1
|
Jemberie W, Dugassa S, Animut A. Biting Hour and Host Seeking Behavior of Aedes Species in Urban Settings, Metema District, Northwest Ethiopia. Trop Med Infect Dis 2025; 10:38. [PMID: 39998042 PMCID: PMC11860606 DOI: 10.3390/tropicalmed10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Aedes species transmit arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika. The diseases cause severe sickness, mortality, and economic losses. This study describes the biting hour and host-seeking behavior of Ae. aegypti and Ae. vittatus in three towns. Recently, chikungunya and dengue infections were reported in the study sites. METHODS Biting hour and host-seeking behaviors of Ae. aegypti and Ae. vittatus were studied from June to September 2023, in Genda-Wuha, Kokit, and Metema-Yohannes towns, Metema district, Northwest Ethiopia. CDC-LT traps were set running indoors and outdoors for 24 h closer to humans sleeping inside unimpregnated mosquito nets. At the same time, CDC-LT traps were set running overnight closer to domestic animals' shelters located within a 50-m radius of the main residence. Mosquitoes trapped in CDC-LT were collected every hour. The study was conducted four times in each town during the wet season. A chi-square test was employed to examine biting hour and host-seeking behavior. RESULTS Aedes aegypti was observed to be highly exophilic and active during the daylight hours. Aedes aegypti exhibited a peak biting rate between 07:00 and 08:00 with the biting rate of 4.5/person/hour followed by from 17:00 pm to 18:00 pm with the biting rate of 3.75/person/hour. The hourly biting rate of Ae. aegypti differed significantly. Its peak indoor biting rate was from 19:00 to 20:00 with the rate of 2.00 bites/person/hour followed by from 08:00 to 09:00 with the rate of 1.50 bites/person/hour and the biting rates differed significantly across the hours (F = 240.046; p = 0.001). Aedes vittatus also exhibited a biting rate similar to that of Ae. aegypti. Both Ae. aegypti and Ae. vittatus were abundantly collected from nearby human sleeping arrangements than from the shelters of cattle, sheep, goats, and donkeys. The highest proportions of Ae. aegypti (91.21%) and Ae. vittatus (89.87%) were unfed. CONCLUSIONS Aedes aegypti and Ae. vittatus exhibited peak biting rates during morning and early night hours that aligned with the active daily routine practices of the local community. This could potentially expose the inhabitants to viral diseases transmitted by Ae. aegypti and Ae. vittatus.
Collapse
Affiliation(s)
- Wondmeneh Jemberie
- Vector Biology & Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (S.D.); (A.A.)
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Sisay Dugassa
- Vector Biology & Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (S.D.); (A.A.)
| | - Abebe Animut
- Vector Biology & Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (S.D.); (A.A.)
| |
Collapse
|
2
|
Kalmouni J, Will JB, Townsend J, Paaijmans KP. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. PLoS Negl Trop Dis 2024; 18:e0012460. [PMID: 39213461 PMCID: PMC11392387 DOI: 10.1371/journal.pntd.0012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) is the leading mosquito-borne disease causing-pathogen in the United States. Concerningly, there are no prophylactics or drug treatments for WNV and public health programs rely heavily on vector control efforts to lessen disease incidence. Insecticides can be effective in reducing vector numbers if implemented strategically, but can diminish in efficacy and promote insecticide resistance otherwise. Vector control programs which employ mass-fogging applications of insecticides, often conduct these methods during the late-night hours, when diel temperatures are coldest, and without a-priori knowledge on daily mosquito activity patterns. This study's aims were to 1) quantify the effect of temperature on the toxicity of two conventional insecticides used in fogging applications (malathion and deltamethrin) to Culex tarsalis, an important WNV vector, and 2) quantify the time of host-seeking of Cx. tarsalis and other local mosquito species in Maricopa County, Arizona. The temperature-toxicity relationship of insecticides was assessed using the WHO tube bioassay, and adult Cx. tarsalis, collected as larvae, were exposed to three different insecticide doses at three temperature regimes (15, 25, and 35°C; 80% RH). Time of host-seeking was assessed using collection bottle rotators with encephalitis vector survey traps baited with dry ice, first at 3h intervals during a full day, followed by 1h intervals during the night-time. Malathion became less toxic at cooler temperatures at all doses, while deltamethrin was less toxic at cooler temperatures at the low dose. Regarding time of host-seeking, Cx. tarsalis, Aedes vexans, and Culex quinquefasciatus were the most abundant vectors captured. During the 3-hour interval surveillance over a full day, Cx. tarsalis were most-active during post-midnight biting (00:00-06:00), accounting for 69.0% of all Cx. tarsalis, while pre-midnight biting (18:00-24:00) accounted for 30.0% of Cx. tarsalis. During the 1-hour interval surveillance overnight, Cx. tarsalis were most-active during pre-midnight hours (18:00-24:00), accounting for 50.2% of Cx. tarsalis captures, while post-midnight biting (00:00-06:00) accounted for 49.8% of Cx. tarsalis. Our results suggest that programs employing large-scale applications of insecticidal fogging should consider temperature-toxicity relationships coupled with time of host-seeking data to maximize the efficacy of vector control interventions in reducing mosquito-borne disease burden.
Collapse
Affiliation(s)
- Joshua Kalmouni
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James B Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Owusu-Akyaw M, Owusu-Asenso CM, Abdulai A, Mohammed AR, Sraku IK, Boadu EN, Aduhene E, Attah SK, Afrane YA. Risk of arboviral transmission and insecticide resistance status of Aedes mosquitoes during a yellow fever outbreak in Ghana. BMC Infect Dis 2024; 24:731. [PMID: 39054464 PMCID: PMC11270840 DOI: 10.1186/s12879-024-09643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two districts in the Savannah region and spread to several other Districts in three regions. Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for Aedes the arboviral vector in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought to determine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. METHODS The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance to permethrin, deltamethrin and pirimiphos-methyl was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. RESULTS Among the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedes mosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). CONCLUSION This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health. Hence there is a need to continue monitoring these vectors to develop an effective control strategy.
Collapse
Affiliation(s)
- Margaret Owusu-Akyaw
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Christopher Mfum Owusu-Asenso
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Anisa Abdulai
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Abdul Rahim Mohammed
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Isaac Kwame Sraku
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Emmanuel Nana Boadu
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Evans Aduhene
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Simon Kwaku Attah
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Yaw Asare Afrane
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana.
| |
Collapse
|
4
|
Maiga AA, Sombié A, Zanré N, Yaméogo F, Iro S, Testa J, Sanon A, Koita O, Kanuka H, McCall PJ, Weetman D, Badolo A. First report of V1016I, F1534C and V410L kdr mutations associated with pyrethroid resistance in Aedes aegypti populations from Niamey, Niger. PLoS One 2024; 19:e0304550. [PMID: 38809933 PMCID: PMC11135682 DOI: 10.1371/journal.pone.0304550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Ae. aegypti is the vector of important μ arboviruses, including dengue, Zika, chikungunya and yellow fever. Despite not being specifically targeted by insecticide-based control programs in West Africa, resistance to insecticides in Ae. aegypti has been reported in countries within this region. In this study, we investigated the status and mechanisms of Ae. aegypti resistance in Niamey, the capital of Niger. This research aims to provide baseline data necessary for arbovirus outbreak prevention and preparedness in the country. METHODS Ovitraps were used to collect Ae. aegypti eggs, which were subsequently hatched in the insectary for bioassay tests. The hatched larvae were then reared to 3-5-day-old adults for WHO tube and CDC bottle bioassays, including synergist tests. The kdr mutations F1534C, V1016I, and V410L were genotyped using allele-specific PCR and TaqMan qPCR methods. RESULTS Ae. aegypti from Niamey exhibited moderate resistance to pyrethroids but susceptibility to organophosphates and carbamates. The kdr mutations, F1534C, V1016I and V410L were detected with the resistant tri-locus haplotype 1534C+1016L+410L associated with both permethrin and deltamethrin resistance. Whereas the homozygote tri-locus resistant genotype 1534CC+1016LL+410LL was linked only to permethrin resistance. The involvement of oxidase and esterase enzymes in resistance mechanisms was suggested by partial restoration of mosquitoes' susceptibility to pyrethroids in synergist bioassays. CONCLUSION This study is the first report of Ae. aegypti resistance to pyrethroid insecticides in Niamey. The resistance is underpinned by target site mutations and potentially involves metabolic enzymes. The observed resistance to pyrethroids coupled with susceptibility to other insecticides, provides data to support evidence-based decision-making for Ae. aegypti control in Niger.
Collapse
Affiliation(s)
- Abdoul-Aziz Maiga
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Nicolas Zanré
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Félix Yaméogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Souleymane Iro
- Unité de Parasitologie et d’Entomologie Médicale, Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Jean Testa
- Faculté de Médecine, Université Côte d’Azur, Côte d’Azur, France
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences, des Techniques et Technologies de Bamako, Bamako, Mali
| | - Hirotaka Kanuka
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
5
|
Abdulai A, Owusu-Asenso CM, Haizel C, Mensah SKE, Sraku IK, Halou D, Doe RT, Mohammed AR, Akuamoah-Boateng Y, Forson AO, Afrane YA. The role of car tyres in the ecology of Aedes aegypti mosquitoes in Ghana. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100176. [PMID: 38746755 PMCID: PMC11091510 DOI: 10.1016/j.crpvbd.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/28/2024]
Abstract
Aedes aegypti is an important vector of arboviral diseases including dengue and yellow fever. Despite the wide distribution of this mosquito species, there are limited data on the ecology of Ae. aegypti in Ghana. In this study, we report on the oviposition preference and the larval life tables of Ae. aegypti mosquitoes in Accra, Ghana. The oviposition preference of the mosquitoes to three habitat types (car tyres, drums and bowls) was measured by setting up ovitraps. We recorded the presence and abundance of larvae every 3 days. Two-hour-old Ae. aegypti larvae were introduced and raised in three habitat types to undertake larval life tables. The number of surviving larvae at each developmental stage was recorded daily until they emerged as adults. Car tyres showed a higher abundance of Ae. aegypti larvae (52.3%) than drums (32.5%) and bowls (15.1%) (ANOVA, F(2,159) = 18.79, P < 0.001). The mean development time of Ae. aegypti larvae was significantly lower in car tyres (7 ± 1 days) compared to that of bowls (9 ± 0.0 days) and drums (12.6 ± 1.5 days) (P = 0.024). The differences in pupation rates and emergence rates were not significant across the habitat types; however, the highest pupation rate was observed in bowls (0.92 ± 0.17) and the emergence rate was highest in tyres (0.84 ± 0.10). The proportion of first-instar larvae that survived to emergence was significantly higher in car tyres (0.84 ± 0.10) compared to that of bowls (0.72 ± 0.20) and drums (0.62 ± 0.20) (P = 0.009). No mortalities were observed after 9 days in car tyres, 10 days in bowls and 15 days in drums. The results confirm that discarded car tyres were the preferred habitat choice for the oviposition of gravid female Ae. aegypti mosquitoes and provide the best habitat conditions for larval development and survival. These findings are necessary for understanding the ecology of Ae. aegypti to develop appropriate strategies for their control in Ghana.
Collapse
Affiliation(s)
- Anisa Abdulai
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Christopher Mfum Owusu-Asenso
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Christodea Haizel
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Sebastian Kow Egyin Mensah
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Isaac Kwame Sraku
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Daniel Halou
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Richard Tettey Doe
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Abdul Rahim Mohammed
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Yaw Akuamoah-Boateng
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Akua Obeng Forson
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Yaw Asare Afrane
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| |
Collapse
|
6
|
Owusu-Akyaw M, Owusu-Asenso CM, Abdulai A, Mohammed AR, Sraku IK, Boadu EN, Aduhene E, Attah SK, Afrane YA. Risk of Arboviral Transmission and Insecticide Resistance Status of Aedes Mosquitoes during a Yellow Fever Outbreak in Ghana. RESEARCH SQUARE 2024:rs.3.rs-4271509. [PMID: 38699327 PMCID: PMC11065086 DOI: 10.21203/rs.3.rs-4271509/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two (2) districts in the Savannah region and spread to several other Districts in (3) regions (Oti, Bono and Upper West).Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for the yellow vector, Aedes mosquitoes in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought todetermine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. Methods The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. Results Of the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedesmosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). Conclusion This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health, and there is a need for continuous surveillance to inform effective vector control strategies.
Collapse
Affiliation(s)
- Margaret Owusu-Akyaw
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| | | | - Anisa Abdulai
- Department of Medical Micro biology, Centre for Vector-Borne Disease Research, University of Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| | - Emmanuel Nana Boadu
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| | - Evans Aduhene
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| | - Simon Kwaku Attah
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana
| |
Collapse
|
7
|
Shetty V, Adelman ZN, Slotman MA. Effects of circadian clock disruption on gene expression and biological processes in Aedes aegypti. BMC Genomics 2024; 25:170. [PMID: 38347446 PMCID: PMC10863115 DOI: 10.1186/s12864-024-10078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND This study explores the impact of disrupting the circadian clock through a Cycle gene knockout (KO) on the transcriptome of Aedes aegypti mosquitoes. The investigation aims to uncover the resulting alterations in gene expression patterns and physiological processes. RESULTS Transcriptome analysis was conducted on Cyc knockout (AeCyc-/-) and wild-type mosquitoes at four time points in a light-dark cycle. The study identified system-driven genes that exhibit rhythmic expression independently of the core clock machinery. Cyc disruption led to altered expression of essential clock genes, affecting metabolic processes, signaling pathways, stimulus responses and immune responses. Notably, gene ontology enrichment of odorant binding proteins, indicating the clock's role in sensory perception. The absence of Cyc also impacted various regulation of metabolic and cell cycle processes was observed in all time points. CONCLUSIONS The intricate circadian regulation in Ae. aegypti encompasses both core clock-driven and system-driven genes. The KO of Cyc gene instigated extensive gene expression changes, impacting various processes, thereby potentially affecting cellular and metabolic functions, immune responses, and sensory perception. The circadian clock's multifaceted involvement in diverse biological processes, along with its role in the mosquito's daily rhythms, forms a nexus that influences the vector's capacity to transmit diseases. These insights shed light on the circadian clock's role in shaping mosquito biology and behavior, opening new avenues for innovative disease control strategies.
Collapse
Affiliation(s)
- Vinaya Shetty
- Department of Entomology, Texas A&M University, College station, TX, 77843, USA.
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College station, TX, 77843, USA
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College station, TX, 77843, USA
| |
Collapse
|
8
|
Kuno G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024; 16:84. [PMID: 38257784 PMCID: PMC10820296 DOI: 10.3390/v16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In viral disease research, few diseases can compete with yellow fever for the volume of literature, historical significance, richness of the topics and the amount of strong interest among both scientists and laypersons. While the major foci of viral disease research shifted to other more pressing new diseases in recent decades, many critically important basic tasks still remain unfinished for yellow fever. Some of the examples include the mechanisms of transmission, the process leading to outbreak occurrence, environmental factors, dispersal, and viral persistence in nature. In this review, these subjects are analyzed in depth, based on information not only in old but in modern literatures, to fill in blanks and to update the current understanding on these topics. As a result, many valuable facts, ideas, and other types of information that complement the present knowledge were discovered. Very serious questions about the validity of the arbovirus concept and some research practices were also identified. The characteristics of YFV and its pattern of transmission that make this virus unique among viruses transmitted by Ae. aegypti were also explored. Another emphasis was identification of research questions. The discovery of a few historical surprises was an unexpected benefit.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
9
|
Ould Lemrabott MA, Briolant S, Gomez N, Basco L, Ould Mohamed Salem Boukhary A. First report of kdr mutations in the voltage-gated sodium channel gene in the arbovirus vector, Aedes aegypti, from Nouakchott, Mauritania. Parasit Vectors 2023; 16:464. [PMID: 38115092 PMCID: PMC10731742 DOI: 10.1186/s13071-023-06066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Since 2014, dengue epidemics have occurred almost annually in Nouakchott, the capital city of Mauritania, coinciding with the recent establishment of Aedes aegypti, the primary vector of dengue, in the city. Anopheles arabiensis, the primary vector of malaria, is also abundant not only in Nouakchott but also in most areas of the country. Resistance to insecticides has been studied in An. arabiensis but not in Ae. aegypti in Mauritania. The objective of the present study was to establish the baseline data on the frequencies of knockdown resistance (kdr) mutations in the voltage-gated sodium channel (vgsc) gene in Ae. aegypti collected in Nouakchott to improve vector control. METHODS Resting Ae. aegypti mosquitoes were collected in 2017 and 2018 in Teyarett and Dar Naim districts in Nouakchott using a battery-powered aspirator. Polymerase chain reaction (PCR) and DNA sequencing were performed to detect the presence of five kdr mutations known to be associated with pyrethroid resistance: L982W, S989P, I1011M/G, V1016G/I, and F1534C. RESULTS A total of 100 female Ae. aegypti mosquitoes were identified among collected resting culicid fauna, of which 60% (60/100) were unfed, 12% (12/100) freshly blood-fed, and 28% (28/100) gravid. Among the mutations investigated in this study, 989P, 1016G, and 1534C were found to be widespread, with the frequencies of 0.43, 0.44, and 0.55, respectively. Mutations were not found in codons 982 and 1011. No other mutations were detected within the fragments analyzed in this study. Genotype distribution did not deviate from Hardy-Weinberg equilibrium. The most frequent co-occurring point mutation patterns among Ae. aegypti mosquitoes were the heterozygous individuals 989SP/1016VG/1534FC detected in 45.1% of mosquitoes. In addition, homozygous mutant 1534CC co-occurred simultaneously with homozygous wild type 989SS and 1016VV in 30.5% of mosquito specimens. Inversely, homozygous wild-type 1534FF co-occurred simultaneously with homozygous mutant 989PP and 1016GG in 19.5% of the mosquitoes. CONCLUSIONS To our knowledge, this is the first study reporting the presence of three point mutations in the vgsc gene of Ae. aegypti in Mauritania. The findings of the present study are alarming because they predict a high level of resistance to pyrethroid insecticides which are commonly used in vector control in the country. Therefore, further studies are urgently needed, in particular phenotypic characterization of insecticide resistance using the standardized test.
Collapse
Affiliation(s)
| | - Sébastien Briolant
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.
| | - Nicolas Gomez
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Leonardo Basco
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Université de Nouakchott, UR-GEMI, Nouveau Campus Universitaire, BP 5026, Nouakchott, Mauritania.
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
10
|
Coetzee BWT, Burke AM, Koekemoer LL, Robertson MP, Smit IPJ. Scaling artificial light at night and disease vector interactions into socio-ecological systems: a conceptual appraisal. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220371. [PMID: 37899011 PMCID: PMC10613543 DOI: 10.1098/rstb.2022.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 10/31/2023] Open
Abstract
There is burgeoning interest in how artificial light at night (ALAN) interacts with disease vectors, particularly mosquitoes. ALAN can alter mosquito behaviour and biting propensity, and so must alter disease transfer rates. However, most studies to date have been laboratory-based, and it remains unclear how ALAN modulates disease vector risk. Here, we identify five priorities to assess how artificial light can influence disease vectors in socio-ecological systems. These are to (i) clarify the mechanistic role of artificial light on mosquitoes, (ii) determine how ALAN interacts with other drivers of global change to influence vector disease dynamics across species, (iii) determine how ALAN interacts with other vector suppression strategies, (iv) measure and quantify the impact of ALAN at scales relevant for vectors, and (v) overcome the political and social barriers in implementing it as a novel vector suppression strategy. These priorities must be addressed to evaluate the costs and benefits of employing appropriate ALAN regimes in complex socio-ecological systems if it is to reduce disease burdens, especially in the developing world. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Bernard W. T. Coetzee
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Ashley M. Burke
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
| | - Mark P. Robertson
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Izak P. J. Smit
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
- Scientific Services, South African National Parks, George, South Africa
- Sustainability Research Unit, Nelson Mandela University (NMU), George Campus, Madiba drive, 6531 George, South Africa
| |
Collapse
|
11
|
Akyea-Bobi NE, Akorli J, Opoku M, Akporh SS, Amlalo GK, Osei JHN, Frempong KK, Pi-Bansa S, Boakye HA, Abudu M, Akorli EA, Acquah-Baidoo D, Pwalia R, Bonney JHK, Quansah R, Dadzie SK. Entomological risk assessment for transmission of arboviral diseases by Aedes mosquitoes in a domestic and forest site in Accra, Ghana. PLoS One 2023; 18:e0295390. [PMID: 38060554 PMCID: PMC10703219 DOI: 10.1371/journal.pone.0295390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.
Collapse
Affiliation(s)
- Nukunu Etornam Akyea-Bobi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Samuel Sowah Akporh
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Godwin Kwame Amlalo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Kwadwo Kyereme Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Helena Anokyewaa Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Mufeez Abudu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Dominic Acquah-Baidoo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Rebecca Pwalia
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | | | - Reginald Quansah
- Department of Biological, Environmental and Occupational Health, School of Public Health, University of Ghana, Legon, Accra
| | - Samuel Kweku Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| |
Collapse
|
12
|
Padonou GG, Konkon AK, Salako AS, Zoungbédji DM, Ossè R, Sovi A, Azondekon R, Sidick A, Ahouandjinou JM, Adoha CJ, Sominahouin AA, Tokponnon FT, Akinro B, Sina H, Baba-Moussa L, Akogbéto MC. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop Med Infect Dis 2023; 8:439. [PMID: 37755900 PMCID: PMC10535150 DOI: 10.3390/tropicalmed8090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Updated information on the distribution and abundance of Aedes aegypti and Aedes albopictus is crucial to prepare African countries, such as Benin, for possible arboviral disease outbreaks. This study aims to evaluate the geographical distribution, abundance and biting behaviour of these two vectors in Benin. Three sampling techniques were used in this study. The collection of Aedes spp. adults were made through human landing catch (HLC), immatures were captured with the use of ovitraps, and a dipping technique was used for the collection of Aedes spp. in 23 communes located along the North-South and East-West transect of Benin. Adult Aedes mosquitoes were collected indoors and outdoors using HLC. Mosquito eggs, larvae and pupae were collected from containers and ovitraps. The adult mosquitoes were morphologically identified, then confirmed using a polymerase chain reaction (PCR). Overall, 12,424 adult specimens of Aedes spp. were collected, out of which 76.53% (n = 9508) and 19.32% (n = 2400) were morphologically identified as Ae. aegypti and Ae. albopictus, respectively. Geographically, Ae. aegypti was found across the North-South transect unlike Ae. albopictus, which was only encountered in the southern part of the country, with a great preponderance in Avrankou. Furthermore, an exophagic behaviour was observed in both vectors. This updated distribution of Aedes mosquito species in Benin will help to accurately identify areas that are at risk of arboviral diseases and better plan for future vector control interventions.
Collapse
Affiliation(s)
- Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Albert Sourou Salako
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- École de Gestion et d’Exploitation des Systèmes d’Élevage, Université Nationale d’Agriculture de Porto-Novo, Porto-Novo 01 BP 55, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, The London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Roseric Azondekon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Juvénal Minassou Ahouandjinou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Constantin Jesukèdè Adoha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - André Aimé Sominahouin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Filémon Tatchémè Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Martin Codjo Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| |
Collapse
|
13
|
Wei L, FernÁndez-Santos NA, Hamer GL, Lara-RamÍrez EE, RodrÍguez-PÉrez MA. Daytime Resting Activity of Aedes Aegypti and Culex Quinquefasciatus Populations in Northern Mexico. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:157-167. [PMID: 37603406 DOI: 10.2987/23-7122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aedes aegypti and Culex quinquefasciatus are disease vectors distributed throughout much of the world and are responsible for a high burden of vector-borne disease, which has increased during the last 2 decades. Most pathogens vectored by these mosquitoes do not have therapeutic remedies; thus, combating these diseases is dependent upon vector control. Improvements in vector control strategies are urgently needed, but these hinge on understanding the biology and ecology of Ae. aegypti and Cx. quinquefasciatus. Both species have been extensively investigated, but further knowledge on diel resting activity of these vectors can improve vector surveillance and control tools for targeting resting vector populations. From April to December 2021, we determined outdoor daytime resting habits of Ae. aegypti and Cx. quinquefasciatus male, female, and blood-fed female populations in Reynosa, Mexico, using large red odor-baited wooden box traps. The daytime resting activity for Ae. aegypti males, females, and blood-fed females was restricted to a period between 0900 h and 1300 h, with a peak at 0900 h, while the resting activity of Cx. quinquefasciatus male, female, and blood-fed females was between 0700 h and 1100 h, with a peak at 0700 h. A generalized additive model was developed to relate relative humidity and temperature to resting Cx. quinquefasciatus and Ae. aegypti male, female, and blood-fed populations caught in traps. This study advances the understanding of outdoor resting behavior for 2 important vector mosquito species and discusses future studies to fill additional knowledge gaps.
Collapse
|
14
|
Zahid MH, Van Wyk H, Morrison AC, Coloma J, Lee GO, Cevallos V, Ponce P, Eisenberg JNS. The biting rate of Aedes aegypti and its variability: A systematic review (1970-2022). PLoS Negl Trop Dis 2023; 17:e0010831. [PMID: 37552669 PMCID: PMC10456196 DOI: 10.1371/journal.pntd.0010831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/25/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Transmission models have a long history in the study of mosquito-borne disease dynamics. The mosquito biting rate (MBR) is an important parameter in these models, however, estimating its value empirically is complex. Modeling studies obtain biting rate values from various types of studies, each of them having its strengths and limitations. Thus, understanding these study designs and the factors that contribute to MBR estimates and their variability is an important step towards standardizing these estimates. We do this for an important arbovirus vector Aedes aegypti. METHODOLOGY/PRINCIPAL FINDINGS We perform a systematic review using search terms such as 'biting rate' and 'biting frequency' combined with 'Aedes aegypti' ('Ae. aegypti' or 'A. aegypti'). We screened 3,201 articles from PubMed and ProQuest databases, of which 21 met our inclusion criteria. Two broader types of studies are identified: human landing catch (HLC) studies and multiple feeding studies. We analyze the biting rate data provided as well as the methodologies used in these studies to characterize the variability of these estimates across temporal, spatial, and environmental factors and to identify the strengths and limitations of existing methodologies. Based on these analyses, we present two approaches to estimate population mean per mosquito biting rate: one that combines studies estimating the number of bites taken per gonotrophic cycle and the gonotrophic cycle duration, and a second that uses data from histological studies. Based on one histological study dataset, we estimate biting rates of Ae. aegypti (0.41 and 0.35 bite/mosquito-day in Thailand and Puerto Rico, respectively). CONCLUSIONS/SIGNIFICANCE Our review reinforces the importance of engaging with vector biology when using mosquito biting rate data in transmission modeling studies. For Ae. aegypti, this includes understanding the variation of the gonotrophic cycle duration and the number of bites per gonotrophic cycle, as well as recognizing the potential for spatial and temporal variability. To address these variabilities, we advocate for site-specific data and the development of a standardized approach to estimate the biting rate.
Collapse
Affiliation(s)
- Mondal Hasan Zahid
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biology, University of Florida, Gainesville, Florida, United States of America and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Hannah Van Wyk
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, United States of America
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Gwenyth O. Lee
- Rutgers Global Health Institute & Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Varsovia Cevallos
- Instituto Nacional de Investigación en Salud Pública, Centro de investigación en enfermedades infecciosas y vectoriales-CIREV, Quito, Ecuador
| | - Patricio Ponce
- Instituto Nacional de Investigación en Salud Pública, Centro de investigación en enfermedades infecciosas y vectoriales-CIREV, Quito, Ecuador
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Abuelmaali SA, Jamaluddin JAF, Allam M, Abushama HM, Elnaiem DE, Noaman K, Avicor SW, Ishak IH, Wajidi MFF, Jaal Z, Abu Kassim NF. Genetic Polymorphism and Phylogenetics of Aedes aegypti from Sudan Based on ND4 Mitochondrial Gene Variations. INSECTS 2022; 13:1144. [PMID: 36555054 PMCID: PMC9785543 DOI: 10.3390/insects13121144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the genetic differences between Aedes aegypti subspecies (Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf)) from Sudan using the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene marker. Nineteen distinct haplotypes of the ND4 were identified in female Aedes aegypti mosquitoes from the study sites. The phylogenetic relationship of the 19 ND4 haplotypes was demonstrated in a median-joining haplotype network tree with Aaa and Aaf populations found to share three haplotypes. The genetic variance (Pairwise FST values) was estimated and found to range from 0.000 to 0.811. Isolation by distance test revealed that geographical distance was correlated to genetic variation (coefficient value (r) = 0.43). The Polar maximum likelihood tree showed the phylogenetic relationship of 91 female Aaa and Aaf from the study sites, with most of the Aaf haplotypes clustered in one group while most of the Aaa haplotypes gathered in another group, but there was an admixture of the subspecies in both clusters, especially the Aaa cluster. The Spatial Analysis of Molecular Variance (SAMOVA) test revealed that the eight populations clustered into two phylogeographic groups/clusters of the two subspecies populations. The 2 Aedes aegypti subspecies seemed not to be totally separated geographically with gene flow among the populations.
Collapse
Affiliation(s)
- Sara Abdelrahman Abuelmaali
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- National Public Health Laboratory, Federal Ministry of Health, Khartoum 11115, Sudan
| | | | - Mushal Allam
- College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551 Abu Dhabi, United Arab Emirates
| | - Hind Mohamed Abushama
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum 321, Sudan
| | - Dia Eldin Elnaiem
- Department of Natural Sciences, University of Maryland Eastern Shore, Maryland, MD 21853, USA
| | - Kheder Noaman
- National Center for Research, Tropical Medicine Research Institute, Khartoum 1304, Sudan
| | - Silas Wintuma Avicor
- Entomology Division, Cocoa Research Institute of Ghana, New Tafo-Akim P.O. Box 8, Ghana
| | - Intan Haslina Ishak
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Zairi Jaal
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Faeza Abu Kassim
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
16
|
Agboli E, Tomazatos A, Maiga-Ascofaré O, May J, Lühken R, Schmidt-Chanasit J, Jöst H. Arbovirus Epidemiology: The Mystery of Unnoticed Epidemics in Ghana, West Africa. Microorganisms 2022; 10:1914. [PMID: 36296190 PMCID: PMC9610185 DOI: 10.3390/microorganisms10101914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
It is evident that all the countries surrounding Ghana have experienced epidemics of key arboviruses of medical importance, such as the recent dengue fever epidemic in Burkina Faso. Therefore, Ghana is considered a ripe zone for epidemics of arboviruses, mainly dengue. Surprisingly, Ghana never experienced the propounded deadly dengue epidemic. Indeed, it is mysterious because the mosquito vectors capable of transmitting the dengue virus, such as Aedes aegypti, were identified in Ghana through entomological investigations. Additionally, cases may be missed, as the diagnostic and surveillance capacities of the country are weak. Therefore, we review the arbovirus situation and outline probable reasons for the epidemic mystery in the country. Most of the recorded cases of arbovirus infections were usually investigated via serology by detecting IgM and IgG immunoglobulins in clinical samples, which is indicative of prior exposure but not an active case. This led to the identification of yellow fever virus and dengue virus as the main circulating arboviruses among the Ghanaian population. However, major yellow fever epidemics were reported for over a decade. It is important to note that the reviewed arboviruses were not frequently detected in the vectors. The data highlight the necessity of strengthening the diagnostics and the need for continuous arbovirus and vector surveillance to provide an early warning system for future arbovirus epidemics.
Collapse
Affiliation(s)
- Eric Agboli
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Oumou Maiga-Ascofaré
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, PMB, Kumasi 039-5028, Ghana
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20359 Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| |
Collapse
|
17
|
Badolo A, Sombié A, Yaméogo F, Wangrawa DW, Sanon A, Pignatelli PM, Sanon A, Viana M, Kanuka H, Weetman D, McCall PJ. First comprehensive analysis of Aedes aegypti bionomics during an arbovirus outbreak in west Africa: Dengue in Ouagadougou, Burkina Faso, 2016–2017. PLoS Negl Trop Dis 2022; 16:e0010059. [PMID: 35793379 PMCID: PMC9321428 DOI: 10.1371/journal.pntd.0010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/26/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Dengue’s emergence in West Africa was typified by the Burkina Faso outbreaks in 2016 and 2017, the nation’s largest to date. In both years, we undertook three-month surveys of Aedes populations in or near the capital city Ouagadougou, where the outbreaks were centered.
Methodology
In 1200LG (urban), Tabtenga (peri-urban) and Goundry (rural) localities, we collected indoor and outdoor resting mosquito adults, characterized larval habitats and containers producing pupae and reared immature stages to adulthood in the laboratory for identification. All mosquito adults were identified morphologically. Host species (from which bloodmeals were taken) were identified by PCR. Generalized mixed models were used to investigate relationships between adult or larval densities and multiple explanatory variables.
Results
From samples in 1,780 houses, adult Ae. aegypti were significantly more abundant in the two urban localities (Tabtenga and 1200 LG) in both years than in the rural site (Goundry), where Anopheles spp. were far more common. Results from adult collections indicated a highly exophilic and anthropophilic (>90% bloodmeals of human origin) vector population, but with a relatively high proportion of bloodfed females caught inside houses. Habitats producing most pupae were waste tires (37% of total pupae), animal troughs (44%) and large water barrels (30%).
While Stegomyia indices were not reliable indicators of adult mosquito abundance, shared influences on adult and immature stage densities included rainfall and container water level, collection month and container type/purpose. Spatial analysis showed autocorrelation of densities, with a partial overlap in adult and immature stage hotspots.
Conclusion
Results provide an evidence base for the selection of appropriate vector control methods to minimize the risk, frequency and magnitude of future outbreaks in Ouagadougou. An integrated strategy combining community-driven practices, waste disposal and insecticide-based interventions is proposed. The prospects for developing a regional approach to arbovirus control in West Africa or across Africa are discussed.
Collapse
Affiliation(s)
- Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- * E-mail: (AB); (PJM)
| | - Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Félix Yaméogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Dimitri W. Wangrawa
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Université Norbert Zongo, Koudougou, Burkina Faso
| | - Aboubakar Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Patricia M. Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AB); (PJM)
| |
Collapse
|
18
|
Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100074. [PMID: 35726222 PMCID: PMC7612875 DOI: 10.1016/j.crpvbd.2021.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.
Collapse
|
19
|
Joannides J, Dzodzomenyo M, Azerigyik F, Agbosu EE, Pratt D, Nyarko Osei JH, Pwalia R, Amlalo GK, Appawu M, Takashi H, Iwanaga S, Buchwald A, Rochford R, Boakye D, Koram K, Bonney K, Dadzie S. Species composition and risk of transmission of some Aedes-borne arboviruses in some sites in Northern Ghana. PLoS One 2021; 16:e0234675. [PMID: 34061882 PMCID: PMC8168856 DOI: 10.1371/journal.pone.0234675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
Aedes-borne viral diseases mainly Yellow Fever (YF), Dengue (DEN), Zika (ZIK) and Chikungunya (CHK) have contributed to many deaths' in the world especially in Africa. There have been major outbreaks of these diseases in West Africa. Although, YF outbreaks have occurred in Ghana over the years, no outbreak of DEN, ZIK and CHK has been recorded. However, the risk of outbreak is high due to its proximity to West African countries where outbreaks have been recently been recorded. This study surveyed the mosquito fauna to assess the risk of transmission of Yellow fever (YFV), Dengue (DENV), Chikungunya (CHKV) and Zika (ZIKV) viruses in Larabanga and Mole Game Reserve areas in Northern Ghana. The immature and adult stages of Aedes mosquitoes were collected from Larabanga and Mole Game Reserve area. There was a significant (P>0.001) number of mosquitoes collected during the rainy season than the dry season. A total of 1,930 Aedes mosquitoes were collected during the rainy season and morphologically identified. Of these, 1,915 (99.22%) were Aedes aegypti and 15 (0.22%) were Aedes vittatus. During the dry season, 27 Ae. aegypti mosquitoes were collected. A total of 415 Ae. aegypti mosquitoes were molecularly identified to subspecies level of which Ae. (Ae) aegypti aegypti was the predominant subspecies. Both Ae. aegypti aegypti and Ae aegypti formosus exist in sympatry in the area. All Aedes pools (75) were negative for DENV, ZIKV and CHKV when examined by RT- PCR. Three Larval indices namely House Index, HI (percentage of houses positive for Aedes larvae or pupae), Container Index, CI (the percentage of containers positive for Aedes larvae or pupae) and Breteau Index, BI (number of positive containers per 100 houses inspected) were assessed as a measure for risk of transmission in the study area. The HI, CI and BI for both sites were as follows; Mole Game Reserve (HI, 42.1%, CI, 23.5% and BI, 100 for rainy season and 0 for all indices for dry season) and Larabanga (39%, 15.5% and 61 for rainy season and 2.3%, 1.3% and 2.3 for dry season). The spatial distribution of Aedes breeding sites in both areas indicated that Aedes larvae were breeding in areas with close proximity to humans. Lorry tires were the main source of Aedes larvae in all the study areas. Information about the species composition and the potential role of Aedes mosquitoes in future outbreaks of the diseases that they transmit is needed to design efficient surveillance and vector control tools.
Collapse
Affiliation(s)
- Joannitta Joannides
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Environmental and Occupational Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Mawuli Dzodzomenyo
- Department of Environmental and Occupational Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Faustus Azerigyik
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eudocia Esinam Agbosu
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Deborah Pratt
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rebecca Pwalia
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Godwin Kwame Amlalo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Maxwell Appawu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hayashi Takashi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Andrea Buchwald
- Department of Environmental and Occupational Health, School of Public Health, University of Colorado, Aurora, CO, United States of America
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Daniel Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
20
|
Distribution and Genetic Diversity of Aedes aegypti Subspecies across the Sahelian Belt in Sudan. Pathogens 2021; 10:pathogens10010078. [PMID: 33477339 PMCID: PMC7830107 DOI: 10.3390/pathogens10010078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
Aedes aegypti is the most important arboviral disease vector worldwide. In Africa, it exists as two morphologically distinct forms, often referred to as subspecies, Aaa and Aaf. There is a dearth of information on the distribution and genetic diversity of these two forms in Sudan and other African Sahelian region countries. This study aimed to explore the distribution and genetic diversity of Aedes aegypti subspecies using morphology and Cytochrome oxidase-1 mitochondrial marker in a large Sahelian zone in Sudan. An extensive cross-sectional survey of Aedes aegypti in Sudan was performed. Samples collected from eight locations were morphologically identified, subjected to DNA extraction, amplification, sequencing, and analyses. We classified four populations as Aaa and the other four as Aaf. Out of 140 sequence samples, forty-six distinct haplotypes were characterized. The haplotype and nucleotide diversity of the collected samples were 0.377–0.947 and 0.002–0.01, respectively. Isolation by distance was significantly evident (r = 0.586, p = 0.005). The SAMOVA test indicated that all Aaf populations are structured in one group, while the Aaa clustered into two groups. AMOVA showed 53.53% genetic differences within populations and 39.22% among groups. Phylogenetic relationships indicated two clusters in which the two subspecies were structured. Thus, the haplotype network consisted of three clusters.
Collapse
|
21
|
Said SM, Kamaruddin N, Shahar HK, Lim PY. Socio-ecological determinants of dengue prevention practices: A cross-sectional study among wet market traders in a selected district in Perak, Malaysia. ASIAN PAC J TROP MED 2021. [DOI: 10.4103/1995-7645.332810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|