1
|
Li Z, Wang D, Zhu X. Roles of LncRNA ARSR in tumor proliferation, drug resistance, and lipid and cholesterol metabolism. Clin Transl Oncol 2025; 27:1356-1365. [PMID: 39251493 DOI: 10.1007/s12094-024-03700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Cancer is one of the most serious diseases that threaten human life and health. Among all kinds of diseases, the mortality rate of malignant tumors is the second highest, second only to cardio-cerebrovascular diseases. Cancer treatment typically involves imaging, surgery, and pathological analysis. When patients are identified as carcinoma by the above means, there are often problems of distant metastasis, delayed treatment, and drug tolerance, indicating that patients have some poor prognosis and overall survival. Hence, the development of novel molecular biomarkers is of great clinical importance. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, lncRNA have attracted widespread attention for their roles in tumor development. In this review, we comprehensively summarize the up-to-date knowledge of lncARSR on diverse cancer types which mainly focuses on tumor proliferation, drug tolerance, and lipid and cholesterol metabolism, highlighting the potential of lncARSR as a diagnostic and prognostic biomarker and even a therapeutic target. In our final analysis, we provide a synthesized overview of the directions for future inquiry into lncARSR, and we are eager to witness the advancement of research that will elucidate the multifaceted nature of this lncRNA.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
2
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
3
|
Saadh MJ, Hamid JA, H M, Kazmi SW, Ahmed MH, Sharma A, Kumar MR, Husseen B. STAT3-related lncRNAs in colorectal cancer progression; Special focus on immune cell's evasion. Pathol Res Pract 2025; 266:155810. [PMID: 39798234 DOI: 10.1016/j.prp.2025.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Colorectal cancer (CRC) is globally ranked as the third leading cause of cancer-related deaths in both men and women. There is an urgent need for novel biomarkers to facilitate early diagnosis and enhance patient care, thereby improving treatment response and reducing mortality rates. Signal transducer and activator of transcription 3 (STAT3) is essential for controlling the anti-tumor immune response since it is a hub for several oncogenic signaling pathways. In the tumor environment, STAT3 is widely overactivated in both malignant and non-cancerous cells. It is involved in suppressing the expression of critical immune activation regulators and encouraging the synthesis of immunosuppressive substances. Long noncoding RNAs (lncRNAs), a kind of non-coding RNA, are critical for CRC development, apoptosis, and metastasis because they influence important signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a significant role in modifying the TME and control the expression of important immunological checkpoints, such as PD-L1. Therefore, a comprehensive understanding of the regulatory roles of lncRNAs is crucial for identifying diagnostic, prognostic, and predictive biomarkers for CRC. Thus, the objective of the present review study is to provide a comprehensive overview of the interaction between the STAT3 signaling pathway and various lncRNAs, as well as their implications for apoptosis, metastasis, and immune evasion in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India.
| | | | - Ashish Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
5
|
Sharma S, Houfani AA, Foster LJ. Pivotal functions and impact of long con-coding RNAs on cellular processes and genome integrity. J Biomed Sci 2024; 31:52. [PMID: 38745221 PMCID: PMC11092263 DOI: 10.1186/s12929-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Biferali B, Mocciaro E, Runfola V, Gabellini D. Long non-coding RNAs and their role in muscle regeneration. Curr Top Dev Biol 2024; 158:433-465. [PMID: 38670715 DOI: 10.1016/bs.ctdb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels. Several of them have been shown to be modulated during myogenic differentiation, playing important roles in the regulation of skeletal muscle development, differentiation and homeostasis, and contributing to neuromuscular diseases. In this chapter, we have summarized the current knowledge about long noncoding RNAs in skeletal muscle and discussed specific examples of long noncoding RNAs (lncRNAs and circRNAs) regulating muscle stem cell biology. We have also discussed selected long noncoding RNAs involved in the most common neuromuscular diseases.
Collapse
Affiliation(s)
- Beatrice Biferali
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Mocciaro
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Runfola
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Gabellini
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Long X, Wen F, Li J, Huang X. LncRNA FEZF1-AS1 accelerates multiple myeloma progression by regulating IGF2BP1/BZW2 signaling. Hematol Oncol 2023; 41:694-703. [PMID: 37125488 DOI: 10.1002/hon.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
Multiple myeloma (MM) is the second largest hematological tumor with clonal proliferation of malignant plasma cells. Growing reports have revealed that the dysregulation of long non-coding RNA (lncRNA) is involved in the MM progression. Nevertheless, lncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) remain not deeply explored. The RNA transcripts and protein level of MM-associated molecule were measured by quantitative real-time polymerase chain reaction or western blot assays, respectively. The clinical correlation was analyzed by Pearson analysis. Molecular interactions among lncRNA FEZF1-AS1, basic leucine zipper and W2 domain 2 (BZW2) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) were verified by RNA immunoprecipitation and RNA pull-down assays. The survival of MM cells was detected by cell counting kit-8 and flow cytometry assays. Xenograft tumor in vivo was performed to assess tumor growth. The RNA transcripts of lncRNA FEZF1-AS1, BZW2 and IGF2BP1 were upregulated in MM samples compared to those in healthy donors. Knockdown of lncRNA FEZF1-AS1 could inhibit the proliferation and induce cell apoptosis in vitro and in vivo. Besides, lncRNA FEZF1-AS1 could maintain the stability of BZW2 mRNA by interacting IGF2BP1. Moreover, BZW2 silence also downregulated the proliferation but enhanced apoptosis of MM cells, while BZW2 overexpression had an opposite role, which dramatically reversed the regulatory roles of lncRNA FEZF1-AS1. Altogether, lncRNA FEZF1-AS1 facilitated MM development by regulating IGF2BP1/BZW2 signaling, suggesting that lncRNA FEZF1-AS1 might be a candidate for MM treatment.
Collapse
Affiliation(s)
- Xingxing Long
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaoqing Huang
- Department of Blood Transfusion, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
8
|
Chen LJ, Xin Y, Yuan MX, Ji CY, Peng YM, Yin Q. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation. Am J Physiol Cell Physiol 2023; 325:C796-C806. [PMID: 37575056 DOI: 10.1152/ajpcell.00462.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
We aimed to examine impacts and functional mechanism of circular RNA forkhead box N2 (FOXN2) in tacrolimus (TAC)- and dexamethasone (Dex)-induced lipid metabolism disorders. RNA level and protein contents in TAC, Dex, or combined TAC- plus Dex-treated patients and Huh-7 cells were measured utilizing quantitative real-time (qRT)-PCR and western blotting assays measured the formation of lipid droplet. Total cholesterol (TC) and triglyceride (TG) levels were determined using corresponding commercial kits and Oil red O staining. RNA immunoprecipitation and RNA pull-down verified the binding relationship among circFOXN2, polypyrimidine tract binding protein 1 (PTBP1) and fatty acid synthase (FASN). Male C57BL/6 mice were used to establish a dyslipidemia mouse model to validate the discoveries at the cellular level. Dex treatment significantly promoted TAC-mediated increase of TC and TG in serum samples and Huh-7 cells. Moreover, circFOXN2 was reduced but FASN was elevated in TAC-treated Huh-7 cells, and these expression trends were markedly enhanced by Dex cotreatment. Overexpression of circFOXN2 could reverse the accumulation of TC and TG and the upregulation of FASN and sterol regulatory element binding transcription factor 2 (SREBP2) mediated by Dex and TAC cotreatment. Mechanistically, circFOXN2 reduced FASN mRNA stability by recruiting PTBP1. The protective roles of circFOXN2 overexpression on lipid metabolism disorders were weakened by FASN overexpression. In vivo finding also disclosed that circFOXN2 greatly alleviated the dysregulation of lipid metabolism triggered by TAC plus Dex. CircFOXN2 alleviated the dysregulation of lipid metabolism induced by the combination of TAC and Dex by modulating the PTBP1/FASN axis.NEW & NOTEWORTHY Collectively, our experiments revealed for the first time that circFOXN2 alleviated the Dex- and TAC-induced dysregulation of lipid metabolism by regulating the PTBP1/FASN axis. These findings suggested that circFOXN2 and FASN might be candidate targets for the treatment of Dex- and TAC-induced metabolic disorders.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yang Xin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Miao-Xian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Chun-Yi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yu-Ming Peng
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| |
Collapse
|
9
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 948] [Impact Index Per Article: 474.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Xu J, Liu X, Wu S, Zhang D, Liu X, Xia P, Ling J, Zheng K, Xu M, Shen Y, Zhang J, Yu P. RNA-binding proteins in metabolic-associated fatty liver disease (MAFLD): From mechanism to therapy. Biosci Trends 2023; 17:21-37. [PMID: 36682800 DOI: 10.5582/bst.2022.01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.
Collapse
Affiliation(s)
- Jiawei Xu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Wu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, Guangdong, Guangdong, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
12
|
Yan B, Tzertzinis G, Schildkraut I, Ettwiller L. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res 2021; 32:162-174. [PMID: 34815308 PMCID: PMC8744680 DOI: 10.1101/gr.275784.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Determination of eukaryotic transcription start sites (TSSs) has been based on methods that require the cap structure at the 5' end of transcripts derived from Pol II RNA polymerase. Consequently, these methods do not reveal TSSs derived from the other RNA polymerases that also play critical roles in various cell functions. To address this limitation, we developed ReCappable-seq, which comprehensively identifies TSS for both Pol II and non-Pol II transcripts at single-nucleotide resolution. The method relies on specific enzymatic exchange of 5' m7G caps and 5' triphosphates with a selectable tag. When applied to human transcriptomes, ReCappable-seq identifies Pol II TSSs that are in agreement with orthogonal methods such as CAGE. Additionally, ReCappable-seq reveals a rich landscape of TSSs associated with Pol III transcripts that have not previously been amenable to study at genome-wide scale. Novel TSS from non-Pol II transcription can be located in the nuclear and mitochondrial genomes. ReCappable-seq interrogates the regulatory landscape of coding and noncoding RNA concurrently and enables the classification of epigenetic profiles associated with Pol II and non-Pol II TSS.
Collapse
Affiliation(s)
- Bo Yan
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Ira Schildkraut
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
13
|
Cai L, Xuan J, Lin Q, Wang J, Liu S, Xie F, Zheng L, Li B, Qu L, Yang J. Pol3Base: a resource for decoding the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. Nucleic Acids Res 2021; 50:D279-D286. [PMID: 34747466 PMCID: PMC8728242 DOI: 10.1093/nar/gkab1033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes hundreds of non-coding RNA genes (ncRNAs), which involve in a variety of cellular processes. However, the expression, functions, regulatory networks and evolution of these Pol III-transcribed ncRNAs are still largely unknown. In this study, we developed a novel resource, Pol3Base (http://rna.sysu.edu.cn/pol3base/), to decode the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. The current release of Pol3Base includes thousands of regulatory relationships between ∼79 000 ncRNAs and transcription factors by mining 56 ChIP-seq datasets. By integrating CLIP-seq datasets, we deciphered the interactions of these ncRNAs with >240 RNA binding proteins. Moreover, Pol3Base contains ∼9700 RNA modifications located within thousands of Pol III-transcribed ncRNAs. Importantly, we characterized expression profiles of ncRNAs in >70 tissues and 28 different tumor types. In addition, by comparing these ncRNAs from human and mouse, we revealed about 4000 evolutionary conserved ncRNAs. We also identified ∼11 403 tRNA-derived small RNAs (tsRNAs) in 32 different tumor types. Finally, by analyzing somatic mutation data, we investigated the mutation map of these ncRNAs to help uncover their potential roles in diverse diseases. This resource will help expand our understanding of potential functions and regulatory networks of Pol III-transcribed ncRNAs.
Collapse
Affiliation(s)
- Li Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Jiajia Xuan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Qiao Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Junhao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Fangzhou Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| |
Collapse
|
14
|
Ding Y, Zhou DY, Yu H, Zhu T, Guo F, He Y, Guo XL, Lin YJ, Liu YJ, Yu YS. Upregulation of lncRNA NONRATG019935.2 suppresses the p53-mediated apoptosis of renal tubular epithelial cells in septic acute kidney injury. Cell Death Dis 2021; 12:771. [PMID: 34719669 PMCID: PMC8558325 DOI: 10.1038/s41419-021-03953-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Although increasing evidence has confirmed that the apoptosis of renal tubular epithelial cells (RTECs) is a crucial contributor to the onset and development of septic acute kidney injury (AKI), the pathological mechanism by which RTEC apoptosis is upregulated during septic AKI is not entirely clear. In this study, a rat model of septic AKI was induced by a cecal ligation puncture procedure or lipopolysaccharide (LPS) injection. Four differentially expressed long noncoding RNAs (DE-Lncs) in the rat model of septic AKI were determined using RNA-sequencing and verified by qRT-PCR. Among the four DE-Lncs, the expression level of lncRNA NONRATG019935.2 (9935) exhibited the most significant reduction in both septic AKI rats and LPS-treated NRK-52E cells (a rat RTEC line). The overexpression of 9935 suppressed cell apoptosis and p53 protein level in LPS-treated NRK-52E cells, and retarded septic AKI development in the rat model of septic AKI. Mechanistically, 9935 decreased the human antigen R (HuR)-mediated Tp53 mRNA stability by limiting the combination of HuR and the 3'UTR region of Tp53 mRNA in RTECs. The overexpression of HuR abrogated the inhibitory effect of pcDNA-9935 on the LPS-induced apoptosis of NRK-52E and rat primary RTECs. In conclusion, 9935 exerts its role in septic AKI by suppressing the p53-mediated apoptosis of RTECs, and this essential role of 9935 relies on its destructive effect on HuR-mediated Tp53 mRNA stability.
Collapse
Affiliation(s)
- Ying Ding
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 310018, Hangzhou, Zhejiang, China.
| | - Dao-Yang Zhou
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Tao Zhu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 310018, Hangzhou, Zhejiang, China
| | - Feng Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Yang He
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Xiu-Liu Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Yong-Jun Lin
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Yu-Jiao Liu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 310018, Hangzhou, Zhejiang, China
| | - Yun-Song Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Calvo Sánchez J, Köhn M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021; 7:68. [PMID: 34842767 PMCID: PMC8629011 DOI: 10.3390/ncrna7040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained interest among the scientific community, especially in the clinical context. The main molecular role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the development of new sequencing techniques and sophisticated analysis pipelines, new members of the snoRNA family were identified and global expression patterns in disease backgrounds could be determined. We will herein shed light on the current research progress in snoRNA biology and their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However, research is only starting to reveal how snoRNAs might influence cellular functions and the connected disease hallmarks in hematological malignancies.
Collapse
Affiliation(s)
| | - Marcel Köhn
- Junior Research Group ‘RBPs and ncRNAs in Human Diseases’, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Saale, Germany;
| |
Collapse
|
16
|
Zhao M, Shen L, Ouyang Z, Li M, Deng G, Yang C, Zheng W, Kong L, Wu X, Wu X, Guo W, Yin Y, Xu Q, Sun Y. Loss of hnRNP A1 in murine skeletal muscle exacerbates high-fat diet-induced onset of insulin resistance and hepatic steatosis. J Mol Cell Biol 2021; 12:277-290. [PMID: 31169879 PMCID: PMC7232127 DOI: 10.1093/jmcb/mjz050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Impairment of glucose (Glu) uptake and storage by skeletal muscle is a prime risk factor for the development of metabolic diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a highly abundant RNA-binding protein that has been implicated in diverse cellular functions. The aim of this study was to investigate the function of hnRNP A1 on muscle tissue insulin sensitivity and systemic Glu homeostasis. Our results showed that conditional deletion of hnRNP A1 in the muscle gave rise to a severe insulin resistance phenotype in mice fed a high-fat diet (HFD). Conditional knockout mice fed a HFD showed exacerbated obesity, insulin resistance, and hepatic steatosis. In vitro interference of hnRNP A1 in C2C12 myotubes impaired insulin signal transduction and inhibited Glu uptake, whereas hnRNP A1 overexpression in C2C12 myotubes protected against insulin resistance induced by supraphysiological concentrations of insulin. The expression and stability of glycogen synthase (gys1) mRNA were also decreased in the absence of hnRNP A1. Mechanistically, hnRNP A1 interacted with gys1 and stabilized its mRNA, thereby promoting glycogen synthesis and maintaining the insulin sensitivity in muscle tissue. Taken together, our findings are the first to show that reduced expression of hnRNP A1 in skeletal muscle affects the metabolic properties and systemic insulin sensitivity by inhibiting glycogen synthesis.
Collapse
Affiliation(s)
- Mingxia Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lihong Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Manru Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Zhu H, Li J, Li Y, Zheng Z, Guan H, Wang H, Tao K, Liu J, Wang Y, Zhang W, Li C, Li J, Jia L, Bai W, Hu D. Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. SCIENCE ADVANCES 2021; 7:eabd9923. [PMID: 33627425 PMCID: PMC7904261 DOI: 10.1126/sciadv.abd9923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 05/05/2023]
Abstract
Mechanical stimuli on cells and mechanotransduction are essential in many biological and pathological processes. Glucocorticoid is an important hormone, roles, and mechanisms of which in cellular mechanotransduction remain unknown. Here, we report that glucocorticoid counteracted cellular mechanoresponses dependently on a novel long noncoding RNA (lncRNA), LINC01569 Further, LINC01569 mediated glucocorticoid effects on mechanotransduction by destabilizing messenger RNA (mRNA) of mechanosensors including early growth response protein 1 (EGR1), Cbp/P300-interacting transactivator 2 (CITED2), and bone morphogenic protein 7 (BMP7) in glucocorticoid receptor-mediated mRNA decay (GMD) manner. Mechanistically, LINC01569 directly bound to the GMD factor Y-box-binding protein 1 (YBX1). Then, the LINC01569-YBX1 complex was guided to the mRNAs of EGR1, CITED2, and BMP7 through specific LINC01569-mRNA interaction, thereby contributing to the successful assembly of GMD complex and triggering GMD. Our results uncovered roles of glucocorticoid in cellular mechanotransduction and novel lncRNA-dependent GMD machinery and provided potential strategy for early intervention in mechanical disorder-associated diseases.
Collapse
Affiliation(s)
- Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wendong Bai
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
- Department of Clinical Laboratory Center, Xinjiang Command General Hospital of Chinese People's Liberation Army, Urumqi, Xinjiang 830000, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
18
|
Zorn P, Misiak D, Gekle M, Köhn M. Identification and initial characterization of POLIII-driven transcripts by msRNA-sequencing. RNA Biol 2021; 18:1807-1817. [PMID: 33404286 PMCID: PMC8583065 DOI: 10.1080/15476286.2020.1871216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are powerful regulators of gene expression but medium-sized (50–300 nts in length) ncRNAs (msRNAs) are barely picked-up precisely by RNA-sequencing. Here we describe msRNA-sequencing (msRNAseq), a modified protocol that associated with a computational analyses pipeline identified about ~1800 msRNA loci, including over 300 putatively novel msRNAs, in human and murine cells. We focused on the identification and initial characterization of three POLIII-derived transcripts. The validation of these uncharacterized msRNAs identified an ncRNA in antisense orientation from the POLR3E locus transcribed by POLIII. This msRNA, termed POLAR (POLR3E Antisense RNA), has a strikingly short half-life, localizes to paraspeckles (PSPs) and associates with PSP-associated proteins indicating that msRNAseq identifies functional msRNAs. Thus, our analyses will pave the way for analysing the roles of msRNAs in cells, development and diseases.
Collapse
Affiliation(s)
| | - Danny Misiak
- Institute of Molecular Medicine, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Germany
| | | |
Collapse
|
19
|
Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, Bliźniak R, Lamperska K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int J Mol Sci 2020; 21:ijms21165682. [PMID: 32784396 PMCID: PMC7460810 DOI: 10.3390/ijms21165682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iga Kołodziejczak
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
20
|
Xu YJ, Liu PP, Ng SC, Teng ZQ, Liu CM. Regulatory networks between Polycomb complexes and non-coding RNAs in the central nervous system. J Mol Cell Biol 2020; 12:327-336. [PMID: 31291646 PMCID: PMC7288736 DOI: 10.1093/jmcb/mjz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 06/11/2019] [Indexed: 01/29/2023] Open
Abstract
High-throughput sequencing has facilitated the identification of many types of non-coding RNAs (ncRNAs) involved in diverse cellular processes. NcRNAs as epigenetic mediators play key roles in neuronal development, maintenance, and dysfunction by controlling gene expression at multiple levels. NcRNAs may not only target specific DNA or RNA for gene silence but may also directly interact with chromatin-modifying proteins like Polycomb group (PcG) proteins to drive orchestrated transcriptional programs. Recent significant progress has been made in characterizing ncRNAs and PcG proteins involved in transcriptional, post-transcriptional, and epigenetic regulation. More importantly, dysregulation of ncRNAs, PcG proteins, and interplay among them is closely associated with the pathogenesis of central nervous system (CNS) disorders. In this review, we focus on the interplay between ncRNAs and PcG proteins in the CNS and highlight the functional roles of the partnership during neural development and diseases.
Collapse
Affiliation(s)
- Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shyh-Chang Ng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|
22
|
Bindereif A, Wang Z. A joint adventure of Sino-German researchers to explore the wild world of RNAs. J Mol Cell Biol 2019; 11:811-812. [PMID: 31638144 PMCID: PMC6884702 DOI: 10.1093/jmcb/mjz097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Albrecht Bindereif
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University of Giessen, Giessen D-35392, Germany
| |
Collapse
|