Collapse
|
10
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Virus-Induced Tumorigenesis and IFN System. BIOLOGY 2021; 10:biology10100994. [PMID: 34681093 PMCID: PMC8533565 DOI: 10.3390/biology10100994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 01/11/2023]
Abstract
Oncogenic viruses favor the development of tumors in mammals by persistent infection and specific cellular pathways modifications by deregulating cell proliferation and inhibiting apoptosis. They counteract the cellular antiviral defense through viral proteins as well as specific cellular effectors involved in virus-induced tumorigenesis. Type I interferons (IFNs) are a family of cytokines critical not only for viral interference but also for their broad range of properties that go beyond the antiviral action. In fact, they can inhibit cell proliferation and modulate differentiation, apoptosis, and migration. However, their principal role is to regulate the development and activity of most effector cells of the innate and adaptive immune responses. Various are the mechanisms by which IFNs exert their effects on immune cells. They can act directly, through IFN receptor triggering, or indirectly by the induction of chemokines, the secretion of further cytokines, or by the stimulation of cells useful for the activation of particular immune cells. All the properties of IFNs are crucial in the host defense against viruses and bacteria, as well as in the immune surveillance against tumors. IFNs may be affected by and, in turn, affect signaling pathways to mediate anti-proliferative and antiviral responses in virus-induced tumorigenic context. New data on cellular and viral microRNAs (miRNAs) machinery, as well as cellular communication and microenvironment modification via classical secretion mechanisms and extracellular vesicles-mediated delivery are reported. Recent research is reviewed on the tumorigenesis induced by specific viruses with RNA or DNA genome, belonging to different families (i.e., HPV, HTLV-1, MCPyV, JCPyV, Herpesviruses, HBV, HCV) and the IFN system involvement.
Collapse
|
12
|
The Role of Collagen Triple Helix Repeat-Containing 1 Protein (CTHRC1) in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22052426. [PMID: 33670905 PMCID: PMC7957534 DOI: 10.3390/ijms22052426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.
Collapse
|
13
|
Jabeen K, Malik U, Mansoor S, Shahzad S, Zahid S, Javed A. Effect of oxidative stress and calcium deregulation on FAM26F (CALHM6) expression during hepatitis B virus infection. BMC Infect Dis 2021; 21:228. [PMID: 33639860 PMCID: PMC7913464 DOI: 10.1186/s12879-021-05888-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background Family with sequence similarity 26, member F (FAM26F) is an important innate immunity modulator playing a significant role in diverse immune responses, however, the association of FAM26F expression with HBV infection is not yet known. Thus, the current study aims to explore the differential expression of FAM26F in vitro in HepAD38 and HepG2 cell lines upon HBV infection, and in vivo in HBV infected individuals. The effects of antioxidant and calcium inhibitors on the regulation of FAM26F expression were also evaluated. The expression of FAM26F was simultaneously determined with well-established HBV infection markers: IRF3, and IFN-β. Methods The expression of FAM26F and marker genes was analyzed through Real-time qPCR and western blot. Results Our results indicate that the differential expression of FAM26F followed the same trend as that of IRF3 and IFN-β. The in vitro study revealed that, in both HBV infected cell lines, FAM26F expression was significantly down-regulated as compared to uninfected control cells. Treatment of cells with N-acetyl-L-cysteine (NAC), EGTA-AM, BAPTA-AM, and Ru360 significantly upregulated the expression of FAM26F in both the cell lines. Moreover, in in vivo study, FAM26F expression was significantly downregulated in all HBV infected groups as compared to controls (p = 0.0007). The expression was higher in the HBV recovered cases, probably due to the decrease in infection and increase in the immunity of these individuals. Conclusion Our study is the first to show the association of FAM26F with HBV infection. It is proposed that FAM26F expression could be an early predictive marker for HBV infection, and thus is worthy of further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-05888-0.
Collapse
Affiliation(s)
- Kehkshan Jabeen
- Genomics Research Lab, Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Uzma Malik
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Sajid Mansoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.,Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Shaheen Shahzad
- Genomics Research Lab, Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Saadia Zahid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.
| |
Collapse
|
14
|
Pang Y, Zhou D, Zhou J, Xue J, Wang Y, Cheng Z. The Distribution and Localization of Collagen Triple Helix Repeat Containing-1 in Naturally and Experimentally Avian Leukosis Virus Subgroup J-Infected Chickens. Front Vet Sci 2020; 7:565773. [PMID: 33102569 PMCID: PMC7546020 DOI: 10.3389/fvets.2020.565773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1) has recently been identified as avian leukosis virus subgroup J (ALV-J) replication-dependent factor that remarkably facilitates ALV-J replication via interaction with the envelope glycoprotein (SU) of ALV-J. However, the dynamic distribution and localization of CTHRC1 in various tissues upon ALV-J infection are still unknown. In this study, data revealed that the levels of CTHRC1 were significantly increased in various tissues and that the protein was mainly located in the cytoplasm and nucleus of parenchymal cells in tissues of chickens that were infected by ALV-J naturally and experimentally. Interestingly, CTHRC1 was also observed in leukocytes other than erythrocytes in congested veins of ALV-J-infected tissues. Consequently, the positive cells in these veins were confirmed as lymphocytes by laser confocal microscopy. Taken together, these results conclude that the CTHRC1 is an inducible protein and exhibited ubiquitous expression in ALV-J-infected chickens, which may provide basic information for in-depth study of ALV-J infection and replication mechanisms.
Collapse
Affiliation(s)
- Yu Pang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yiya Wang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
15
|
Mirzaei H, Khodadad N, Karami C, Pirmoradi R, Khanizadeh S. The AP-1 pathway; A key regulator of cellular transformation modulated by oncogenic viruses. Rev Med Virol 2019; 30:e2088. [PMID: 31788897 DOI: 10.1002/rmv.2088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Cancer progression is critically associated with modulation of host cell signaling pathways. Activator protein-1 (AP-1) signaling is one such pathway whose deregulation renders the host more susceptible to cancer development. Oncogenic viruses, including hepatitis B virus, hepatitis C virus, human papilloma virus, Epstein-Barr virus, human T-cell lymphotropic virus type 1, and Kaposi's sarcoma-associated herpes virus, are common causes of cancer. This review discusses how these oncoviruses by acting through various aspects of the host cell signaling machinery such as the AP-1 pathway might affect oncoviral tumorigenesis, replication, and pathogenesis. The review also briefly considers how the pathway might be targeted during infections with these oncogenic viruses.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Khodadad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Chiman Karami
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Pirmoradi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
16
|
Pang Y, Zhou D, Xue J, Zhou J, Zhang Y, Zheng G, Yuan S, Yao Y, Cheng Z. Interplay between CTHRC1 and the SU protein of avian leukosis virus subgroup J (ALV-J) facilitates viral replication. Virus Res 2019; 264:32-39. [DOI: 10.1016/j.virusres.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022]
|
17
|
Yang F. Post-translational Modification Control of HBV Biological Processes. Front Microbiol 2018; 9:2661. [PMID: 30443247 PMCID: PMC6222169 DOI: 10.3389/fmicb.2018.02661] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus infection remains a global healthy issue that needs to be urgently solved. Novel strategies for anti-viral therapy are based on exploring the effective diagnostic markers and therapeutic targets of diseases caused by hepatitis B virus (HBV) infection. It is well-established that not only viral proteins themselves but also key factors from the host control the biological processes associated with HBV, including replication, transcription, packaging, and secretion. Protein post-translational modifications (PTMs), such as phosphorylation, acetylation, methylation, and ubiquitination, have been shown to control protein activity, regulate protein stability, promote protein interactions and alter protein subcellular localization, leading to the modulation of crucial signaling pathways and affected cellular processes. This review focuses on the functions and effects of diverse PTMs in regulating important processes in the HBV life cycle. The potential roles of PTMs in the pathogenesis of HBV-associated liver diseases are also discussed.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Tan G, Song H, Xu F, Cheng G. When Hepatitis B Virus Meets Interferons. Front Microbiol 2018; 9:1611. [PMID: 30072974 PMCID: PMC6058040 DOI: 10.3389/fmicb.2018.01611] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection imposes a severe burden on global public health. Currently, there are no curative therapies for millions of chronic HBV-infected patients (Lok et al., 2017). Interferon (IFN; including pegylated IFN) is an approved anti-HBV drug that not only exerts direct antiviral activity, but also augments immunity against HBV infection. Through a systematic review of the literature, here we summarize and present recent progress in research regarding the interactions between IFN and HBV as well as dissect the antiviral mechanisms of IFN. We focus on inhibition of HBV replication by IFN-stimulated genes (ISGs) as well as inhibition of IFN signaling by HBV and viral proteins. Finally, we briefly discuss current IFN-based HBV treatment strategies. This review may help to better understand the mechanisms involved in the therapeutic action of IFN as well as the crosstalk between IFN and HBV, and facilitate the development of both direct-acting and immunology-based new HBV drugs.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
19
|
Wang C, Li Z, Shao F, Yang X, Feng X, Shi S, Gao Y, He J. High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017. [PMID: 28645305 PMCID: PMC5481965 DOI: 10.1186/s13046-017-0555-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Oesophageal cancer is one of the most common malignancies worldwide,and oesophageal squamous cell carcinoma (ESCC) is the predominant histological type both globally and in China. Collagen triple helix repeat containing 1 (CTHRC1) has been found to be upregulated in ESCC. However, its role in tumourigenesis and progression of ESCC remains unclear. Methods Using our previous ESCC mRNA profiling data, we screened upregulated genes to identify those required for proliferation. Immunohistochemistry was performed to determine the level of CTHRC1 protein expression in 204 ESCC patients. Correlations between CTHRC1 expression and clinicopathological characteristics were assessed. In addition, pyrosequencing and 5-aza-dC treatment were performed to evaluate methylation status of CTHRC1 promoter. In vitro and in vivo analyses were also conducted to determine the role of CTHRC1 in ESCC cell proliferation, migration and invasion, and RNA sequencing and molecular experiments were performed to study the underlying mechanisms. Results Based on mRNA profiling data, CTHRC1 was identified as one of the most significantly upregulated genes in ESCC tissues (n = 119, fold change = 20.5, P = 2.12E-66). RNA interference screening also showed that CTHRC1 was required for cell proliferation. Immunohistochemistry confirmed markedly high CTHRC1 protein expression in tumour tissues, and high CTHRC1 expression was positively correlated with advanced T stage (P = 0.043), lymph node metastasis (P = 0.023), TNM stage (P = 0.024) and poor overall survival (P = 0.020). Promoter hypomethylation at cg07757887 may contribute to increased CTHRC1 expression in ESCC cells and tumours. Forced overexpression of CTHRC1 significantly enhanced cell proliferation, migration and invasion, whereas depletion of CTHRC1 suppressed these cellular functions in three ESCC cell lines and xenografts. CTHRC1 was found to activate FRA-1 (Fos-related antigen 1, also known as FOSL1) through the MAPK/MEK/ERK cascade, which led to upregulation of cyclin D1 and thus promoted cell proliferation. FRA-1 also induced snail1-mediated MMP14 (matrix metallopeptidase 14, also known as MT1-MMP) expression to facilitate ESCC cell invasion, migration, and metastasis. Conclusions Our data suggest that CTHRC1 may act as an oncogenic driver in progression and metastasis of ESCC, and may serve as a potential biomarker for prognosis and personalized therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zitong Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xueying Yang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Matrix Metalloproteinase 9 Facilitates Hepatitis B Virus Replication through Binding with Type I Interferon (IFN) Receptor 1 To Repress IFN/JAK/STAT Signaling. J Virol 2017; 91:JVI.01824-16. [PMID: 28122987 DOI: 10.1128/jvi.01824-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection may cause acute hepatitis B, chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV evades host immunity and maintains chronic infection are largely unknown. Here, we revealed that matrix metalloproteinase 9 (MMP-9) is activated in peripheral blood mononuclear cells (PBMCs) of HBV-infected patients, and HBV stimulates MMP-9 expression in macrophages and PBMCs isolated from healthy individuals. MMP-9 plays important roles in the breakdown of the extracellular matrix and in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. MMP-9 also regulates respiratory syncytial virus (RSV) replication, but the mechanism underlying such regulation is unknown. We further demonstrated that MMP-9 facilitates HBV replication by repressing the interferon (IFN)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, IFN action, STAT1/2 phosphorylation, and IFN-stimulated gene (ISG) expression. Moreover, MMP-9 binds to type I IFN receptor 1 (IFNAR1) and facilitates IFNAR1 phosphorylation, ubiquitination, subcellular distribution, and degradation to interfere with the binding of IFANR1 to IFN-α. Thus, we identified a novel positive-feedback regulation loop between HBV replication and MMP-9 production. On one hand, HBV activates MMP-9 in infected patients and leukocytes. On the other hand, MMP-9 facilitates HBV replication through repressing IFN/JAK/STAT signaling, IFNAR1 function, and IFN-α action. Therefore, HBV may take the advantage of MMP-9 function to establish or maintain chronic infection.IMPORTANCE Hepatitis B virus (HBV) infection may cause chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV maintains chronic infection are largely unknown. Matrix metalloproteinase 9 (MMP-9) plays important roles in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. However, the effects of MMP-9 on HBV replication and pathogenesis are not known. This study reveals that MMP-9 expression is activated in patients with CHB, and HBV stimulates MMP-9 production in PBMCs and macrophages. More interestingly, MMP-9 in turn promotes HBV replication through suppressing IFN-α action. Moreover, MMP-9 interacts with type I interferon receptor 1 (IFNAR1) to disturb the binding of IFN-α to IFNAR1 and facilitate the phosphorylation, ubiquitination, subcellular distribution, and degradation of IFNAR1. Therefore, these results discover a novel role of MMP-9 in viral replication and reveal a new mechanism by which HBV evades host immunity to maintain persistent infection.
Collapse
|
21
|
Zhu C, Song H, Shen B, Wu L, Liu F, Liu X. Promoting effect of hepatitis B virus on the expressoin of phospholipase A2 group IIA. Lipids Health Dis 2017; 16:5. [PMID: 28077172 PMCID: PMC5225502 DOI: 10.1186/s12944-016-0400-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection causes acute and chronic liver disease, ultimately leading to the development of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Phospholipase A2 group IIA (PLA2G2A) plays important roles in the development and progression of many tumors. Thus far, there have been no reports on the association between HBV and PLA2G2A. The present study investigated the effect of HBV infection on PLA2G2A expression and its application in the diagnosis of HBV-related diseases. Methods Serum levels of PLA2G2A in 308 HBV-infected patients and 185 healthy controls were measured using an enzyme-linked immunosorbent assay (ELISA). The difference in serum levels of PLA2G2A was analyzed among chronic hepatitis B (CHB), LC, and HCC patients. PLA2G2A mRNA and protein expression in HepG2 and HepG2.2.15 cells carrying the integrated HBV genome were measured using reverse transcription polymerase chain reaction (RT-PCR) and western blot assays. The HBV infectious clone pHBV1.3, the control plasmid pBlue-ks and PLA2G2A gene promoter were transfected into HepG2 and HepG2.2.15 cells. After transfection, the luciferase activity was measured in the cells. PLA2G2A mRNA and protein expression levels were examined using RT-PCR and western blot assays. Results The serum levels of PLA2G2A were 258.3 ± 20.3ng/dl in the healthy controls and 329.0 ± 22.5ng/dl, 385.4 ± 29.3ng/dl and 459.2 ± 38.6ng/dl in the CHB, LC, and HCC patients, respectively. Statistical analyses revealed significantly higher serum levels of PLA2G2A in CHB, LC, and HCC patients than in the healthy controls (P < 0.05), and PLA2G2A levels were elevated in the order of HCC > LC > CHB group. High serum PLA2G2A levels in HCC patients were associated with a lower prevalence of lymph node metastasis and a lower TNM stage. HepG2.2.15 cells carrying the HBV genome expressed higher levels of PLA2G2A mRNA and protein than the HepG2 cells. In addition, HBV triggered PLA2G2A promoter activity and enhanced PLA2G2A mRNA and protein expression compared to the empty vector pBlue-ks. Conclusion HBV can upregulate the expression of PLA2G2A, and serum levels of PLA2G2A are associated with the progression of HBV-related diseases.
Collapse
Affiliation(s)
- Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Bingzheng Shen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Long Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Fang Liu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
22
|
Jiang N, Cui Y, Liu J, Zhu X, Wu H, Yang Z, Ke Z. Multidimensional Roles of Collagen Triple Helix Repeat Containing 1 (CTHRC1) in Malignant Cancers. J Cancer 2016; 7:2213-2220. [PMID: 27994657 PMCID: PMC5166530 DOI: 10.7150/jca.16539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor is one of the principal diseases that seriously threaten human health. Insight into sensitive cancer markers may open a new avenue for the early diagnosis and treatment of this disease. CTHRC1 has been identified as a cancer-related gene. It is a secretory glycoprotein that possesses multidimensional roles associated with wound repair, bone remodeling, hepatocytes fibrosis, adipose tissue formation, and so on. Our previous studies and numerous reports from other researchers have revealed that the ascended expression of CTHRC1 tends to go hand in hand with tumorigenesis, proliferation, invasion and metastasis in various human malignancies through a series of molecular mechanisms and signaling pathways. However, the detailed pathogenic mechanisms of CTHRC1 overexpression in human malignant cancers are not yet clear. Here, we shall focus our description on the functions, expression profile in several representative malignant tumors and a number of molecular mechanisms and signaling pathways involved with CTHRC1. This introductory discussion of CTHRC1 will serve as a reference for further research in understanding this intriguing cancer-related protein.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - YongMei Cui
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - JunXiu Liu
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - XiaoLin Zhu
- Department of Otolaryngology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Province Guangdong, P.R. China
| | - Hui Wu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - Zheng Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - ZunFu Ke
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| |
Collapse
|
23
|
Zhu C, Peng G, Yi W, Song H, Liu F, Liu X. The Influenza A Virus Non-structural Protein NS1 Upregulates The Expression of Collagen Triple Helix Repeat Containing 1 Protein. Scand J Immunol 2016; 84:365-369. [PMID: 27718266 DOI: 10.1111/sji.12496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
Abstract
Influenza A virus (IAV) infection induces a strong immune response and regulates the expression of many host proteins. The collagen triple helix repeat containing 1 (CTHRC1) protein is a secreted protein that exhibits increased expression during the viral infection process. However, the regulatory function of IAV on CTHRC1 expression is obscure. In this study, we investigated the effect of IAV on CTHRC1 expression and its regulatory mechanism. A total of 106 serum specimens from healthy people and 80 serum specimens from patients infected with IAV were collected. The CTHRC1 levels in the sera from the IVA patients and healthy individuals were measured using an enzyme-linked immunosorbent assay (ELISA), and the differences were statistically analysed. A549 cells were infected with the IAV or delNS1 virus. Additionally, A549 cells were cotransfected with a eukaryotic non-structural NS1 protein gene expression plasmid and the CTHRC1 gene promoter reporter plasmid (pCTHRC1-Luc), and, the luciferase activities were assessed. The CTHRC1 mRNA and protein expression were detected using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The serum CTHRC1 level was significantly higher in the IAV patients than in the healthy individuals. IAV upregulated the CTHRC1 mRNA and protein expression. The non-structural NS1 protein specifically activated CTHRC1 gene promoter activity and upregulated CTHRC1 mRNA and protein expression. The activation function had a dose-dependent effect, indicating that influenza virus upregulated CTHRC1 expression through its NS1 protein.
Collapse
Affiliation(s)
- C Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - G Peng
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - W Yi
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - H Song
- Department of Clinical Laboratory, Gongli Hospital, Second Military Medicine University, Shanghai, China
| | - F Liu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - X Liu
- Department of Clinical Laboratory, Gongli Hospital, Second Military Medicine University, Shanghai, China
| |
Collapse
|
24
|
Zou ZQ, Wang L, Wang K, Yu JG. Innate immune targets of hepatitis B virus infection. World J Hepatol 2016; 8:716-725. [PMID: 27330680 PMCID: PMC4911505 DOI: 10.4254/wjh.v8.i17.716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.
Collapse
Affiliation(s)
- Zhi-Qiang Zou
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Li Wang
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Kai Wang
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Ji-Guang Yu
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| |
Collapse
|
25
|
Pediatric and Adult High-Grade Glioma Stem Cell Culture Models Are Permissive to Lytic Infection with Parvovirus H-1. Viruses 2016; 8:v8050138. [PMID: 27213425 PMCID: PMC4885093 DOI: 10.3390/v8050138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Combining virus-induced cytotoxic and immunotherapeutic effects, oncolytic virotherapy represents a promising therapeutic approach for high-grade glioma (HGG). A clinical trial has recently provided evidence for the clinical safety of the oncolytic parvovirus H-1 (H-1PV) in adult glioblastoma relapse patients. The present study assesses the efficacy of H-1PV in eliminating HGG initiating cells. H-1PV was able to enter and to transduce all HGG neurosphere culture models (n = 6), including cultures derived from adult glioblastoma, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Cytotoxic effects induced by the virus have been observed in all HGG neurospheres at half maximal inhibitory concentration (IC50) doses of input virus between 1 and 10 plaque forming units per cell. H-1PV infection at this dose range was able to prevent tumorigenicity of NCH421k glioblastoma multiforme (GBM) “stem-like” cells in NOD/SCID mice. Interestingly NCH421R, an isogenic subclone with equal capacity of xenograft formation, but resistant to H-1PV infection could be isolated from the parental NCH421k culture. To reveal changes in gene expression associated with H-1PV resistance we performed a comparative gene expression analysis in these subclones. Several dysregulated genes encoding receptor proteins, endocytosis factors or regulators innate antiviral responses were identified and represent intriguing candidates for to further study molecular mechanisms of H-1PV resistance.
Collapse
|
26
|
Adaptive immunity in the liver. Cell Mol Immunol 2016; 13:354-68. [PMID: 26996069 PMCID: PMC4856810 DOI: 10.1038/cmi.2016.4] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver.
Collapse
|