1
|
Dubianok Y, Kumar A, Rak A. Structural Biology for Target Identification and Validation. Methods Mol Biol 2025; 2905:17-49. [PMID: 40163296 DOI: 10.1007/978-1-0716-4418-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Structural biology is catalyzing a paradigm shift in drug discovery towards rational approaches in target identification and validation. Leveraging structural insights obtained through cryo-EM or X-ray crystallography not only enhances the efficiency of drug discovery projects in terms of time and cost, but also significantly improves the likelihood of achieving market approval.Initiating a successful project necessitates more than just a robust package for target credentialing; it demands a comprehensive strategy for the identification and optimization of potential drugs. The critical evaluation of target druggability is markedly enhanced when supported by experimentally derived structural information. This nuanced approach ensures a more thorough understanding of the technical feasibility of drug development from the project's inception.
Collapse
Affiliation(s)
- Yuliya Dubianok
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Anand Kumar
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Alexey Rak
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France.
| |
Collapse
|
2
|
Grossetête L, Marcelot C, Gatel C, Pauchet S, Hytch M. Principle of TEM alignment using convolutional neural networks: Case study on condenser aperture alignment. Ultramicroscopy 2024; 267:114047. [PMID: 39413637 DOI: 10.1016/j.ultramic.2024.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
The possibility of automatically aligning the transmission electron microscope (TEM) is explored using an approach based on artificial intelligence (AI). After presenting the general concept, we test the method on the first step of the alignment process which involves centering the condenser aperture. We propose using a convolutional neural network (CNN) that learns to predict the x and y-shifts needed to realign the aperture in one step. The learning data sets were acquired automatically on the microscope by using a simplified digital twin. Different models were tested and analysed to choose the optimal design. We have developed a human-level estimator and intend to use it safely on all apertures. A similar process could be used for most steps of the alignment process with minimal changes, allowing microscopists to reduce the time and training required to perform this task. The method is also compatible with continuous correction of alignment drift during lengthy experiments or to ensure uniformity of illumination conditions during data acquisition.
Collapse
Affiliation(s)
- Loïc Grossetête
- CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse, 31055, France; Fédération ENAC ISAE-SUPAERO ONERA, 7 Avenue Edouard Belin, Toulouse, 31055, France.
| | | | | | - Sylvain Pauchet
- Fédération ENAC ISAE-SUPAERO ONERA, 7 Avenue Edouard Belin, Toulouse, 31055, France
| | - Martin Hytch
- CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse, 31055, France
| |
Collapse
|
3
|
Wang L, Zimanyi CM. Cryo-EM sample preparation for high-resolution structure studies. Acta Crystallogr F Struct Biol Commun 2024; 80:74-81. [PMID: 38530656 PMCID: PMC11058511 DOI: 10.1107/s2053230x24002553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
High-resolution structures of biomolecules can be obtained using single-particle cryo-electron microscopy (SPA cryo-EM), and the rapidly growing number of structures solved by this method is encouraging more researchers to utilize this technique. As with other structural biology methods, sample preparation for an SPA cryo-EM data collection requires some expertise and an understanding of the strengths and limitations of the technique in order to make sensible decisions in the sample-preparation process. In this article, common strategies and pitfalls are described and practical advice is given to increase the chances of success when starting an SPA cryo-EM project.
Collapse
Affiliation(s)
- Liguo Wang
- Laboratory for BioMolecular Structure, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Christina M. Zimanyi
- National Center for CryoEM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
4
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
5
|
Pattison AJ, Pedroso CCS, Cohen BE, Ondry JC, Alivisatos AP, Theis W, Ercius P. Advanced techniques in automated high-resolution scanning transmission electron microscopy. NANOTECHNOLOGY 2023; 35:015710. [PMID: 37703845 DOI: 10.1088/1361-6528/acf938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time. Here, we demonstrate a flexible pipeline-based system for high-throughput acquisition of atomic-resolution structural data using an all-piezo sample stage applied to large-scale imaging of nanoparticles and multimodal data acquisition. The system is available as part of the user program of the Molecular Foundry at Lawrence Berkeley National Laboratory.
Collapse
Affiliation(s)
- Alexander J Pattison
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, United States of America
| | - Cassio C S Pedroso
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, United States of America
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, United States of America
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, CA, United States of America
- Kavli Energy NanoScience Institute, Berkeley, CA, United States of America
- Department of Chemistry and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States of America
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, CA, United States of America
- Kavli Energy NanoScience Institute, Berkeley, CA, United States of America
- Department of Chemistry and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States of America
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Materials Science and Engineering, University of California, Berkeley, CA, United States of America
| | - Wolfgang Theis
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Peter Ercius
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, United States of America
| |
Collapse
|
6
|
Momont C, Dang HV, Zatta F, Hauser K, Wang C, di Iulio J, Minola A, Czudnochowski N, De Marco A, Branch K, Donermeyer D, Vyas S, Chen A, Ferri E, Guarino B, Powell AE, Spreafico R, Yim SS, Balce DR, Bartha I, Meury M, Croll TI, Belnap DM, Schmid MA, Schaiff WT, Miller JL, Cameroni E, Telenti A, Virgin HW, Rosen LE, Purcell LA, Lanzavecchia A, Snell G, Corti D, Pizzuto MS. A pan-influenza antibody inhibiting neuraminidase via receptor mimicry. Nature 2023:10.1038/s41586-023-06136-y. [PMID: 37258672 DOI: 10.1038/s41586-023-06136-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.
Collapse
Affiliation(s)
| | - Ha V Dang
- Vir Biotechnology, San Francisco, CA, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | - Andrea Minola
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | - Alex Chen
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | | | | | | | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK
| | - David M Belnap
- School of Biological Sciences, Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Michael A Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | | |
Collapse
|
7
|
Harrison PJ, Vecerkova T, Clare DK, Quigley A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J Struct Biol 2023; 215:107959. [PMID: 37004781 DOI: 10.1016/j.jsb.2023.107959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.
Collapse
|
8
|
Hagen WJH. Light ‘Em up: Efficient Screening of Gold Foil Grids in Cryo-EM. Front Mol Biosci 2022; 9:912363. [PMID: 35693551 PMCID: PMC9184724 DOI: 10.3389/fmolb.2022.912363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Transmission electron cryo-microscopy (cryo-EM) allows for obtaining 3D structural information by imaging macromolecules embedded in thin layers of amorphous ice. To obtain high-resolution structural information, samples need to be thin to minimize inelastic scattering which blurs images. During data collection sessions, time spent on finding areas on the cryo-EM grid with optimal ice thickness should be minimized as imaging time on high-end Transmission Electron Microscope TEM systems is costly. Recently, grids covered with thin gold films have become popular due to their stability and reduced beam-induced motion of the sample. Gold foil grids have substantially different densities between the gold foil and ice, effectively resulting in the loss of dynamic range between thin and thick regions of ice, making it challenging to find areas with suitable ice thickness efficiently during grid screening and thus increase expensive imaging time. Here, an energy filter-based plasmon imaging is presented as a fast and easy method for grid screening of the gold foil grids.
Collapse
|
9
|
Gong X, Gnanasekaran K, Ma K, Forman CJ, Wang X, Su S, Farha OK, Gianneschi NC. Rapid Generation of Metal-Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. J Am Chem Soc 2022; 144:6674-6680. [PMID: 35385280 DOI: 10.1021/jacs.2c01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) constructed from Zr6 nodes and tetratopic carboxylate linkers display high structural diversity and complexity in which various crystal topologies can result from identical building units. To determine correlations between MOF topologies and experimental parameters, such as solvent choice or modulator identity and concentration, we demonstrate the rapid generation of phase diagrams for Zr6-MOFs with 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene linkers under a variety of conditions. We have developed a full set of methods for high-throughput transmission electron microscopy (TEM), including automated sample preparation and data acquisition, to accelerate MOF characterization. The use of acetic acid as a modulator yields amorphous, NU-906, NU-600, and mixed-phase structures depending on the ratio of N,N-dimethylformamide to N,N-diethylformamide solvent and the quantity of the modulator. Notably, the use of formic acid as a modulator enables direct control of crystal growth along the c direction through variation of the modulator quantity, thus realizing aspect ratio control of NU-1008 crystals with different catalytic hydrolysis performance toward a nerve agent simulant.
Collapse
Affiliation(s)
- Xinyi Gong
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher J Forman
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Ma H, Jia X, Zhang K, Su Z. Cryo-EM advances in RNA structure determination. Signal Transduct Target Ther 2022; 7:58. [PMID: 35197441 PMCID: PMC8864457 DOI: 10.1038/s41392-022-00916-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has emerged as an unprecedented tool to resolve protein structures at atomic resolution. Structural insights of biological samples not accessible by conventional X-ray crystallography and NMR can be explored with cryo-EM because measurements are carried out under near-native crystal-free conditions, and large protein complexes with conformational and compositional heterogeneity are readily resolved. RNA has remained underexplored in cryo-EM, despite its essential role in various biological processes. This review highlights current challenges and recent progress in using cryo-EM single-particle analysis to determine protein-free RNA structures, enabled by improvement in sample preparation and integration of multiple structural and biochemical methods.
Collapse
Affiliation(s)
- Haiyun Ma
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xinyu Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China.
| |
Collapse
|
11
|
Calcraft T, Rosenthal PB. Cryogenic electron microscopy approaches that combine images and tilt series. Microscopy (Oxf) 2022; 71:i15-i22. [PMID: 35275182 PMCID: PMC8855521 DOI: 10.1093/jmicro/dfab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Cryogenic electron microscopy can be widely applied to biological specimens from the molecular to the cellular scale. In single-particle analysis, 3D structures may be obtained in high resolution by averaging 2D images of single particles in random orientations. For pleomorphic specimens, structures may be obtained by recording the tilt series of a single example of the specimen and calculating tomograms. Where many copies of a single structure such as a protein or nucleic acid assembly are present within the tomogram, averaging of the sub-volumes (subtomogram averaging) has been successfully applied. The choice of data collection method for any given specimen may depend on the structural question of interest and is determined by the radiation sensitivity of the specimen. Here, we survey some recent developments on the use of hybrid methods for recording and analysing data from radiation-sensitive biological specimens. These include single-particle reconstruction from 2D images where additional views are recorded at a single tilt angle of the specimen and methods where image tilt series, initially used for tomogram reconstruction, are processed as individual single-particle images. There is a continuum of approaches now available to maximize structural information obtained from the specimen.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
12
|
Garnett JA, Atherton J. Structure Determination of Microtubules and Pili: Past, Present, and Future Directions. Front Mol Biosci 2022; 8:830304. [PMID: 35096976 PMCID: PMC8795688 DOI: 10.3389/fmolb.2021.830304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.
Collapse
Affiliation(s)
- James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Lees JA, Dias JM, Han S. Applications of Cryo-EM in small molecule and biologics drug design. Biochem Soc Trans 2021; 49:2627-2638. [PMID: 34812853 PMCID: PMC8786282 DOI: 10.1042/bst20210444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Electron cryo-microscopy (cryo-EM) is a powerful technique for the structural characterization of biological macromolecules, enabling high-resolution analysis of targets once inaccessible to structural interrogation. In recent years, pharmaceutical companies have begun to utilize cryo-EM for structure-based drug design. Structural analysis of integral membrane proteins, which comprise a large proportion of druggable targets and pose particular challenges for X-ray crystallography, by cryo-EM has enabled insights into important drug target families such as G protein-coupled receptors (GPCRs), ion channels, and solute carrier (SLCs) proteins. Structural characterization of biologics, such as vaccines, viral vectors, and gene therapy agents, has also become significantly more tractable. As a result, cryo-EM has begun to make major impacts in bringing critical therapeutics to market. In this review, we discuss recent instructive examples of impacts from cryo-EM in therapeutics design, focusing largely on its implementation at Pfizer. We also discuss the opportunities afforded by emerging technological advances in cryo-EM, and the prospects for future development of the technique.
Collapse
Affiliation(s)
- Joshua A. Lees
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| | - Joao M. Dias
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| |
Collapse
|
14
|
Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. FRONTIERS IN BIOINFORMATICS 2021; 1:788308. [PMID: 36303748 PMCID: PMC9580929 DOI: 10.3389/fbinf.2021.788308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce “in solution” structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.
Collapse
Affiliation(s)
- Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- *Correspondence: Wei-Hau Chang,
| | | | - Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Chi Chung
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Ichihashi F, Tanigaki T, Akashi T, Takahashi Y, Kusada K, Tamaoka T, Kitagawa H, Shinada H, Murakami Y. Improved Efficiency in Automated Acquisition of Ultra-high Resolution Electron Holograms Using Automated Target Detection. Microscopy (Oxf) 2021; 70:510-518. [PMID: 34101814 DOI: 10.1093/jmicro/dfab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
An automated hologram acquisition system for big-data analysis and for improving the statistical precision of phase analysis has been upgraded with automated particle detection technology. The coordinates of objects in low-magnification images are automatically detected using zero-mean normalized cross-correlation with preselected reference images. In contrast with the conventional scanning acquisitions from the whole area of a microgrid and/or a thin specimen, the new method allows efficient data collections only from the desired fields of view including the particles. The acquisition time of the cubic/triangular nanoparticles that were observed was shortened by about 1/58 that of the conventional scanning acquisition method because of the efficient data collections. The developed technology can improve statistical precision in electron holography with shorter acquisition time and is applicable to the analysis of electromagnetic fields for various kinds of nanoparticles.
Collapse
Affiliation(s)
- Fumiaki Ichihashi
- Research & Development Group, Hitachi, Ltd, Hatoyama, Saitama 350-0395, Japan
| | - Toshiaki Tanigaki
- Research & Development Group, Hitachi, Ltd, Hatoyama, Saitama 350-0395, Japan
| | - Tetsuya Akashi
- Research & Development Group, Hitachi, Ltd, Hatoyama, Saitama 350-0395, Japan
| | - Yoshio Takahashi
- Research & Development Group, Hitachi, Ltd, Hatoyama, Saitama 350-0395, Japan
| | - Kohei Kusada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takehiro Tamaoka
- The Ultramicroscopy Research Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroshi Kitagawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroyuki Shinada
- Research & Development Group, Hitachi, Ltd, Hatoyama, Saitama 350-0395, Japan
| | - Yasukazu Murakami
- The Ultramicroscopy Research Center, Kyushu University, Fukuoka 819-0395, Japan.,Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Wang X, Li J, Ha HD, Dahl JC, Ondry JC, Moreno-Hernandez I, Head-Gordon T, Alivisatos AP. AutoDetect-mNP: An Unsupervised Machine Learning Algorithm for Automated Analysis of Transmission Electron Microscope Images of Metal Nanoparticles. JACS AU 2021; 1:316-327. [PMID: 33778811 PMCID: PMC7988451 DOI: 10.1021/jacsau.0c00030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 05/27/2023]
Abstract
The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labeled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information on convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two data sets of bright field TEM images of Au nanoparticles with different shapes and further extended to palladium nanocubes and cadmium selenide quantum dots, demonstrating that the algorithm is quantitatively reliable and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of mNPs and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jie Li
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Theory Center, University of California, Berkeley, California 94720, United States
| | - Hyun Dong Ha
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jakob C. Dahl
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Justin C. Ondry
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Ivan Moreno-Hernandez
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Theory Center, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A. Paul Alivisatos
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS. Structure 2021; 29:479-487.e4. [PMID: 33453150 DOI: 10.1016/j.str.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
The type III secretion system (T3SS) is a virulence mechanism employed by Gram-negative pathogens. The T3SS forms a proteinaceous channel that projects a needle into the extracellular medium where it interacts with the host cell to deliver virulence factors. Enteropathogenic Escherichia coli (EPEC) is unique in adopting a needle extension to the T3SS-a filament formed by EspA-which is absolutely required for efficient colonization of the gut. Here, we describe the cryoelectron microscopy structure of native EspA filaments from EPEC at 3.6-Å resolution. Within the filament, positively charged residues adjacent to a hydrophobic groove line the lumen of the filament in a spiral manner, suggesting a mechanism of substrate translocation mediated via electrostatics. Using structure-guided mutagenesis, in vivo studies corroborate the role of these residues in secretion and translocation function. The high-resolution structure of the EspA filament could aid in structure-guided drug design of antivirulence therapeutics.
Collapse
|
18
|
Abstract
Automated coordination of microscope and camera functions for MicroED data collection simplifies the procedure for robust dataset acquisition and enables unattended sequential collection of many crystal targets. This chapter discusses the prerequisites for an algorithm of data collection automation for continuous-rotation MicroED and presents a practical protocol for achieving this goal using the popular TEM control software program SerialEM.
Collapse
|
19
|
Yokoyama Y, Terada T, Shimizu K, Nishikawa K, Kozai D, Shimada A, Mizoguchi A, Fujiyoshi Y, Tani K. Development of a deep learning-based method to identify "good" regions of a cryo-electron microscopy grid. Biophys Rev 2020; 12:349-354. [PMID: 32162215 DOI: 10.1007/s12551-020-00669-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled protein structure determination at atomic resolutions. Cryo-EM specimens are prepared by rapidly freezing a protein solution on a metal grid coated with a holey carbon film; this results in the formation of an ice film on each hole. The thickness of the ice film is a critical factor for high-resolution structure determination; ice that is too thick degrades the contrast of the protein image while ice that is too thin excludes the protein from the hole or denatures the protein. Therefore, trained researchers need to manually select "good" regions with appropriate ice thicknesses for imaging. To reduce the time spent on such tasks, we developed a deep learning program consisting of a "detector" and a "classifier" to identify good regions from low-magnification EM images. In our method, the holes in a low-magnification EM image are detected via a detector, and the ice image on each hole is classified as either good or bad via a classifier. The detector detected more than 95% of the holes regardless of the type of samples. The classifier was trained for different types of samples because the appropriate ice thickness varies between sample types. The accuracies of the classifiers were 93.8% for a soluble protein sample (β-galactosidase) and 95.3% for a membrane protein sample (bovine heart cytochrome c oxidase). In addition, we found that a training data set containing ~ 2100 hole images from 300 low-magnification EM images was sufficient to obtain good accuracy, such as higher than 90%. We expect that the throughput of the cryo-EM data collection step will be greatly improved by using our method.
Collapse
Affiliation(s)
- Yuichi Yokoyama
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tohru Terada
- Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kentaro Shimizu
- Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kouki Nishikawa
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,CeSPIA Inc., 2-1-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Daisuke Kozai
- Cellular and Structural Physiology Institute, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Atsuhiro Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshinori Fujiyoshi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,CeSPIA Inc., 2-1-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Kazutoshi Tani
- Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
20
|
Takahashi Y, Akashi T, Sato A, Tanigaki T, Shinada H, Murakami Y. Automated acquisition of vast numbers of electron holograms with atomic-scale phase information. Microscopy (Oxf) 2020; 69:132-139. [DOI: 10.1093/jmicro/dfaa004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
An automated acquisition system for collecting a large number of electron holograms, to improve the statistical precision of phase analysis, was developed. A technique for shifting the electron beam in combination with stage movement allows data to be acquired over a wide area of a TEM-specimen grid. Undesired drift in the hologram position, which may occur during the hologram acquisition, can be corrected in real time by automated detection of the interference-fringe region in an image. To demonstrate the usefulness of the developed automated hologram acquisition system, gold nanoparticles dispersed on a carbon foil were observed with a 1.2-MV atomic resolution holography electron microscope. The system could obtain 1024 holograms, which provided phase maps for more than 500 nanoparticles with a lateral resolution of 0.14 nm, in just 1 h. The observation results revealed an anomalous increase in mean inner potential for a particle size smaller than 4 nm. The developed automated hologram acquisition system can be applied to improve the precision of phase measurement by averaging many phase images, as demonstrated by single particle analysis for biological entities. Moreover, the system makes it possible to study electrostatic potential of catalysts and other functional nanoparticles at atomic resolution.
Collapse
Affiliation(s)
- Yoshio Takahashi
- Research & Development Group, Hitachi, Ltd, Hatoyama Saitama 350-0395, Japan
| | - Tetsuya Akashi
- Research & Development Group, Hitachi, Ltd, Hatoyama Saitama 350-0395, Japan
| | - Atsuko Sato
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiaki Tanigaki
- Research & Development Group, Hitachi, Ltd, Hatoyama Saitama 350-0395, Japan
| | - Hiroyuki Shinada
- Research & Development Group, Hitachi, Ltd, Hatoyama Saitama 350-0395, Japan
| | - Yasukazu Murakami
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Non-uniformity of projection distributions attenuates resolution in Cryo-EM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:160-183. [PMID: 31525386 DOI: 10.1016/j.pbiomolbio.2019.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 11/23/2022]
Abstract
Virtually all single-particle cryo-EM experiments currently suffer from specimen adherence to the air-water interface, leading to a non-uniform distribution in the set of projection views. Whereas it is well accepted that uniform projection distributions can lead to high-resolution reconstructions, non-uniform (anisotropic) distributions can negatively affect map quality, elongate structural features, and in some cases, prohibit interpretation altogether. Although some consequences of non-uniform sampling have been described qualitatively, we know little about how sampling quantitatively affects resolution in cryo-EM. Here, we show how inhomogeneity in any projection distribution scheme attenuates the global Fourier Shell Correlation (FSC) in relation to the number of particles and a single geometrical parameter, which we term the sampling compensation factor (SCF). The reciprocal of the SCF is defined as the average over Fourier shells of the reciprocal of the per-particle sampling and normalized to unity for uniform distributions. The SCF therefore ranges from one to zero, with values close to the latter implying large regions of poorly sampled or completely missing data in Fourier space. Using two synthetic test cases, influenza hemagglutinin and human apoferritin, we demonstrate how any amount of sampling inhomogeneity always attenuates the FSC compared to a uniform distribution. We advocate quantitative evaluation of the SCF criterion to approximate the effect of non-uniform sampling on resolution within experimental single-particle cryo-EM reconstructions.
Collapse
|
22
|
Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Int J Mol Sci 2019; 20:ijms20174186. [PMID: 31461845 PMCID: PMC6747279 DOI: 10.3390/ijms20174186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Collapse
|
23
|
de la Cruz MJ, Martynowycz MW, Hattne J, Gonen T. MicroED data collection with SerialEM. Ultramicroscopy 2019; 201:77-80. [PMID: 30986656 PMCID: PMC6752703 DOI: 10.1016/j.ultramic.2019.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
The cryoEM method Microcrystal Electron Diffraction (MicroED) involves transmission electron microscope (TEM) and electron detector working in synchrony to collect electron diffraction data by continuous rotation. We previously reported several protein, peptide, and small molecule structures by MicroED using manual control of the microscope and detector to collect data. Here we present a procedure to automate this process using a script developed for the popular open-source software package SerialEM. With this approach, SerialEM coordinates stage rotation, microscope operation, and camera functions for automated continuous-rotation MicroED data collection. Depending on crystal and substrate geometry, more than 300 datasets can be collected overnight in this way, facilitating high-throughput MicroED data collection for large-scale data analyses.
Collapse
Affiliation(s)
- M Jason de la Cruz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Michael W Martynowycz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Howard Hughes Medical Institute and Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johan Hattne
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Howard Hughes Medical Institute and Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Howard Hughes Medical Institute and Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Gan L, Ng CT, Chen C, Cai S. A collection of yeast cellular electron cryotomography data. Gigascience 2019; 8:giz077. [PMID: 31247098 PMCID: PMC6596884 DOI: 10.1093/gigascience/giz077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cells are powered by a large set of macromolecular complexes, which work together in a crowded environment. The in situ mechanisms of these complexes are unclear because their 3D distribution, organization, and interactions are largely unknown. Electron cryotomography (cryo-ET) can address these knowledge gaps because it produces cryotomograms-3D images that reveal biological structure at ∼4-nm resolution. Cryo-ET uses no fixation, dehydration, staining, or plastic embedment, so cellular features are visualized in a life-like, frozen-hydrated state. To study chromatin and mitotic machinery in situ, we subjected yeast cells to genetic and chemical perturbations, cryosectioned them, and then imaged the cells by cryo-ET. FINDINGS Here we share >1,000 cryo-ET raw datasets of cryosectioned budding yeast Saccharomyces cerevisiaecollected as part of previously published studies. These data will be valuable to cell biologists who are interested in the nanoscale organization of yeasts and of eukaryotic cells in general. All the unpublished tilt series and a subset of corresponding cryotomograms have been deposited in the EMPIAR resource for the community to use freely. To improve tilt series discoverability, we have uploaded metadata and preliminary notes to publicly accessible Google Sheets, EMPIAR, and GigaDB. CONCLUSIONS Cellular cryo-ET data can be mined to obtain new cell-biological, structural, and 3D statistical insights in situ. These data contain structures not visible in traditional electron-microscopy data. Template matching and subtomogram averaging of known macromolecular complexes can reveal their 3D distributions and low-resolution structures. Furthermore, these data can serve as testbeds for high-throughput image-analysis pipelines, as training sets for feature-recognition software, for feasibility analysis when planning new structural-cell-biology projects, and as practice data for students.
Collapse
Affiliation(s)
- Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
25
|
Schorb M, Haberbosch I, Hagen WJH, Schwab Y, Mastronarde DN. Software tools for automated transmission electron microscopy. Nat Methods 2019; 16:471-477. [PMID: 31086343 PMCID: PMC7000238 DOI: 10.1038/s41592-019-0396-9] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022]
Abstract
The demand for high-throughput data collection in electron microscopy is increasing for applications in structural and cellular biology. Here we present a combination of software tools that enable automated acquisition guided by image analysis for a variety of transmission electron microscopy acquisition schemes. SerialEM controls microscopes and detectors and can trigger automated tasks at multiple positions with high flexibility. Py-EM interfaces with SerialEM to enact specimen-specific image-analysis pipelines that enable feedback microscopy. As example applications, we demonstrate dose reduction in cryo-electron microscopy experiments, fully automated acquisition of every cell in a plastic section and automated targeting on serial sections for 3D volume imaging across multiple grids.
Collapse
Affiliation(s)
- Martin Schorb
- Electron Microscopy Core Facility, EMBL, Heidelberg, Germany.
| | - Isabella Haberbosch
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg Research Center for Molecular Medicine, EMBL, Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit and Cryo-Electron Microscopy Service Platform, EMBL, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, EMBL, Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - David N Mastronarde
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
26
|
Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 2019; 570:468-473. [PMID: 31142836 PMCID: PMC6657810 DOI: 10.1038/s41586-019-1250-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
Abstract
Broadly neutralizing monoclonal antibodies protect against HIV-1
infection in animal models, suggesting that a vaccine that elicits them in
humans would be effective. However, it has not yet been possible to elicit
adequate serologic responses by vaccination. To activate B-cells expressing
precursors of broadly neutralizing antibodies within polyclonal repertoires, we
developed a new immunogen, RC1, which facilitates recognition of the V3-glycan
patch on HIV-1 envelope while concealing non-conserved immunodominant regions by
addition of glycans and/or multimerization on virus-like particles. Mouse,
rabbit and rhesus macaque immunizations with RC1 elicited serologic responses
targeting the V3-glycan patch. Antibody cloning and cryo-electron microscopy
structures of antibody-envelope complexes confirmed that RC1 immunization
expands clones of B-cells carrying anti-V3-glycan patch antibodies that resemble
precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable
priming immunogen for sequential vaccination strategies to elicit V3-glycan
antibodies in the context of polyclonal repertoires.
Collapse
|
27
|
Crocin induces anti-ischemia in middle cerebral artery occlusion rats and inhibits autophagy by regulating the mammalian target of rapamycin. Eur J Pharmacol 2019; 857:172424. [PMID: 31150648 DOI: 10.1016/j.ejphar.2019.172424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023]
Abstract
Crocin, an active compound found in Gardenia jasminoides Ellis, has been shown to possess neuron-protective properties, but its potential mechanisms of action still remain poorly understood. In this study, the anti-ischemic effect and underlying mechanism of action of crocin were investigated in male rats with right middle cerebral artery occlusion/reperfusion. Computed tomography and magnetic resonance imaging were used to evaluate the area of infarction 24 h after reperfusion. Neurological scores were employed to evaluate nerve injury. Direct 2,3,5-triphenyltetrazolium chloride staining was used to calculate the infarct ratio 120 h after reperfusion. Finally, HT22 cells and Western blot were used to study the underlying mechanisms. Crocin showed a decreased infarct volume and neurological score in vivo, while the expression of LC3-II/I and AMP-activated protein kinase was remarkably down-regulated with increased levels of p62 and mammalian target of rapamycin (mTOR) expression. However, rapamycin significantly inhibited mTOR, which can impact the anti-ischemic effect of crocin in vitro. These results suggest that crocin may elicit an anti-ischemic effect probably through the mTOR pathway.
Collapse
|
28
|
Abstract
Cryogenic electron microscopy (cryo-EM) enables structure determination of macromolecular objects and their assemblies. Although the techniques have been developing for nearly four decades, they have gained widespread attention in recent years due to technical advances on numerous fronts, enabling traditional microscopists to break into the world of molecular structural biology. Many samples can now be routinely analyzed at near-atomic resolution using standard imaging and image analysis techniques. However, numerous challenges to conventional workflows remain, and continued technical advances open entirely novel opportunities for discovery and exploration. Here, I will review some of the main methods surrounding cryo-EM with an emphasis specifically on single-particle analysis, and I will highlight challenges, open questions, and opportunities for methodology development.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- From the Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
29
|
Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, Strynadka NCJ. Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin. Nat Commun 2018; 9:3840. [PMID: 30242280 PMCID: PMC6155069 DOI: 10.1038/s41467-018-06298-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 11/09/2022] Open
Abstract
The bacterial type III secretion system, or injectisome, is a syringe shaped nanomachine essential for the virulence of many disease causing Gram-negative bacteria. At the core of the injectisome structure is the needle complex, a continuous channel formed by the highly oligomerized inner and outer membrane hollow rings and a polymerized helical needle filament which spans through and projects into the infected host cell. Here we present the near-atomic resolution structure of a needle complex from the prototypical Salmonella Typhimurium SPI-1 type III secretion system, with local masking protocols allowing for model building and refinement of the major membrane spanning components of the needle complex base in addition to an isolated needle filament. This work provides significant insight into injectisome structure and assembly and importantly captures the molecular basis for substrate induced gating in the giant outer membrane secretin portal family.
Collapse
Affiliation(s)
- J Hu
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - L J Worrall
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
- HRMEM facility, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - C Hong
- CryoEM Shared Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - M Vuckovic
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - C E Atkinson
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
- HRMEM facility, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - N Caveney
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Z Yu
- CryoEM Shared Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - N C J Strynadka
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada.
| |
Collapse
|
30
|
Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD, Kim LY, Potter CS, Carragher B. High resolution single particle cryo-electron microscopy using beam-image shift. J Struct Biol 2018; 204:270-275. [PMID: 30055234 DOI: 10.1016/j.jsb.2018.07.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 11/19/2022]
Abstract
Automated data acquisition is used widely for single-particle reconstruction of three-dimensional (3D) volumes of biological complexes preserved in vitreous ice and imaged in a transmission electron microscope. Automation has become integral to this method because of the very large number of particle images required in order to overcome the typically low signal-to-noise ratio of these images. For optimal efficiency, automated data acquisition software packages typically employ some beam-image shift targeting as this method is both fast and accurate (±0.1 µm). In contrast, using only stage movement, relocation to a targeted area under low-dose conditions can only be achieved in combination with multiple iterations or long relaxation times, both reducing efficiency. Nevertheless it is well known that applying beam-image shift induces beam-tilt and with it a potential structure phase error with a phase error π/4 the highest acceptable value. This theory has been used as an argument against beam-image shift for high resolution data collection. Nevertheless, in practice many small beam-image shift datasets have resulted in 3D reconstructions beyond the π/4 phase error limit. To address this apparent contradiction, we performed cryo-EM single-particle reconstructions on a T20S proteasome sample using applied beam-image shifts corresponding to beam tilts from 0 to 10 mrad. To evaluate the results we compared the FSC values, and examined the water density peaks in the 3D map. We conclude that the phase error does not limit the validity of the 3D reconstruction from single-particle averaging beyond the π/4 resolution limit.
Collapse
Affiliation(s)
- Anchi Cheng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY 10027, USA.
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lambertus Alink
- Thermo Fisher Scientific, Materials & Structural Analysis, Hillsboro, OR 97124, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY 10027, USA
| | - Kelsey D Jordan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Laura Y Kim
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY 10027, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
31
|
Huang Z, Huang X, Wang Q, Jiang R, Sun G, Xu Y, Wu Q. Extract of Euryale ferox Salisb
exerts antidepressant effects and regulates autophagy through the adenosine monophosphate-activated protein kinase-UNC-51-like kinase 1 pathway. IUBMB Life 2018; 70:300-309. [DOI: 10.1002/iub.1731] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Zhiheng Huang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Xiaoyan Huang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Qian Wang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Ruizhi Jiang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Guangda Sun
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Yiming Xu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Qinan Wu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| |
Collapse
|
32
|
Forsberg BO, Aibara S, Kimanius D, Paul B, Lindahl E, Amunts A. Cryo-EM reconstruction of the chlororibosome to 3.2 Å resolution within 24 h. IUCRJ 2017; 4:723-727. [PMID: 29123673 PMCID: PMC5668856 DOI: 10.1107/s205225251701226x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The introduction of direct detectors and the automation of data collection in cryo-EM have led to a surge in data, creating new opportunities for advancing computational processing. In particular, on-the-fly workflows that connect data collection with three-dimensional reconstruction would be valuable for more efficient use of cryo-EM and its application as a sample-screening tool. Here, accelerated on-the-fly analysis is reported with optimized organization of the data-processing tools, image acquisition and particle alignment that make it possible to reconstruct the three-dimensional density of the 70S chlororibosome to 3.2 Å resolution within 24 h of tissue harvesting. It is also shown that it is possible to achieve even faster processing at comparable quality by imposing some limits to data use, as illustrated by a 3.7 Å resolution map that was obtained in only 80 min on a desktop computer. These on-the-fly methods can be employed as an assessment of data quality from small samples and extended to high-throughput approaches.
Collapse
Affiliation(s)
- Björn O. Forsberg
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Dari Kimanius
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Bijoya Paul
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
33
|
Baldwin PR, Tan YZ, Eng ET, Rice WJ, Noble AJ, Negro CJ, Cianfrocco MA, Potter CS, Carragher B. Big data in cryoEM: automated collection, processing and accessibility of EM data. Curr Opin Microbiol 2017; 43:1-8. [PMID: 29100109 DOI: 10.1016/j.mib.2017.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
Abstract
The scope and complexity of cryogenic electron microscopy (cryoEM) data has greatly increased, and will continue to do so, due to recent and ongoing technical breakthroughs that have led to much improved resolutions for macromolecular structures solved using this method. This big data explosion includes single particle data as well as tomographic tilt series, both generally acquired as direct detector movies of ∼10-100 frames per image or per tilt-series. We provide a brief survey of the developments leading to the current status, and describe existing cryoEM pipelines, with an emphasis on the scope of data acquisition, methods for automation, and use of cloud storage and computing.
Collapse
Affiliation(s)
- Philip R Baldwin
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Yong Zi Tan
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - William J Rice
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Alex J Noble
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Carl J Negro
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Michael A Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clinton S Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
34
|
Merino F, Raunser S. Kryo-Elektronenmikroskopie als Methode für die strukturbasierte Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe Merino
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| | - Stefan Raunser
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| |
Collapse
|
35
|
Merino F, Raunser S. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Angew Chem Int Ed Engl 2017; 56:2846-2860. [PMID: 27860084 DOI: 10.1002/anie.201608432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/15/2022]
Abstract
For decades, X-ray crystallography and NMR have been the most important techniques for studying the atomic structure of macromolecules. However, as a result of size, instability, low yield, and other factors, many macromolecules are difficult to crystallize or unsuitable for NMR studies. Electron cryo-microscopy (cryo-EM) does not depend on crystals and has therefore been the method of choice for many macromolecular complexes that cannot be crystallized, but atomic resolution has mostly been beyond its reach. A new generation of detectors that are capable of sensing directly the incident electrons has recently revolutionized the field, with structures of macromolecules now routinely being solved to near-atomic resolution. In this review, we summarize some of the most recent examples of high-resolution cryo-EM structures. We put particular emphasis on proteins with pharmacological relevance that have traditionally been inaccessible to crystallography. Furthermore, we discuss examples where interactions with small molecules have been fully characterized at atomic resolution. Finally, we stress the current limits of cryo-EM, and methodological issues related to its usage as a tool for drug development.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| |
Collapse
|
36
|
Orlov I, Myasnikov AG, Andronov L, Natchiar SK, Khatter H, Beinsteiner B, Ménétret JF, Hazemann I, Mohideen K, Tazibt K, Tabaroni R, Kratzat H, Djabeur N, Bruxelles T, Raivoniaina F, Pompeo LD, Torchy M, Billas I, Urzhumtsev A, Klaholz BP. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2016; 109:81-93. [PMID: 27730650 DOI: 10.1111/boc.201600042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.
Collapse
Affiliation(s)
- Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Kareem Mohideen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Karima Tazibt
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Rachel Tabaroni
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Tatiana Bruxelles
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Finaritra Raivoniaina
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Lorenza di Pompeo
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Morgan Torchy
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
Wolff G, Hagen C, Grünewald K, Kaufmann R. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 2016; 108:245-58. [PMID: 27225383 PMCID: PMC5524168 DOI: 10.1111/boc.201600008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence-based information for guiding cryo-EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ∼400 nm) and cryo-EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities.
Collapse
Affiliation(s)
- Georg Wolff
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christoph Hagen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|