1
|
Yamaguchi TN, Houlahan KE, Zhu H, Kurganovs N, Livingstone J, Fox NS, Yuan J, Sietsma Penington J, Jung CH, Schwarz T, Jaratlerdsiri W, van Riet J, Georgeson P, Mangiola S, Taraszka K, Lesurf R, Jiang J, Chow K, Heisler LE, Shiah YJ, Ramanand SG, Clarkson MJ, Nguyen A, Espiritu SMG, Stuchbery R, Jovelin R, Huang V, Bell C, O’Connor E, McCoy PJ, Lalansingh CM, Cmero M, Salcedo A, Chan EK, Liu LY, Stricker PD, Bhandari V, Bornman RM, Sendorek DH, Lonie A, Prokopec SD, Fraser M, Peters JS, Foucal A, Mutambirwa SB, Mcintosh L, Orain M, Wakefield M, Picard V, Park DJ, Hovington H, Kerger M, Bergeron A, Sabelnykova V, Seo JH, Pomerantz MM, Zaitlen N, Waszak SM, Gusev A, Lacombe L, Fradet Y, Ryan A, Kishan AU, Lolkema MP, Weischenfeldt J, Têtu B, Costello AJ, Hayes VM, Hung RJ, He HH, McPherson JD, Pasaniuc B, van der Kwast T, Papenfuss AT, Freedman ML, Pope BJ, Bristow RG, Mani RS, Corcoran NM, Reimand J, Hovens CM, Boutros PC. The Germline and Somatic Origins of Prostate Cancer Heterogeneity. Cancer Discov 2025; 15:988-1017. [PMID: 39945744 PMCID: PMC12046336 DOI: 10.1158/2159-8290.cd-23-0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
SIGNIFICANCE This study uncovered 223 recurrently mutated driver regions using the largest cohort of prostate tumors to date. It reveals associations between germline SNPs, somatic drivers, and tumor aggression, offering significant insights into how prostate tumor evolution is shaped by germline factors and the timing of somatic mutations.
Collapse
Affiliation(s)
- Takafumi N. Yamaguchi
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Kathleen E. Houlahan
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Helen Zhu
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Natalie Kurganovs
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Julie Livingstone
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Natalie S. Fox
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Job van Riet
- Department of Medical Oncology, Erasmus University, Rotterdam, the Netherlands
| | - Peter Georgeson
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Stefano Mangiola
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Kodi Taraszka
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Robert Lesurf
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Jue Jiang
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Ken Chow
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
| | | | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Michael J. Clarkson
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Anne Nguyen
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Ryan Stuchbery
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Connor Bell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edward O’Connor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick J. McCoy
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Marek Cmero
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Adriana Salcedo
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Eva K.F. Chan
- St Vincent’s Clinical School, University of New South Wales, Randwick, Australia
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
| | - Lydia Y. Liu
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Phillip D. Stricker
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
| | - Vinayak Bhandari
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Riana M.S. Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Andrew Lonie
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | | | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Justin S. Peters
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Adrien Foucal
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Lachlan Mcintosh
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Michèle Orain
- Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Matthew Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Valérie Picard
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Daniel J. Park
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Hélène Hovington
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Michael Kerger
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
| | - Alain Bergeron
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | | | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M. Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Genetics, Brigham Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Louis Lacombe
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Yves Fradet
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Andrew Ryan
- TissuPath Specialist Pathology Services, Mount Waverley, Australia
| | - Amar U. Kishan
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Martijn P. Lolkema
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernard Têtu
- Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Anthony J. Costello
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
| | - Vanessa M. Hayes
- St Vincent’s Clinical School, University of New South Wales, Randwick, Australia
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Central Clinical School, University of Sydney, Camperdown, Australia
- Department of Medical Sciences, University of Limpopo, Mankweng, South Africa
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bogdan Pasaniuc
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Anthony T. Papenfuss
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bernard J. Pope
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Medicine, Monash University, Clayton, Australia
| | - Robert G. Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Manchester Cancer Research Centre, Manchester, United Kingdom
| | - Ram S. Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
- Department of Urology, Peninsula Health, Frankston, Australia
- The Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Machan S, Rodríguez M, Manso R, Borregón J, Chamizo C, Alonso-Alonso R, Rodríguez-Peralto JL, Torres Nieto MÁ, Monteagudo C, García Toro E, Cerroni L, García C, Estrach T, García Herrera A, Ferrer B, García-Patos V, Segues N, Díaz de la Pinta FJ, Afonso-Martin JL, Peñate Y, Limeres-Gonzalez MÁ, González-Núñez MÁ, González-Cruz C, García Fernández E, Cereceda L, Minguez P, de la Fuente L, Requena L, Rodríguez-Pinilla SM. Different Mutational Profiles of Subcutaneous Panniculitis-like T-cell Lymphoma and Lupus Panniculitis: An Additional Case Series. ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:T210-T217. [PMID: 39566728 DOI: 10.1016/j.ad.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare cytotoxic T-cell lymphoma with indolent behavior, mostly present in women and associated with immunological diseases whose pathogenic background is still poorly understood. SPTCL is associated with lupus erythematosus panniculitis (LEP) and histologically misdiagnosed. OBJECTIVES The aim of our study was to identify mutations affecting the pathogenesis of both SPTCL and LEP. MATERIALS AND METHODS We studied a total of 10 SPTCL and 10 LEP patients using targeted next-generation sequencing and pyrosequencing. Differences in gene expression between molecular subgroups were investigated using NanoString® technology. Clinical data were collected, and correlations sought with the molecular data obtained. RESULTS The mutational profile of SPTCL and LEP is different. We identified fewer pathogenic mutations than previously reported in SPTCL, noting a single HAVCR2-mutated SPTCL case. Interestingly, 40% of our SPTCL cases showed the pathogenic TP53 (p.Pro72Arg) (P72R) variant. Although cases showing HAVCR2 mutations or the TP53(P72R) variant had more severe symptomatic disease, none developed hemophagocytic syndrome (HPS). Furthermore, TP53(P72R)-positive cases were characterized by a lower metabolic signaling pathway and higher levels of CD28 expression and Treg signaling genes. In addition, 30% of our cases featured the same mutation (T735C) of the epigenetic modificatory gene DNMT3A. None of the LEP cases showed mutations in any of the studied genes. CONCLUSIONS The mutational landscape of SPTCL is broader than previously anticipated. We describe, for the first time, the involvement of the TP53(P72R) pathogenic variant in this subgroup of tumors, consider the possible role of different genetic backgrounds in the development of SPTCL, and conclude that LEP does not follow the same pathogenic pathway as SPTCL.
Collapse
Affiliation(s)
- S Machan
- Department of Dermatology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España
| | - M Rodríguez
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| | - R Manso
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España.
| | - J Borregón
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| | - C Chamizo
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| | - R Alonso-Alonso
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| | | | | | - C Monteagudo
- Hospital Clínico Universitario de Valencia, Universidad de Valencia, Valencia, España
| | | | - L Cerroni
- Dermatopathology Research Unit, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - C García
- Hospital Universitario de Canarias, Tenerife, España
| | - T Estrach
- Hospital Clínic de Barcelona, Barcelona, España
| | | | - B Ferrer
- Hospital Vall d'Hebron, Barcelona, España
| | | | - N Segues
- Hospital Universitario Donostia, San Sebastián, Guipúzcoa, España
| | - F J Díaz de la Pinta
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| | - J L Afonso-Martin
- Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, España
| | - Y Peñate
- Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, España
| | - M Á Limeres-Gonzalez
- Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, España
| | - M Á González-Núñez
- Hospital Ciudad de Coria y Hospital San Pedro de Alcántara, San Pedro de Alcántara, Cáceres, España
| | | | - E García Fernández
- Department of Hematology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España
| | - L Cereceda
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| | - P Minguez
- Department of Genetics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Bioinformatics Unit, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, España
| | - L de la Fuente
- Department of Genetics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Bioinformatics Unit, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - L Requena
- Department of Dermatology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España
| | - S M Rodríguez-Pinilla
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, España; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), España
| |
Collapse
|
3
|
Machan S, Rodríguez M, Manso R, Borregón J, Chamizo C, Alonso-Alonso R, Rodríguez-Peralto JL, Torres Nieto MÁ, Monteagudo C, García Toro E, Cerroni L, García C, Estrach T, García Herrera A, Ferrer B, García-Patos V, Segues N, Díaz de la Pinta FJ, Afonso-Martin JL, Peñate Y, Limeres-Gonzalez MÁ, González-Núñez MÁ, González-Cruz C, García Fernández E, Cereceda L, Minguez P, de la Fuente L, Requena L, Rodríguez-Pinilla SM. Different Mutational Profiles of Subcutaneous Panniculitis-like T-cell Lymphoma and Lupus Panniculitis: An Additional Case Series. ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:210-217. [PMID: 39032781 DOI: 10.1016/j.ad.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare cytotoxic T-cell lymphoma with indolent behavior, mostly present in women and associated with immunological diseases whose pathogenic background is still poorly understood. SPTCL is associated with lupus erythematosus panniculitis (LEP) and histologically misdiagnosed. OBJECTIVES The aim of our study was to identify mutations affecting the pathogenesis of both SPTCL and LEP. MATERIALS AND METHODS We studied a total of 10 SPTCL and 10 LEP patients using targeted next-generation sequencing and pyrosequencing. Differences in gene expression between molecular subgroups were investigated using NanoString technology. Clinical data were collected, and correlations sought with the molecular data obtained. RESULTS The mutational profile of SPTCL and LEP is different. We identified fewer pathogenic mutations than previously reported in SPTCL, noting a single HAVCR2-mutated SPTCL case. Interestingly, 40% of our SPTCL cases showed the pathogenic TP53 (p.Pro72Arg) (P72R) variant. Although cases showing HAVCR2 mutations or the TP53 (P72R) variant had more severe symptomatic disease, none developed hemophagocytic syndrome (HPS). Furthermore, TP53 (P72R)-positive cases were characterized by a lower metabolic signaling pathway and higher levels of CD28 expression and Treg signaling genes. In addition, 30% of our cases featured the same mutation (T735C) of the epigenetic modificatory gene DNMT3A. None of the LEP cases showed mutations in any of the studied genes. CONCLUSIONS The mutational landscape of SPTCL is broader than previously anticipated. We describe, for the first time, the involvement of the TP53 (P72R) pathogenic variant in this subgroup of tumors, consider the possible role of different genetic backgrounds in the development of SPTCL, and conclude that LEP does not follow the same pathogenic pathway as SPTCL.
Collapse
Affiliation(s)
- S Machan
- Department of Dermatology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Rodríguez
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - R Manso
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain.
| | - J Borregón
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - C Chamizo
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - R Alonso-Alonso
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | | | | | - C Monteagudo
- Hospital Clínico Universitario de Valencia, Universidad de Valencia, Valencia, Spain
| | | | - L Cerroni
- Dermatopathology Research Unit, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - C García
- Hospital Universitario de Canarias, Tenerife, Spain
| | - T Estrach
- Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - B Ferrer
- Hospital Vall d'Hebron, Barcelona, Spain
| | | | - N Segues
- Hospital Universitario Donostia, San Sebastián, Spain
| | - F J Díaz de la Pinta
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - J L Afonso-Martin
- Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Y Peñate
- Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - M Á Limeres-Gonzalez
- Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - M Á González-Núñez
- Hospital Ciudad de Coria y Hospital San Pedro de Alcántara, Cáceres, Spain
| | | | - E García Fernández
- Department of Hematology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain
| | - L Cereceda
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| | - P Minguez
- Department of Genetics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Bioinformatics Unit, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - L de la Fuente
- Department of Genetics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Bioinformatics Unit, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - L Requena
- Department of Dermatology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain
| | - S M Rodríguez-Pinilla
- Department of Pathology, Fundación Jiménez Díaz-IIS, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Spain
| |
Collapse
|
4
|
Cardano M, Buscemi G, Zannini L. Sex Disparities in P53 Regulation and Functions: Novel Insights for Personalized Cancer Therapies. Cells 2025; 14:363. [PMID: 40072091 PMCID: PMC11898824 DOI: 10.3390/cells14050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Epidemiological studies have revealed significant sex differences in the incidence of tumors unrelated to reproductive functions, with females demonstrating a lesser risk and a better response to therapy than males. However, the reasons for these disparities are still unknown and cancer therapies are generally sex-unbiased. The tumor-suppressor protein p53 is a transcription factor that can activate the expression of multiple target genes mainly involved in the maintenance of genome stability and tumor prevention. It is encoded by TP53, which is the most-frequently mutated gene in human cancers and therefore constitutes an attractive target for therapy. Recently, evidence of sex differences has emerged in both p53 regulations and functions, possibly providing novel opportunities for personalized cancer medicine. Here, we will review and discuss current knowledge about sexual disparities in p53 pathways, their role in tumorigenesis and cancer progression, and their importance in the therapy choice process, finally highlighting the importance of considering sex contribution in both basic research and clinical practice.
Collapse
|
5
|
Fontecha MB, Del Rosario Anadón M, Lahitou IMM, Weich N, Bengió R, Moiraghi B, Larripa I, Fundia AF. Exploring the significance of MDM2 gene promoter variants in chronic myeloid leukemia. Leuk Res 2025; 149:107644. [PMID: 39823766 DOI: 10.1016/j.leukres.2025.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 are highly successful in chronic myeloid leukemia (CML). However, extensive interpatient variability in therapeutic responses and resistance supports the need to find new prognostic biomarkers. We have previously reported that TP53 SNP215 variant affects CML risk and clinical outcome. We aimed to evaluate the role of MDM2 genetic variants in CML susceptibility and treatment response to TKIs. We genotyped five MDM2 promoter variants (del1518, SNP309, SNP285, SNP288 and SNP344) in 135 CML patients and 136 healthy individuals. Our study showed that MDM2 variants alone or in combination had no effect on CML susceptibility. The analysis of MDM2 genotypes in relation to patients' clinical parameters revealed that individuals with SNP309 G/G genotypes were at a significantly increased risk of undergoing molecular response failure (p = 0.044). Improved overall survival was also observed for non-responders with the alternative MDM2 del1518 del allele (p = 0.017) as well as for MDM2 del1518-SNP309 combinations with alternative genotypes (p = 0.014). In addition, combinatorial analysis demonstrated that alternative MDM2 SNP309 and TP53 SNP215 genotypes together are associated with faster achievement of MR2 (p = 0.029) and MMR (p = 0.042) in non-responders, suggesting a relationship with a favorable outcome. Overall, our study highlights the influence of MDM2 variants on clinical outcome, supporting that specific genotypes, alone or in combination, underlie the treatment-responsive phenotype.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-mdm2/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Female
- Male
- Middle Aged
- Promoter Regions, Genetic/genetics
- Polymorphism, Single Nucleotide
- Adult
- Aged
- Genotype
- Genetic Predisposition to Disease
- Protein Kinase Inhibitors/therapeutic use
- Prognosis
- Young Adult
- Case-Control Studies
- Aged, 80 and over
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
| | | | | | - Natalia Weich
- Laboratorio de Farmacogenómica, IMEX, CONICET-ANM, Buenos Aires, Argentina
| | - Raquel Bengió
- División Clínica Hematológica, IIHEMA, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Beatriz Moiraghi
- Servicio de Hematología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Irene Larripa
- Laboratorio de Genética Hematológica, IMEX, CONICET-ANM, Buenos Aires, Argentina
| | - Ariela Freya Fundia
- Laboratorio de Farmacogenómica, IMEX, CONICET-ANM, Buenos Aires, Argentina; Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
6
|
Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ 2025; 32:219-224. [PMID: 39443700 PMCID: PMC11803090 DOI: 10.1038/s41418-024-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the TP53 gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of TP53 mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the TP53 gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. TP53 loss of function - with associated dominant-negative effects - is the main mechanism that will impair TP53 tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.
Collapse
Affiliation(s)
- Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| | - Thierry Soussi
- Equipe « Hematopoietic and Leukemic Development », Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Paris, France.
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
7
|
Egawa M, Uno N, Komazaki R, Ohkame Y, Yamazaki K, Yoshimatsu C, Ishizu Y, Okano Y, Miyamoto H, Osaki M, Suzuki T, Hosomichi K, Aizawa Y, Kazuki Y, Tomizuka K. Generation of Monosomy 21q Human iPS Cells by CRISPR/Cas9-Mediated Interstitial Megabase Deletion. Genes Cells 2025; 30:e13184. [PMID: 39581190 DOI: 10.1111/gtc.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Missing an entire chromosome or chromosome arm in normal diploid cells has a deleterious impact on cell viability, which may contribute to the development of specific birth defects. Nevertheless, the effects of chromosome loss in human cells have remained unexplored due to the lack of suitable model systems. Here, we developed an efficient, selection-free approach to generate partial monosomy in human induced pluripotent stem cells (iPSCs). The introduction of Cas9 proteins and a pair of gRNAs induces over megabase-sized interstitial chromosomal deletions. Using human chromosome 21 (HSA21) as a model, partial monosomy 21q (PM21q) iPSC lines with deletions ranging from 4.5 to 27.9 Mb were isolated. A 33.6 Mb deletion, encompassing all protein-coding genes on 21q, was also achieved, establishing the first 21q monosomy human iPSC line. Transcriptome and proteome analyses revealed that the abundances of mRNA and protein encoded by the majority of genes in the monosomic regions are half of the diploid expression level, indicating an absence of dosage compensation. The ability to generate customized partial monosomy cell lines on an isogenic, karyotypically normal background should facilitate the gain of novel insights into the impact of chromosome loss on cellular fitness.
Collapse
Affiliation(s)
- Masaya Egawa
- Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Narumi Uno
- Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rina Komazaki
- Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yusuke Ohkame
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Kyotaro Yamazaki
- Chromosome Engineering Research Group, the Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Homeostatic Regulation, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
| | - Chihiro Yoshimatsu
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Yuki Ishizu
- Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yusaku Okano
- Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yasunori Aizawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Chromosome Engineering Research Group, the Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Chen Z, Wang Z, Mentis AFA, Stey AM, Schwulst SJ. Factors associated with unfavorable outcomes in older patients with traumatic brain injury: analysis from the "All of Us" research program. Front Neurol 2024; 15:1452995. [PMID: 39628897 PMCID: PMC11611856 DOI: 10.3389/fneur.2024.1452995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Traumatic brain injury (TBI) afflicts approximately 70 million people worldwide annually, with patients aged 65 years and older accounting for an increasing proportion of TBI patients. Older patients also experience increased morbidity and mortality post-TBI compared to their younger counterparts. Nevertheless, clinical trials often exclude older TBI patients, and age-specific TBI treatment is lacking. We hypothesized that the APOE genotype and age-associated comorbidities, such as heart disease, are associated with unfavorable outcomes following TBI in older patients. We utilized a dataset from the "All of Us research" (AoU) to study this vulnerable population post-TBI. Launched by the National Institutes of Health (NIH), AoU is a nationwide prospective cohort study aiming to enroll 1 million or more individuals by emphasizing traditionally underrepresented populations in the United States. We defined patients diagnosed with post-concussion syndromes (PCS) as those with unfavorable TBI outcomes, and we also assessed the associations between PCS observed in older patients and different comorbidities variables/APOE genotypes via multiple logistic regression models. Consequently, APOE ε4 allele was strongly associated with PCS in patients aged 65 and older. Our findings provide direct evidence for developing better predictive tools and potentially improving the clinical guidance and management of older adults with TBI.
Collapse
Affiliation(s)
- Zhangying Chen
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zihao Wang
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Alexios-Fotios A. Mentis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Anne M. Stey
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Steven J. Schwulst
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
9
|
Arnon J, Zick A, Maoz M, Salaymeh N, Gugenheim A, Marouani M, Mor E, Hamburger T, Saadi N, Elia A, Ganz G, Fahham D, Meirovitz A, Kadouri L, Meiner V, Yablonski-Peretz T, Shkedi-Rafid S. Clinical and genetic characteristics of carriers of the TP53 c.541C > T, p.Arg181Cys pathogenic variant causing hereditary cancer in patients of Arab-Muslim descent. Fam Cancer 2024; 23:531-542. [PMID: 38743206 PMCID: PMC11512851 DOI: 10.1007/s10689-024-00391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
TP53 pathogenic variants cause Li-Fraumeni syndrome (LFS), with some variants causing an attenuated phenotype. Herein, we describe the clinical phenotype and genetic characteristics of carriers of NM_000546.6 (TP53): c.541C > T, (p.Arg181Cys) treated at Hadassah Medical Center. We retrospectively examined our genetic databases to identify all carriers of TP53 p.Arg181Cys. We reached out to carriers and their relatives and collected clinical and demographic data, lifestyle factors, carcinogenic exposures as well as additional blood samples for genetic testing and whole exome sequencing. Between 2005 and 2022 a total of 2875 cancer patients underwent genetic testing using genetic panels, whole exome sequencing or targeted TP53 assays. A total of 30 cancer patients, all of Arab-Muslim descent, were found to be carriers of TP53 p.Arg181Cys, the majority from Jerusalem and Hebron, two of which were homozygous for the variant. Carriers were from 24 distinct families of them, 15 families (62.5%) met updated Chompret criteria for LFS. Median age of diagnosis was 35 years-old (range 1-69) with cancers characteristic of LFS (16 Breast cancer; 6 primary CNS tumors; 3 sarcomas) including 4 children with choroid plexus carcinoma, medulloblastoma, or glioblastoma. A total of 21 healthy carriers of TP53 p.Arg181Cys were identified at a median age of 39 years-old (range 2-54)-19 relatives and 2 additional pediatric non-cancer patients, in which the finding was incidental. We report a shared haplotype of 350kb among carriers, limited co-morbidities and low BMI in both cancer patients and healthy carriers. There were no demographic factors or carcinogenic exposures unique to carriers who developed malignancy. Upon exome analysis no other known pathogenic variants in cancer predisposing genes were identified. TP53 p.Arg181Cys is a founder pathogenic variant predominant to the Arab-Muslim population in Jerusalem and Hebron, causing attenuated-LFS. We suggest strict surveillance in established carriers and encourage referral to genetic testing for all cancer patients of Arab-Muslim descent in this region with LFS-associated malignancies as well as family members of established carriers.
Collapse
Affiliation(s)
- Johnathan Arnon
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Nada Salaymeh
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Ahinoam Gugenheim
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - MazalTov Marouani
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden Mor
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Hamburger
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Nagam Saadi
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Elia
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pathology, Hadassah University Medical Center, Jerusalem, Israel
| | - Gael Ganz
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
| | - Duha Fahham
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Luna Kadouri
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Yablonski-Peretz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Shkedi-Rafid
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Toscano-Guerra E, Maggio V, García J, Semidey ME, Celma A, Morote J, de Torres I, Giralt M, Ferrer-Costa R, Paciucci R. Association of the rs1042522 SNP with prostate cancer risk: a study of cancer tissues, primary tumor cultures, and serum samples from a Spanish Caucasian population. Front Oncol 2024; 14:1398411. [PMID: 39193388 PMCID: PMC11347290 DOI: 10.3389/fonc.2024.1398411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background Prostate cancer (PCa) is a leading cause of cancer-related deaths in European men, emphasizing the urgent need for effective risk assessment strategies. The TP53 gene, a tumor suppressor gene frequently mutated in cancer, commonly harbors the rs1042522 single nucleotide polymorphism (SNP), known as the P72R SNP, which may influence PCa susceptibility. This study investigated the prevalence of the P72R SNP in European Caucasian PCa samples and its association with PCa risk. Methods Genotyping was conducted on 12 hormone-naïve aggressive PCa cultures (hnPCs) from untreated patients (Gleason ≥8), 11 radical prostatectomies (RP), and 94 serum samples using DNA Sanger sequencing and melting curve analysis. Comparative analysis utilized data from the GnomAD database's European Caucasian non-cancer population. Results Our results demonstrate a significantly higher frequency of the P72R SNP in PCa samples and serums compared to the general European non-cancer population. A robust and statistically significant association (p < 0.0001) between the SNP and prostate cancer risk was identified, with an odds ratio of 7.937 (95% CI 5.37-11.00). Notably, the G allele (R72) showed a pronounced prevalence in high Gleason score (≥8) patients, although statistical significance was not reached. These results highlight a potential association with undifferentiated and malignant PCa lesions. Conclusion The compelling association between the P72R SNP and prostate cancer risk underscores the potential utility of this marker for the early identification of patients at risk of aggressive metastatic prostate cancer. This insight could empower further research to intervene at an early stage by offering enhanced opportunities for timely and targeted interventions.
Collapse
Affiliation(s)
- Emily Toscano-Guerra
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
- Facultad Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Valentina Maggio
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Javier García
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Maria Eugenia Semidey
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Ana Celma
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Urology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Juan Morote
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Inés de Torres
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron Hospital, Barcelona, Spain
| | - Marina Giralt
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
| | - Roser Ferrer-Costa
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
| | - Rosanna Paciucci
- Cell Signaling and Cancer Progression Laboratory, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Clinical Biochemistry Department, Biochemistry Service, Vall d’Hebron Hospital, Barcelona, Spain
| |
Collapse
|
11
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
12
|
Skhoun H, El Fessikh M, El Alaoui Al Abdallaoui M, Khattab M, Belkhayat A, Chebihi ZT, Hassani A, Abilkassem R, Agadr A, Dakka N, El Baghdadi J. Cytogenetic abnormalities and TP53 and RAS gene profiles of childhood acute lymphoblastic leukemia in Morocco. Arch Pediatr 2024; 31:238-244. [PMID: 38679547 DOI: 10.1016/j.arcped.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Recurrent genetic abnormalities affecting pivotal signaling pathways are the hallmark of childhood acute lymphoblastic leukemia (ALL). The identification of these aberrations remains clinically important. Therefore, we sought to determine the cytogenetic profile and the mutational status of TP53 and RAS genes among Moroccan childhood cases of ALL. METHODS In total, 35 patients with childhood ALL were enrolled in the study. The diagnosis and treatment were established in the Pediatric Hematology and Oncology Center at the Children's Hospital of Rabat. Chromosome banding analysis and fluorescence in situ hybridization were used to detect genetic aberrations. Blood samples were screened for TP53 and RAS mutations using Sanger sequencing. RESULTS Of the 35 cases, 30 were B-lineage ALL (85.7 %). Moreover, a male predominance was observed. Cytogenetic analysis revealed chromosomal anomalies in 27 cases (77.1 %). The most frequent aberrations were high hyperdiploidy and BCR/ABL rearrangement. Interestingly, we found the rare t(15;16) and the t(8;14), which are uncommon translocations in pediatric B-ALL. The mutational analysis revealed Pro72Arg (rs1042522:C > G) and Arg213Arg (rs1800372:A > G) in TP53. In correlation with cytogenetic data, rs1042522:C > G showed a significant association with the occurrence of chromosomal translocations (p = 0.04). However, no variant was detected in NRAS and KRAS genes. CONCLUSION Our findings emphasize the significance of detecting chromosomal abnormalities as relevant prognostic markers. We also suggest a low occurrence of genetic variants among Moroccan children with ALL.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
| | | | | | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco; Department of Pediatrics, Abulcasis International University of Health Sciences, Rabat, Morocco; Centre of Childhood Care and Prevention, Cheikh Zaid International University Hospital, Rabat, Morocco
| | | | | | - Amale Hassani
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Abilkassem
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Aomar Agadr
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | | |
Collapse
|
13
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
14
|
Gąsior-Perczak D, Kowalik A, Kopczyński J, Macek P, Niemyska K, Walczyk A, Gruszczyński K, Siołek M, Dróżdż T, Kosowski M, Pałyga I, Przybycień P, Wabik O, Góźdź S, Kowalska A. Relationship between the Expression of CHK2 and p53 in Tumor Tissue and the Course of Papillary Thyroid Cancer in Patients with CHEK2 Germline Mutations. Cancers (Basel) 2024; 16:815. [PMID: 38398207 PMCID: PMC10886656 DOI: 10.3390/cancers16040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine whether the expression of CHK2 and p53 in tumor tissue in carriers of germline CHEK2 mutations can serve as a prognostic marker for PTC, and whether CHEK2 and TP53 copy numbers correlates with the course of PTC disease. This study included 156 PTC patients previously tested for the presence of CHEK2. Clinicopathological features, treatment response, disease outcome, and germline mutation status of the CHEK2 gene were assessed with respect to CHK2 and p53 expression, and CHEK2 and TP53 gene copy statuses. In patients with and without a germline mutation in CHEK2 and with higher CHK2 expression, the chances of an excellent treatment response and no evidence of disease were lower than in patients without or with lower CHK2 expression. TP53 deletion was associated with angioinvasion. In patients with a truncating mutation, the chance of a CHEK2 deletion was higher than in patients with WT CHEK2 alone or those with WT CHEK2 and with the missense I157T mutation. Higher CHK2 expression was associated with poorer treatment responses and disease outcomes. Higher CHK2 expression and positive p53 together with a TP53 deletion could be a prognostic marker of unfavorable disease outcomes in patients with germline truncating mutations in CHEK2.
Collapse
Affiliation(s)
- Danuta Gąsior-Perczak
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (A.K.); (K.G.)
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Janusz Kopczyński
- Surgical Pathology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (J.K.); (K.N.)
| | - Paweł Macek
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Department of Epidemiology and Cancer Control, Holycross Cancer Center S. Artwińskiego St. 3, 25-734 Kielce, Poland
| | - Kornelia Niemyska
- Surgical Pathology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (J.K.); (K.N.)
| | - Agnieszka Walczyk
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Krzysztof Gruszczyński
- Department of Molecular Diagnostics, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (A.K.); (K.G.)
| | - Monika Siołek
- Genetic Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland;
| | - Tomasz Dróżdż
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Department of Radiology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland
| | - Marcin Kosowski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
| | - Iwona Pałyga
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Piotr Przybycień
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Olga Wabik
- Surgical Pathology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (J.K.); (K.N.)
| | - Stanisław Góźdź
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Clinical Oncology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| |
Collapse
|
15
|
Cruz-Acuña R, Kariuki SW, Sugiura K, Karaiskos S, Plaster EM, Loebel C, Efe G, Karakasheva T, Gabre JT, Hu J, Burdick JA, Rustgi AK. Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. J Clin Invest 2023; 133:e168146. [PMID: 37788109 PMCID: PMC10688988 DOI: 10.1172/jci168146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying protumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM-mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform for identifying potential therapeutic targets to disrupt the contribution of protumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC and inform the development of therapeutics that target ECM stiffness in EAC.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Secunda W. Kariuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Spyros Karaiskos
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Claudia Loebel
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Tatiana Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joel T. Gabre
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Fischer NW, Ma YHV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst 2023; 115:1145-1156. [PMID: 37352403 PMCID: PMC10560603 DOI: 10.1093/jnci/djad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype-phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.
Collapse
Affiliation(s)
- Nicholas W Fischer
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu-Heng Vivian Ma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Peng Q, Ren B, Xin K, Liu W, Alam MS, Yang Y, Gu X, Zhu Y, Tian Y. CYFIP2 serves as a prognostic biomarker and correlates with tumor immune microenvironment in human cancers. Eur J Med Res 2023; 28:364. [PMID: 37735711 PMCID: PMC10515071 DOI: 10.1186/s40001-023-01366-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The mechanisms whereby CYFIP2 acts in tumor development and drives immune infiltration have been poorly explored. Thus, this study aimed to identifying the role of CYFIP2 in tumors and immune response. METHODS In this study, we first explored expression patterns, diagnostic role and prognostic value of CYFIP2 in cancers, particularly in lung adenocarcinoma (LUAD). Then, we performed functional enrichment, genetic alterations, DNA methylation analysis, and immune cell infiltration analysis of CYFIP2 to uncover its potential mechanisms involved in immune microenvironment. RESULTS We found that CYFIP2 significantly differentially expressed in different tumors including LUAD compared with normal tissues. Furthermore, CYFIP2 was found to be significantly correlated with clinical parameters in LUAD. According to the diagnostic and survival analysis, CYFIP2 may be employed as a potential diagnostic and prognostic biomarker. Moreover, genetic alterations revealed that mutation of CYFIP2 was the main types of alterations in different cancers. DNA methylation analysis indicated that CYFIP2 mRNA expression correlated with hypomethylation. Afterwards, functional enrichment analysis uncovered that CYFIP2 was involved in tumor-associated and immune-related pathways. Immune infiltration analysis indicated that CYFIP2 was significantly correlated with immune cells infiltration. In particular, CYFIP2 was strongly linked with immune microenvironment scores. Additionally, CYFIP2 exhibited a significant relationship with immune regulators and immune-related genes including chemokines, chemokines receptors, and MHC genes. CONCLUSION Our results suggested that CYFIP2 may serve as a prognostic cancer biomarker for determining prognosis and might be a promising therapeutic strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Bixin Ren
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kedao Xin
- Department of Radiation Oncology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Weihui Liu
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Md Shahin Alam
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yinyin Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Xuhao Gu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| |
Collapse
|
18
|
Bhardwaj J, Upadhye A, Gaskin EL, Doumbo S, Kayentao K, Ongoiba A, Traore B, Crompton PD, Tran TM. Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study. J Infect Dis 2023; 228:202-211. [PMID: 36961831 PMCID: PMC10345479 DOI: 10.1093/infdis/jiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Duncan A, Nousome D, Ricks R, Kuo HC, Ravindranath L, Dobi A, Cullen J, Srivastava S, Chesnut GT, Petrovics G, Kohaar I. Association of TP53 Single Nucleotide Polymorphisms with Prostate Cancer in a Racially Diverse Cohort of Men. Biomedicines 2023; 11:biomedicines11051404. [PMID: 37239075 DOI: 10.3390/biomedicines11051404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence indicates the involvement of a genetic component in prostate cancer (CaP) susceptibility and clinical severity. Studies have reported the role of germline mutations and single nucleotide polymorphisms (SNPs) of TP53 as possible risk factors for cancer development. In this single institutional retrospective study, we identified common SNPs in the TP53 gene in AA and CA men and performed association analyses for functional TP53 SNPs with the clinico-pathological features of CaP. The SNP genotyping analysis of the final cohort of 308 men (212 AA; 95 CA) identified 74 SNPs in the TP53 region, with a minor allele frequency (MAF) of at least 1%. Two SNPs were non-synonymous in the exonic region of TP53: rs1800371 (Pro47Ser) and rs1042522 (Arg72Pro). The Pro47Ser variant had an MAF of 0.01 in AA but was not detected in CA. Arg72Pro was the most common SNP, with an MAF of 0.50 (0.41 in AA; 0.68 in CA). Arg72Pro was associated with a shorter time to biochemical recurrence (BCR) (p = 0.046; HR = 1.52). The study demonstrated ancestral differences in the allele frequencies of the TP53 Arg72Pro and Pro47Ser SNPs, providing a valuable framework for evaluating CaP disparities among AA and CA men.
Collapse
Affiliation(s)
- Allison Duncan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Randy Ricks
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Huai-Ching Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
20
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Szpechcinski A, Szolkowska M, Winiarski S, Lechowicz U, Wisniewski P, Knetki-Wroblewska M. Targeted Next-Generation Sequencing of Thymic Epithelial Tumours Revealed Pathogenic Variants in KIT, ERBB2, KRAS, and TP53 in 30% of Thymic Carcinomas. Cancers (Basel) 2022; 14:3388. [PMID: 35884448 PMCID: PMC9324890 DOI: 10.3390/cancers14143388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
A better understanding of the molecular pathogenesis of thymic epithelial tumours (TETs) could revolutionise their treatment. We evaluated thymomas and thymic carcinomas by next-generation sequencing (NGS) of somatic or germline single nucleotide variants (SNVs) in genes commonly mutated in solid tumours. In total, 19 thymomas and 34 thymic carcinomas were analysed for nonsynonymous SNVs in 15 genes by targeted NGS (reference genome: hg19/GRCh37). Ten SNVs in TP53 (G154V, R158P, L194H, R267fs, R273C, R306 *, Q317 *), ERBB2 (V773M), KIT (L576P), and KRAS (Q61L) considered somatic and pathogenic/likely pathogenic were detected in 10 of 34 (29.4%) thymic carcinomas. No somatic SNVs confirmed as pathogenic/likely pathogenic were found in thymomas. Rare SNVs of uncertain or unknown functional and clinical significance, to our knowledge not reported previously in TETs, were found in ERBB2 (S703R), KIT (I690V), and FOXL2 (P157S) in 3 of 19 (16%) thymomas. The most frequent germline SNVs were TP53 P72R (94% TETs), ERBB2 I655V (40% TETs), and KIT M541L (9% TETs). No significant difference in median disease-free survival (DFS) was found between thymic carcinoma patients with and without pathogenic SNVs (p = 0.190); however, a trend toward a longer DFS was observed in the latter (16.0 vs. 30.0 months, respectively). In summary, NGS analysis of TETs revealed several SNVs in genes related to the p53, AKT, MAPK, and K-Ras signalling pathways. Thymic carcinomas showed greater genetic dysregulation than thymomas. The germline and rare SNVs of uncertain clinical significance reported in this study add to the number of known genetic alterations in TETs, thus extending our molecular understanding of these neoplasms. Druggable KIT alterations in thymic carcinomas have potential as therapeutic targets.
Collapse
Affiliation(s)
- Adam Szpechcinski
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Malgorzata Szolkowska
- Department of Pathology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Sebastian Winiarski
- Clinics of Thoracic Surgery, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Piotr Wisniewski
- Department of Pathology and Laboratory Medicine, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Magdalena Knetki-Wroblewska
- Department of Lung Cancer and Chest Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
22
|
Skhoun H, Khattab M, Belkhayat A, Takki Chebihi Z, Bakri Y, Dakka N, El Baghdadi J. Association of TP53 gene polymorphisms with the risk of acute lymphoblastic leukemia in Moroccan children. Mol Biol Rep 2022; 49:8291-8300. [PMID: 35705773 DOI: 10.1007/s11033-022-07643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND TP53 gene plays a pivotal role in maintaining genetic stability and prevention of malignancies. Alterations of this gene are implicated in more than half of human cancers. To the best of our knowledge, this study is the first to explore TP53 polymorphisms in Moroccan childhood acute lymphoblastic leukemia (ALL). METHODS AND RESULTS DNA samples of 45 ALL children were obtained from peripheral blood. A total of 333 healthy Moroccans were used as controls. Polymerase chain reaction and Sanger sequencing were performed to analyze TP53 hotspot exons in cases. We identified a significant protective effect of the TP53-Arg variant at rs1042522 [OR 0.4593 (0.249-0.8472), p = 0.0127] and the Pro/Arg genotype [OR 0.0350 (0.0047-0.2583), p = 0.0010]. Additionally, we found a novel association between the C-allele of Arg213Arg 1800372 [OR 2.7736 (1.3821-5.5664), p = 0.0041] and the risk of childhood ALL. Importantly, TC/CC genotypes of this polymorphism were revealed to enhance the risk of ALL among females [OR 9.0 (3.1555-25.6693), p < 0.0001]. Arg213Arg was also noticed to be associated with the hemoglobin count of patients at diagnosis by linear regression (p = 0.0318). The analysis of penetrance showed a significant association of the CG/GG genotypes at rs1042522 and TC/CC genotypes at rs1800372 to childhood ALL via dominant model [OR 0.2090 (0.09074-0.4814), p = 0.0002 and OR 3.4205 (1.6084-7.2742), p = 0.0014 for rs1042522 and rs1800372 respectively]. No association was found between TP53 polymorphisms and patients survival. CONCLUSION Altogether, our findings indicated that TP53 polymorphisms are significantly involved in the genetic susceptibility to childhood ALL in Morocco.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.,Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco
| | | | | | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | |
Collapse
|
23
|
Broggi G, Tirrò E, Alzoubi H, Arcella A, Gianno F, Antonelli M, Minasi S, Vigneri P, Certo F, Altieri R, Barbagallo GMV, Miele E, Caltabiano R, Giangaspero F. Cerebellar liponeurocytoma: clinical, histopathological and molecular features of a series of three cases, including one recurrent tumor. Neuropathology 2022; 42:169-180. [PMID: 35042275 DOI: 10.1111/neup.12799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
Cerebellar liponeurocytoma (CL) is an unusual tumor, histologically composed of a mixture of small to medium-sized, rounded neurocytic cells and a variable lipomatous component. Although CL was originally considered as a subtype of medulloblastoma, subsequent molecular studies demonstrated that this tumor was a distinct entity, exhibiting the tumor protein p53 gene (TP53) missense mutations in 20% of cases, chromosome 17 deletion, and the absence of mutations in the adenomatous polyposis coli gene (APC), the protein patched homolog gene (PTCH), the kinase insert domain receptor gene (KDR), and the β-catenin gene (CTNNB). Apart from these molecular features, little is known about the pathogenesis and the genetic landscape of CL to date. In order to characterize the mutational landscape of CL and identify alterations that are driving tumorigenesis, we report a series of three cases, including one recurrent tumor, analysed by next-generation sequencing (NGS), which identified a total of 22 variants, of which four were missense mutations, nine were synonymous variants, and nine were located on intronic regions. In particular, DNA sequencing identified missense mutations in APC, KDR, and TP53 that could be implicated in promoting tumor progression and angiogenesis of CL. Furthermore, the NGS analysis revealed that recurrent CL did not have additional genetic changes compared with the primary tumor. Moreover, the high frequencies of detected mutations suggested that the identified alterations are germline variants. Indeed, an additional NGS on the genomic DNA obtained from one of the three patients confirmed the presence of the variants in the germline DNA. In conclusion, the obtained data support the hypothesis that CL is a distinct pathological entity that does not show specific somatic alterations driving tumorigenesis.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | - Francesca Gianno
- IRCCS Neuromed, Pozzilli, Italy
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Manila Antonelli
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Simone Minasi
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Paolo Vigneri
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Francesco Certo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Catania, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Felice Giangaspero
- IRCCS Neuromed, Pozzilli, Italy
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| |
Collapse
|
24
|
Hoyos D, Greenbaum B, Levine AJ. The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Cell Death Differ 2022; 29:938-945. [PMID: 35383292 PMCID: PMC9090814 DOI: 10.1038/s41418-022-00980-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The p53 protein is structurally and functionally divided into five domains. The proline-rich domain is localized at amino acids 55-100. 319 missense mutations were identified solely in the proline domain from human cancers. Six hotspot mutations were identified at amino acids 72, 73, 82, 84, 89, and 98. Codon 72 contains a polymorphism that changes from proline (and African descent) to arginine (with Caucasian descent) with increasing latitudes northward and is under natural selection for pigmentation and protection from UV light exposure. Cancers associated with mutations in the proline domain were considerably enriched for melanomas and skin cancers compared to mutations in other p53 domains. These hotspot mutations are enriched at UV mutational signatures disrupting amino acid signals for binding SH-3-containing proteins important for p53 function. Among the protein-protein interaction sites identified by hotspot mutations were MDM-2, a negative regulator of p53, XAF-1, promoting p53 mediated apoptosis, and PIN-1, a proline isomerase essential for structural folding of this domain.
Collapse
Affiliation(s)
- David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
| |
Collapse
|
25
|
Irshaid L, Clark M, Fadare O, Finberg KE, Parkash V. Endometrial Carcinoma as the Presenting Malignancy in a Teenager With a Pathogenic TP53 Germline Mutation: A Case Report and Literature Review. Int J Gynecol Pathol 2022; 41:258-267. [PMID: 33990091 DOI: 10.1097/pgp.0000000000000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with germline TP53 mutations are characterized by the occurrence of multiple early-onset malignancies. The characteristic syndrome is Li-Fraumeni syndrome (OMIM # 151623), an autosomal dominant disorder typified by premenopausal breast carcinoma, adrenal cortical tumors, bone and soft tissue sarcomas, leukemias, and tumors of the brain and spinal cord. Gynecologic malignancies are uncommonly reported in families harboring TP53 mutations, and the predominant tumor type reported is ovarian. Uterine carcinoma has been reported only a handful of times in patients with germline TP53 mutations, none as a presenting tumor in a teenager. We report on an 18-year-old patient who presented with grade 3, high-stage endometrioid endometrial carcinoma. Sequencing detected a single-nucleotide substitution in the TP53 gene (NM_000546.6:c.818G>A), encoding the missense substitution p.Arg273His (R273H) in both the tumor and normal tissue, consistent with a germline mutation. We discuss the biology of the TP53 gene and p53 protein, with emphasis on the R273H mutation. We also review the literature on endometrial carcinoma in patients with germline TP53 mutations.
Collapse
|
26
|
p53: A Double-Edged Sword in Tumor Ferroptosis. Pharmacol Res 2021; 177:106013. [PMID: 34856333 DOI: 10.1016/j.phrs.2021.106013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a type of lipid peroxidation-induced cell death that can be regulated in various ways, from changing the activity of antioxidant enzymes to the levels of transcription factors. The p53 tumor suppressor gene is the "guardian of the genome" and is involved in controlling cell survival and division under various pressures. In addition to its effects on apoptosis, autophagy, and cell cycle, p53, through the way of transcription dependent or independent two-way, also regulates the biological processes of tumor cell sensitivity to ferroptosis, including the metabolism of amino acids, nicotinamide adenine dinucleotide phosphate, and lipid peroxidation, as well as the biosynthesis of glutathione, phospholipids, NADPH and coenzyme Q10.As reviewed here, we summarized the metabolic network of p53 and its signaling pathway in regulating ferroptosis and elucidated possible factors and potential clinical application of p53 regulating ferroptosis. This review will provide a basis for further understanding the role of p53 in tumor ferroptosis and new strategies for cancer therapeutic avenues.
Collapse
|
27
|
Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021; 22:ijms221910883. [PMID: 34639222 PMCID: PMC8509445 DOI: 10.3390/ijms221910883] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
28
|
Lo Piccolo L, Jantrapirom S, Moonmuang S, Teeyakasem P, Pasena A, Suksakit P, Charoenkwan P, Pruksakorn D, Koonrungsesomboon N. In search of TP53 mutational hot spots for Li-Fraumeni syndrome in Asian populations. Trop Med Int Health 2021; 26:1401-1410. [PMID: 34478609 DOI: 10.1111/tmi.13673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Germline mutations of the TP53 tumour suppressor gene are the only known cause of the hereditary autosomal disorder called Li-Fraumeni syndrome (LFS). However, little information is available about TP53 pathogenic variants in Asian LFS patients, making it difficult to provide precise genetic counselling with regard to long-term cancer risk. We conducted a systematic review to gather relevant case-control studies exploring the association between TP53 polymorphisms and the incidence of cancer belonging to the LFS spectrum in Asian populations. METHOD Systematic review and meta-analysis. The odds ratio was used as a summary effect measure to quantify the strength of the association between TP53 polymorphisms and cancer risk by means of random-effects meta-analysis. RESULTS In total, 16 studies were included in this systematic review, with 13 studies (involving 10,645 cases and 28,288 controls) that enabled meta-analysis. The majority of the studies focused on a single-nucleotide variation at codon 72 in exon 4 (c.215C>G, p.Arg72Pro, rs1042522). Therefore, we tested either dominant, co-dominant, recessive, or heterozygous models and found that the p.Arg72Pro was not significantly associated with increased cancer risk in any of the models. CONCLUSION We found the number of studies on cancers belonging to the LFS spectrum in Asia is very small. Thus, at the present time a meta-analysis approach is somewhat useful to identify germline TP53 mutations as potential markers of hereditary cancer associated with LFS in Asian populations.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Department of Orthopedics, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Arnat Pasena
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pathacha Suksakit
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | | | - Dumnoensun Pruksakorn
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand.,Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand.,Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
29
|
De Souza C, Madden J, Koestler DC, Minn D, Montoya DJ, Minn K, Raetz AG, Zhu Z, Xiao WW, Tahmassebi N, Reddy H, Nelson N, Karnezis AN, Chien J. Effect of the p53 P72R Polymorphism on Mutant TP53 Allele Selection in Human Cancer. J Natl Cancer Inst 2021; 113:1246-1257. [PMID: 33555293 PMCID: PMC8633460 DOI: 10.1093/jnci/djab019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND TP53 mutations occur in more than 50% of cancers. We sought to determine the effect of the intragenic P72R single nucleotide polymorphism (SNP; rs1042522) on the oncogenic properties of mutant p53. METHODS P72R allelic selection in tumors was determined from genotype calls and a Gaussian distributed mixture model. The SNP effect on mutant p53 was determined in p53-negative cancer cell lines. RNA-sequencing, chromatin immunoprecipitation, and survival analysis were performed to describe the SNP effect. All statistical tests were 2-sided. RESULTS Among 409 patients with germline heterozygous P72R SNP who harbored somatic mutations in TP53, we observed a selection bias against missense TP53 mutants encoding the P72 SNP (P = 1.64 x 10-13). Exogenously expressed hotspot p53 mutants with the P72 SNP were negatively selected in cancer cells. Gene expression analyses showed the enrichment of p53 pathway genes and inflammatory genes in cancer cells transduced with mutants encoding P72 SNP. Immune gene signature is enriched in patients harboring missense TP53 mutations with homozygous P72 SNP. These patients have improved overall survival as compared with those with the R72 SNP (P = .04). CONCLUSION This is the largest study demonstrating a selection against the P72 SNP. Missense p53 mutants with the P72 SNP retain partial wild-type tumor-suppressive functions, which may explain the selection bias against P72 SNP across cancer types. Ovarian cancer patients with the P72 SNP have a better prognosis than with the R72 SNP. Our study describes a previously unknown role through which the rs1042522 SNP modifies tumor suppressor activities of mutant p53 in patients.
Collapse
Affiliation(s)
- Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
- University of New Mexico Biomedical Sciences Graduate Program, Albuquerque, NM, USA
- Current affiliation: Stanford University School of Medicine, Institute for Regenerative Medicine and Stem Cell Research, Stanford, CA, USA
| | - Jill Madden
- The Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, Kansas University Medical Center, Kansas City, KS, USA
| | - Dennis Minn
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
| | - Dennis J Montoya
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Kay Minn
- Novogene Corporation, Sacramento, CA, USA
| | - Alan G Raetz
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Zheng Zhu
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Wen-Wu Xiao
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Neeki Tahmassebi
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Harikumara Reddy
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Nina Nelson
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
30
|
Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 2021; 12:674-687. [PMID: 32722796 PMCID: PMC7749743 DOI: 10.1093/jmcb/mjaa040] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
p53 is a key tumor suppressor, and loss of p53 function is frequently a prerequisite for cancer development. The p53 gene is the most frequently mutated gene in human cancers; p53 mutations occur in >50% of all human cancers and in almost every type of human cancers. Most of p53 mutations in cancers are missense mutations, which produce the full-length mutant p53 (mutp53) protein with only one amino acid difference from wild-type p53 protein. In addition to loss of the tumor-suppressive function of wild-type p53, many mutp53 proteins acquire new oncogenic activities independently of wild-type p53 to promote cancer progression, termed gain-of-function (GOF). Mutp53 protein often accumulates to very high levels in cancer cells, which is critical for its GOF. Given the high mutation frequency of the p53 gene and the GOF activities of mutp53 in cancer, therapies targeting mutp53 have attracted great interest. Further understanding the mechanisms underlying mutp53 protein accumulation and GOF will help develop effective therapies treating human cancers containing mutp53. In this review, we summarize the recent advances in the studies on mutp53 regulation and GOF as well as therapies targeting mutp53 in human cancers.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
31
|
van der Sijde F, Azmani Z, Besselink MG, Bonsing BA, de Groot JWB, Groot Koerkamp B, Haberkorn BCM, Homs MYV, van IJcken WFJ, Janssen QP, Lolkema MP, Luelmo SAC, Mekenkamp LJM, Mustafa DAM, van Schaik RHN, Wilmink JW, Vietsch EE, van Eijck CHJ. Circulating TP53 mutations are associated with early tumor progression and poor survival in pancreatic cancer patients treated with FOLFIRINOX. Ther Adv Med Oncol 2021; 13:17588359211033704. [PMID: 34422118 PMCID: PMC8377319 DOI: 10.1177/17588359211033704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Biomarkers predicting treatment response may be used to stratify pancreatic ductal adenocarcinoma (PDAC) patients for therapy. The aim of this study was to identify circulating tumor DNA (ctDNA) mutations that associate with tumor progression during FOLFIRINOX chemotherapy, and overall survival (OS). Methods: Circulating cell-free DNA was analyzed with a 57 gene next-generation sequencing panel using plasma samples of 48 PDAC patients of all disease stages. Patients received FOLFIRINOX as initial treatment. Chemotherapy response was determined on CT scans as disease control (n = 30) or progressive disease (n = 18) within eight cycles of FOLFIRINOX, based on RECIST 1.1 criteria. Results: Detection of a TP53 ctDNA mutation before start of FOLFIRINOX [odds ratio (OR) 10.51, 95% confidence interval (CI) 1.40–79.14] and the presence of a homozygous TP53 Pro72Arg germline variant (OR 6.98, 95% CI 1.31–37.30) were predictors of early tumor progression during FOLFIRINOX in multivariable analysis. Five patients presented with the combination of a TP53 ctDNA mutation before start of FOLFIRINOX and the homozygous Pro72Arg variant. All five patients showed progression during FOLFIRINOX. The combination of the TP53 mutation and TP53 germline variant was associated with shorter survival (median OS 4.4 months, 95% CI 2.6–6.2 months) compared with patients without any TP53 alterations (median OS 13.0 months, 95% CI 8.6–17.4 months). Conclusion: The combination of a TP53 ctDNA mutation before start of FOLFIRINOX and a homozygous TP53 Pro72Arg variant is a promising biomarker, associated with early tumor progression during FOLFIRINOX and poor OS. The results of this exploratory study need to be validated in an independent cohort.
Collapse
Affiliation(s)
- Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zakia Azmani
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Marjolein Y. V. Homs
- Department of Medical Oncology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Quisette P. Janssen
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Leonie J. M. Mekenkamp
- Department of Medical Oncology, Medisch Spectrum Twente, Enschede, Overijssel, The Netherlands
| | - Dana A. M. Mustafa
- Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Jurcă MC, Ivaşcu ME, Jurcă AA, Kozma K, Magyar I, Şandor MI, Jurcă AD, Zaha DC, Albu CC, Pantiş C, Bembea M, Petcheşi CD. Genetics of congenital solid tumors. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1039-1049. [PMID: 34171053 PMCID: PMC8343493 DOI: 10.47162/rjme.61.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
When we discuss the genetics of tumors, we cannot fail to remember that in the second decade of the twentieth century, more precisely in 1914, Theodore Boveri defined for the first time the chromosomal bases of cancer. In the last 30 years, progresses in genetics have only confirmed Boveri's remarkable predictions made more than 80 years ago. Before the cloning of the retinoblastoma 1 (RB1) gene, the existence of a genetic component in most, if not all, solid childhood tumors were well known. The existence of familial tumor aggregations has been found much more frequently than researchers expected to find at random. Sometimes, the demonstration of this family predisposition was very difficult, because the survival of children diagnosed as having a certain tumor, up to an age at which reproduction and procreation is possible, was very rare. In recent years, advances in the diagnosis and treatment of these diseases have made it possible for these children to survive until the age when they were able to start their own families, including the ability to procreate. Four distinct groups of so-called cancer genes have been identified: oncogenes, which promote tumor cell proliferation; tumor suppressor genes, which inhibit this growth/proliferation; anti-mutational genes, with a role in deoxyribonucleic acid (DNA) stability; and micro-ribonucleic acid (miRNA) genes, with a role in the posttranscriptional process.
Collapse
Affiliation(s)
- Maria Claudia Jurcă
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania; ,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Machlowska J, Kapusta P, Szlendak M, Bogdali A, Morsink F, Wołkow P, Maciejewski R, Offerhaus GJA, Sitarz R. Status of CHEK2 and p53 in patients with early-onset and conventional gastric cancer. Oncol Lett 2021; 21:348. [PMID: 33747205 PMCID: PMC7967923 DOI: 10.3892/ol.2021.12609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cause of cancer-associated death. Based on the age at diagnosis, GC is divided into early-onset GC (EOGC; ≤45 years) and conventional GC (CGC; >45 years). Mutations in the cell cycle checkpoint kinase 2 (CHEK2) and TP53 genes are associated with several types of cancer; however, their genetic defects in GC remain poorly understood. The aim of the present study was to determine the subcellular distribution of the CHEK2 protein and its redistribution following DNA damage, to improve the understanding of the DNA damage response. Genetic alterations and patterns of expression of CHEK2 and p53 proteins were investigated to identify potential biological markers and indicators of GC development. Additionally, the affected signaling pathways and their clinical importance in GC development and associated syndromes were investigated. A total of 196 GC samples (89 CGC and 107 EOGC samples) were used in the present study. DNA from 53 samples (18 CGC and 35 EOGC samples) was sequenced using targeted next-generation sequencing technology to identify and compare common and rare mutations associated with GC. Subsequently, the cytoplasmic and nuclear expression levels of CHEK2, phosphorylated (p)-CHEK2 at threonine 68 and p53 in GC tissues were determined via immunohistochemistry. Sequencing resulted in the identification of 63 single nucleotide polymorphisms (SNPs) in the CHEK2 gene amongst 5 different variants, and the intron variant c.319+379A>G was the most common SNP. In the TP53 gene, 57 different alterations were detected amongst 9 variant types, and the missense variant c.215C>G was the most common. Nuclear CHEK2 expression was high in both the EOGC and CGC subtypes. However, the prevalence of cytoplasmic CHEK2 expression (P<0.001) and nuclear p-CHEK2 expression (P=0.011) was significantly higher in CGC compared with in EOGC tissues. There was a statistically significant difference between high and low cytoplasmic CHEK2 expression in patients with p53-positive EOGC compared with in patients with p53-positive CGC (P=0.002). The present study was designed to determine the association between CHEK2 and p53 expression patterns in patients with EOGC and CGC, as well as genetic alterations in the CHEK2 and TP53 genes.
Collapse
Affiliation(s)
- Julita Machlowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
| | - Małgorzata Szlendak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Department of Surgical Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Bogdali
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
| | - Folkert Morsink
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - G. Johan A. Offerhaus
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Surgery, Center of Oncology of The Lublin Region St. Jana z Dukli, 20-090 Lublin, Poland
| |
Collapse
|
34
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
35
|
Haupt S, Haupt Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front Genet 2021; 12:632719. [PMID: 33664771 PMCID: PMC7920968 DOI: 10.3389/fgene.2021.632719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
There are many differences in cancer manifestation between men and women. New understanding of the origin of these point to fundamental distinctions in the genetic code and its demise. Tumour suppressor protein p53 is the chief operating officer of cancer defence and critically acts to safeguard against sustained DNA damaged. P53 cannot be ignored in cancer sex disparity. In this review we discuss the greater prevalence and associated death rates for non-reproductive cancers in males. The major tumour suppressor protein p53, encoded in the TP53 gene is our chosen context. It is fitting to ask why somatic TP53 mutation incidence is estimated to be disproportionately higher among males in the population for these types of cancers compared with females? We scrutinised the literature for evidence of predisposing genetic and epigenetic alterations that may explain this sex bias. Our second approach was to explore whether redox activity, either externally imposed or inherent to males and females, may define distinct risks that could contribute to the clear cancer sex disparities.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers (Basel) 2021; 13:cancers13010133. [PMID: 33406607 PMCID: PMC7796211 DOI: 10.3390/cancers13010133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The p53 pathway is a major tumor suppressor pathway that prevents the propagation of abnormal cells by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism, and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development. Converging lines of evidence support the notion that, in addition to p53, other key components of this molecular cascade are also important regulators of metabolism. Here, we illustrate the underestimated complexity of the metabolic network controlled by the p53 pathway and show how its perturbation contributes to human diseases including cancer, aging, and metabolic diseases. Abstract The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Airelle Lahalle
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Matthieu Lacroix
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Carlo De Blasio
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard, T.H Chan School of Public Health, Boston, MA 02115, USA;
| | - Laetitia K. Linares
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
| | - Laurent Le Cam
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
37
|
Abstract
The p53 protein is a transcription factor that prevents tumors from developing. In spontaneous and inherited cancers there are many different missense mutations in the DNA binding domain of the TP53 gene that contributes to tumor formation. These mutations produce a wide distribution in the transcriptional capabilities of the mutant p53 proteins with over four logs differences in the efficiencies of forming cancers in many diverse tissue types. These inherited and spontaneous TP53 mutations produce proteins that interact with both genetic and epigenetic cellular modifiers of p53 function and their inherited polymorphisms to produce a large number of diverse phenotypes in individual patients. This manuscript reviews these variables and discusses how the combinations of TP53 genetic alterations interact with genetic polymorphisms, epigenetic alterations, and environmental factors to begin predicting and modifying patient outcomes and provide a better understanding for new therapeutic opportunities.
Collapse
Affiliation(s)
- Arnold J. Levine
- grid.78989.370000 0001 2160 7918Institute for Advanced Study, Princeton, NJ USA
| |
Collapse
|
38
|
The Regulation of Ferroptosis by Tumor Suppressor p53 and its Pathway. Int J Mol Sci 2020; 21:ijms21218387. [PMID: 33182266 PMCID: PMC7664917 DOI: 10.3390/ijms21218387] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor suppressor p53 plays a key role in tumor suppression. In addition to tumor suppression, p53 is also involved in many other biological and pathological processes, such as immune response, maternal reproduction, tissue ischemia/reperfusion injuries and neurodegenerative diseases. While it has been widely accepted that the role of p53 in regulation of cell cycle arrest, senescence and apoptosis contributes greatly to the function of p53 in tumor suppression, emerging evidence has implicated that p53 also exerts its tumor suppressive function through regulation of many other cellular processes, such as metabolism, anti-oxidant defense and ferroptosis. Ferroptosis is a unique iron-dependent form of programmed cell death driven by lipid peroxidation in cells. Ferroptosis has been reported to be involved in cancer, tissue ischemia/reperfusion injuries and neurodegenerative diseases. Recent studies have shown that ferroptosis can be regulated by p53 and its signaling pathway as well as tumor-associated mutant p53. Interestingly, the regulation of ferroptosis by p53 appears to be highly context-dependent. In this review, we summarize recent advances in the regulation of ferroptosis by p53 and its signaling pathway. Further elucidation of the role and molecular mechanism of p53 in ferroptosis regulation will yield new therapeutic strategies for cancer and other diseases, including neurodegenerative diseases and tissue ischemia/reperfusion injuries.
Collapse
|
39
|
The P72R Polymorphism in R248Q/W p53 Mutants Modifies the Mutant Effect on Epithelial to Mesenchymal Transition Phenotype and Cell Invasion via CXCL1 Expression. Int J Mol Sci 2020; 21:ijms21218025. [PMID: 33126568 PMCID: PMC7662892 DOI: 10.3390/ijms21218025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
High-grade serous carcinoma (HGSC), the most lethal subtype of epithelial ovarian cancer (EOC), is characterized by widespread TP53 mutations (>90%), most of which are missense mutations (>70%). The objective of this study was to investigate differential transcriptional targets affected by a common germline P72R SNP (rs1042522) in two p53 hotspot mutants, R248Q and R248W, and identify the mechanism through which the P72R SNP affects the neomorphic properties of these mutants. Using isogenic cell line models, transcriptomic analysis, xenografts, and patient data, we found that the P72R SNP modifies the effect of p53 hotspot mutants on cellular morphology and invasion properties. Most importantly, RNA sequencing studies identified CXCL1 a critical factor that is differentially affected by P72R SNP in R248Q and R248W mutants and is responsible for differences in cellular morphology and functional properties observed in these p53 mutants. We show that the mutants with the P72 SNP promote a reversion of the EMT phenotype to epithelial characteristics, whereas its R72 counterpart promotes a mesenchymal transition via the chemokine CXCL1. These studies reveal a new role of the P72R SNP in modulating the neomorphic properties of p53 mutants via CXCL1, which has significant implications for tumor invasion and metastasis.
Collapse
|
40
|
Humpton T, Vousden KH. Taking up the reins of power: metabolic functions of p53. J Mol Cell Biol 2020; 11:610-614. [PMID: 31282931 PMCID: PMC6736434 DOI: 10.1093/jmcb/mjz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
|
41
|
Liu J, Liu W, Li XL, Li Q, Dai W, Li YY. TGPred: a tumor gene prediction webserver for analyzing structural and functional impacts of variants. J Mol Cell Biol 2020; 12:556-558. [PMID: 32246141 PMCID: PMC7493032 DOI: 10.1093/jmcb/mjaa007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jixiang Liu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China
| | - Wei Liu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China
| | - Xue-Ling Li
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China.,National Engineering Research Center for Nanotechnology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quanxue Li
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China.,School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| |
Collapse
|
42
|
Song J, Hussaini M. Adopting solutions for annotation and reporting of next generation sequencing in clinical practice. Pract Lab Med 2020; 19:e00154. [PMID: 32099889 PMCID: PMC7031307 DOI: 10.1016/j.plabm.2020.e00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
With advancements in the understanding of human cancers (carcinomas, sarcomas, and hematopoietic malignancies), molecular profiling, especially by Next Generation Sequencing (NGS), is playing an increasingly important role in the diagnosis, prognostication, and therapeutic management of cancer patients. The final and critical step in NGS is the annotation of detected variants and reporting of their clinical significance. Automated bioinformatics tools are available to assist with annotation, but the final responsibility for interpretation and validation of the annotation rests with the pathologist who may be constrained by the pressures of clinical sign-out and limited training in NGS. In this manuscript, we detail our experience in outsourcing variant annotation to a high-quality vendor to improve quality, standardize reporting, and decrease turn-around time of NGS reporting in clinical practice. We describe the composition of the evaluation team, steps that should be taken to evaluate potential annotation vendors, and detailed parameters that should be addressed before contracting with a vendor to guarantee the clinical reliability of the reported annotations.
Collapse
Affiliation(s)
| | - Mohammad Hussaini
- Department of Hematopathology and Lab Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| |
Collapse
|
43
|
Sun J, Xi HY, Shao Q, Liu QH. Biomarkers in retinoblastoma. Int J Ophthalmol 2020; 13:325-341. [PMID: 32090044 DOI: 10.18240/ijo.2020.02.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignancy of childhood caused by inactivation of the Rb genes. The prognosis of RB is better with an earlier diagnosis. Many diagnostic approaches and appropriate clinical treatments have been developed to improve clinical outcomes. However, limitations exist when utilizing current methods. Recently, many studies have identified identify new RB biomarkers which can be used in diagnosis, as prognostic indicators and may contribute to understanding the pathogenesis of RB and help determine specific treatment strategies. This review focuses on recent advances in the discovery of RB biomarkers and discusses their clinical utility and challenges from areas such as epigenetics, proteomics and radiogenomics.
Collapse
Affiliation(s)
- Jie Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hui-Yu Xi
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Ophthalmology, Xuzhou First People's Hospital of Xuzhou Medical University, Xuzhou Eye Research Institute, Xuzhou 221002, Jiangsu Province, China
| | - Qing Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|