1
|
Jibowu M, Vigilant M, Costa-da-Silva AL, Nelson A, Essigmann HT, Brown EL, Gunter SM. Spatial and seasonal dynamics of mosquito species in Harris County, Texas, highlight risk of arbovirus introduction and transmission. Sci Rep 2025; 15:10330. [PMID: 40133319 PMCID: PMC11937572 DOI: 10.1038/s41598-025-92175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Mosquito-borne diseases pose a significant public health threat, particularly in densely populated urban areas. Climate change, urbanization, and global connectivity have fueled the expansion of mosquitoes and their associated pathogens, increasing the disease burden. Harris County, Texas, is among the most vulnerable regions in the United States for mosquito-borne disease outbreaks, underscoring the critical need for localized insights into mosquito population dynamics to inform vector surveillance and control strategies. This study provides a comprehensive analysis of the population dynamics of mosquito species in Harris County by exploring their species composition, spatial distribution, and seasonal patterns. Our findings reveal the extensive distribution of Culex quinquefasciatus and Aedes albopictus, with Aedes aegypti concentrated in highly urbanized areas. Notably, three of the five most abundant species are primary vectors of human pathogens, highlighting the urgent need for targeted interventions. By leveraging high-resolution surveillance data, this research deepens our understanding of mosquito dynamics and lays the groundwork for future studies investigating the effects of climate change, urbanization, and other environmental drivers on vector populations.
Collapse
Affiliation(s)
- Morgan Jibowu
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Maximea Vigilant
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Alisa Nelson
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
- The William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Heather T Essigmann
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Eric L Brown
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Sarah M Gunter
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
- The William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Jibowu M, Nolan MS, Ramphul R, Essigmann HT, Oluyomi AO, Brown EL, Vigilant M, Gunter SM. Spatial dynamics of Culex quinquefasciatus abundance: geostatistical insights from Harris County, Texas. Int J Health Geogr 2024; 23:26. [PMID: 39639303 PMCID: PMC11619097 DOI: 10.1186/s12942-024-00385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Mosquito-borne diseases pose a significant public health threat, prompting the need to pinpoint high-risk areas for targeted interventions and environmental control measures. Culex quinquefasciatus is the primary vector for several mosquito-borne pathogens, including West Nile virus. Using spatial analysis and modeling techniques, we investigated the geospatial distribution of Culex quinquefasciatus abundance in the large metropolis of Harris County, Texas, from 2020 to 2022. Our geospatial analysis revealed clusters of high mosquito abundance, predominantly located in central Houston and the north-northwestern regions of Harris County, with lower mosquito abundance observed in the western and southeastern areas. We identified persistent high mosquito abundance in some of Houston's oldest neighborhoods, highlighting the importance of considering socioeconomic factors, the built environment, and historical urban development patterns in understanding vector ecology. Additionally, we observed a positive correlation between mosquito abundance and neighborhood-level socioeconomic status with the area deprivation index explaining between 22 and 38% of the variation in mosquito abundance (p-value < 0.001). This further underscores the influence of the built environment on vector populations. Our study emphasizes the utility of spatial analysis, including hotspot analysis and geostatistical interpolation, for understanding mosquito abundance patterns to guide resource allocation and surveillance efforts. Using geostatistical analysis, we discerned fine-scale geospatial patterns of Culex quinquefasciatus abundance in Harris County, Texas, to inform targeted interventions in vulnerable communities, ultimately reducing the risk of mosquito exposure and mosquito-borne disease transmission. By integrating spatial analysis with epidemiologic risk assessment, we can enhance public health preparedness and response efforts to prevent and control mosquito-borne disease.
Collapse
Affiliation(s)
- Morgan Jibowu
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Melissa S Nolan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Ryan Ramphul
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Heather T Essigmann
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Abiodun O Oluyomi
- Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Eric L Brown
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Maximea Vigilant
- Harris County Public Health, Mosquito and Vector Control Division, Houston, TX, USA
| | - Sarah M Gunter
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA.
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Garamszegi LZ. Host diversity of Aedes albopictus in relation to invasion history: a meta-analysis of blood-feeding studies. Parasit Vectors 2024; 17:411. [PMID: 39363331 PMCID: PMC11448256 DOI: 10.1186/s13071-024-06490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The invasive mosquito Aedes albopictus is a major concern for human and animal health given its high potential to spread over large geographical distances, adapt to various habitats and food sources, and act as a vector for pathogens. It is crucial to understand how this species establishes ecological relationships at different locations, as it determines its role in transmission of diseases. METHODS Based on published blood meal surveys, a meta-analysis was performed to investigate how host diversity changes along the process of invasion at a large scale. For 48 independent localities, the Shannon diversity index was calculated and was then assessed against several moderator variables describing invasion status, habitat type, methodology, survey year and the year of introduction for invasive populations. RESULTS Diet diversity was higher in the invasive than in the native populations when the strong habitat effects were held constant. Furthermore, the year of introduction also had a significant role, as invasive populations that had been established earlier had wider diet diversity than more recent populations. CONCLUSIONS Invasive Ae. albopictus has considerable ecological flexibility. The species' ability to adapt to various food sources goes hand in hand with its successful worldwide dispersion, which has strong implications for its role in pathogen transmission.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Alkotmány u. 2-4, 2163, Vácrátót, Hungary.
- National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Budapest, Hungary.
| |
Collapse
|
4
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
5
|
Host selection and forage ratio in West Nile virus-transmitting Culex mosquitoes: Challenges and knowledge gaps. PLoS Negl Trop Dis 2022; 16:e0010819. [PMID: 36301825 PMCID: PMC9612463 DOI: 10.1371/journal.pntd.0010819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND To date, no specific therapy or vaccination is available for West Nile virus (WNV) infections in humans; preventive strategies represent the only possibility to control transmission. To focus these strategies, detailed knowledge of the virus dynamics is of paramount importance. However, several aspects of WNV transmission are still unclear, especially regarding the role of potential vertebrate host species. Whereas mosquitoes' intrinsic characteristics cause them to favour certain hosts (host preference), absolute selection is impossible in natural settings. Conversely, the selection carried out among available hosts and influenced from hosts' availability and other ecological/environmental factors is defined as host selection. METHODOLOGY/PRINCIPAL FINDINGS In July 2022, we searched PubMed database for original articles exploring host selection among WNV-transmitting Culex mosquitoes, the main WNV vector. We considered only original field studies estimating and reporting forage ratio. This index results from the ratio between the proportion of blood meals taken by mosquitoes on potential host species and the hosts' relative abundance. From the originally retrieved 585 articles, 9 matched the inclusion criteria and were included in this review. All but one of the included studies were conducted in the Americas, six in the United States, and one each in Mexico and Colombia. The remaining study was conducted in Italy. American Robin, Northern Cardinal, and House Finch were the most significantly preferred birds in the Americas, Common Blackbird in Italy. CONCLUSIONS/SIGNIFICANCE Although ornithophilic, all observed WNV-transmitting mosquitoes presented opportunistic feeding behaviour. All the observed species showed potential to act as bridges for zoonotic diseases, feeding also on humans. All the observed mosquitoes presented host selection patterns and did not feed on hosts as expected by chance alone. The articles observe different species of mosquitoes in different environments. In addition, the way the relative host abundance was determined differed. Finally, this review is not systematic. Therefore, the translation of our results to different settings should be conducted cautiously.
Collapse
|
6
|
Mann JG, Pitts RJ. PrimedSherlock: a tool for rapid design of highly specific CRISPR-Cas12 crRNAs. BMC Bioinformatics 2022; 23:428. [PMID: 36241974 PMCID: PMC9569017 DOI: 10.1186/s12859-022-04968-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background CRISPR-Cas based diagnostic assays provide a portable solution which bridges the benefits of qRT-PCR and serological assays in terms of portability, specificity and ease of use. CRISPR-Cas assays are rapidly fieldable, specific and have been rigorously validated against a number of targets, including HIV and vector-borne pathogens. Recently, CRISPR-Cas12 and CRISPR-Cas13 diagnostic assays have been granted FDA approval for the detection of SARS-CoV-2. A critical step in utilizing this technology requires the design of highly-specific and efficient CRISPR RNAs (crRNAs) and isothermal primers. This process involves intensive manual curation and stringent parameters for design in order to minimize off-target detection while also preserving detection across divergent strains. As such, a single, streamlined bioinformatics platform for rapidly designing crRNAs for use with the CRISPR-Cas12 platform is needed. Here we offer PrimedSherlock, an automated, computer guided process for selecting highly-specific crRNAs and primers for targets of interest. Results Utilizing PrimedSherlock and publicly available databases, crRNAs were designed against a selection of Flavivirus genomes, including West Nile, Zika and all four serotypes of Dengue. Using outputs from PrimedSherlock in concert with both wildtype A.s Cas12a and Alt-R Cas12a Ultra nucleases, we demonstrated sensitive detection of nucleic acids of each respective arbovirus in in-vitro fluorescence assays. Moreover, primer and crRNA combinations facilitated the detection of their intended targets with minimal off-target background noise. Conclusions PrimedSherlock is a novel crRNA design tool, specific for CRISPR-Cas12 diagnostic platforms. It allows for the rapid identification of highly conserved crRNA targets from user-provided primer pairs or PrimedRPA output files. Initial testing of crRNAs against arboviruses of medical importance demonstrated a robust ability to distinguish multiple strains by exploiting polymorphisms within otherwise highly conserved genomic regions. As a freely-accessible software package, PrimedSherlock could significantly increase the efficiency of CRISPR-Cas12 diagnostics. Conceptually, the portability of detection kits could also be enhanced when coupled with isothermal amplification technologies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04968-5.
Collapse
Affiliation(s)
- James G Mann
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, USA
| | - R Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, USA.
| |
Collapse
|
7
|
Lee HJ, Longnecker M, Calkins TL, Renfro AD, Fredregill CL, Debboun M, Pietrantonio PV. Detection of the Nav channel kdr-like mutation and modeling of factors affecting survivorship of Culex quinquefasciatus mosquitoes from six areas of Harris County (Houston), Texas, after permethrin field-cage tests. PLoS Negl Trop Dis 2020; 14:e0008860. [PMID: 33211688 PMCID: PMC7714350 DOI: 10.1371/journal.pntd.0008860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/03/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31-66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County.
Collapse
Affiliation(s)
- Han-Jung Lee
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Longnecker
- Department of Statistics, Texas A&M University, College Station, Texas, United States of America
| | - Travis L. Calkins
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Andrew D. Renfro
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Texas, United States of America
| | - Mustapha Debboun
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|