1
|
Adeniji YA, Bomberger R, Goodall SR, Hristov AN, Stefenoni HA, Harvatine KJ. Effect of increasing dietary fat by feeding 15% whole cottonseed on milk production, total-tract digestibility, and methane emission in dairy cows. J Dairy Sci 2025; 108:2393-2406. [PMID: 40032408 DOI: 10.3168/jds.2024-25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/09/2024] [Indexed: 03/05/2025]
Abstract
Whole cottonseed (WCS) is fed as a source of fat, protein, and fiber. Cottonseed is high in unsaturated fatty acids (FA) but is considered lower risk for biohydrogenation-induced milk fat depression because it is slowly released in the rumen. Unsaturated FA have been reported to decrease methane emissions in some experiments, but the effect of FA source is unclear. The objective of the current experiment was to investigate the effect of FA from WCS on milk and methane production and total-tract nutrient digestibility. Sixteen multiparous cows were arranged in a crossover design with 21-d periods. Treatments were 15% WCS substituted for a mixture of cottonseed hulls and soybean meal. Cottonseed had no effect on DMI and milk yield (MY) but increased milk fat concentration (0.2 percentage units) and yield (110 g/d). Cottonseed also decreased the concentration of FA <16 C and 16 C in milk fat and increased FA >16 C and trans-10 18:1 and trans-11 18:1. Increasing dietary fat had no effect on the efficiency of transfer of 18 C FA to milk. There was no effect on milk protein concentration and yield. Whole cottonseed decreased apparent total-tract digestibility of OM and DM due to a decline in NDF digestibility, but less than 3% of seeds consumed were recovered intact in the feces. Whole cottonseed increased digestibility of 16 C FA, but the digestibility of total and 18 C FA were not changed. The production (g/d), yield (g/kg of DMI), and intensity (g/kg of MY or ECM) of H2, CH4, and CO2 were not changed with WCS. Plasma total gossypol and the positive and negative isomers increased with WCS but were below toxic levels. In conclusion, increasing dietary UFA by feeding 15% WCS increased milk fat yield through an increased supply of preformed FA and did not affect methane production under these dietary conditions.
Collapse
Affiliation(s)
- Y A Adeniji
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - R Bomberger
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - S R Goodall
- S. Richard Goodall Consulting, Erie, CO 80516
| | - A N Hristov
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - H A Stefenoni
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
2
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
3
|
Plata-Pérez G, Angeles-Hernandez JC, Morales-Almaráz E, Del Razo-Rodríguez OE, López-González F, Peláez-Acero A, Campos-Montiel RG, Vargas-Bello-Pérez E, Vieyra-Alberto R. Oilseed Supplementation Improves Milk Composition and Fatty Acid Profile of Cow Milk: A Meta-Analysis and Meta-Regression. Animals (Basel) 2022; 12:ani12131642. [PMID: 35804541 PMCID: PMC9265076 DOI: 10.3390/ani12131642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Oilseed supplementation is a strategy to improve milk production and milk composition in dairy cows; however, the response to this approach is inconsistent. Thus, the aim of this study was to evaluate the effect of oilseed supplementation on milk production and milk composition in dairy cows via a meta-analysis and meta-regression. A comprehensive and structured search was performed using the following electronic databases: Google Scholar, Primo-UAEH and PubMed. The response variables were: milk yield (MY), atherogenic index (AI), Σ omega-3 PUFA, Σ omega-6 PUFA, fat, protein, lactose, linoleic acid (LA), linolenic acid (LNA), oleic acid (OA), vaccenic acid (VA), conjugated linoleic acid (CLA), unsaturated fatty acid (UFA) and saturated fatty acid (SFA) contents. The explanatory variables were breed, lactation stage (first, second, and third), oilseed type (linseed, soybean, rapeseed, cottonseed, and sunflower), way (whole, extruded, ground, and roasted), dietary inclusion level, difference of the LA, LNA, OA, forage and NDF of supplemented and control rations, washout period and experimental design. A meta-analysis was performed with the “meta” package of the statistical program R. A meta-regression analysis was applied to explore the sources of heretogeneity. The inclusion of oilseeds in dairy cow rations had a positive effect on CLA (+0.27 g 100 g−1 fatty acids (FA); p < 0.0001), VA (+1.03 g 100 g−1 FA; p < 0.0001), OA (+3.44 g 100 g−1 FA; p < 0.0001), LNA (+0.28 g 100 g−1 FA; p < 0.0001) and UFA (+8.32 g 100 g−1 FA; p < 0.0001), and negative effects on AI (−1.01; p < 0.0001), SFA (−6.51; p < 0.0001), fat milk (−0.11%; p < 0.001) and protein milk (−0.04%; p < 0.007). Fat content was affected by animal breed, lactation stage, type and processing of oilseed and dietary NDF and LA contents. CLA, LA, OA and UFA, desirable FA milk components, were affected by type, processing, and the intake of oilseed; additionally, the concentrations of CLA and VA are affected by washout and design. Oilseed supplementation in dairy cow rations has a positive effect on desirable milk components for human consumption. However, animal response to oilseed supplementation depends on explanatory variables related to experimental design, animal characteristics and the type of oilseed.
Collapse
Affiliation(s)
- Genaro Plata-Pérez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Tulancingo de Bravo 43600, Mexico; (G.P.-P.); (O.E.D.R.-R.); (A.P.-A.); (R.G.C.-M.)
| | - Juan C. Angeles-Hernandez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Tulancingo de Bravo 43600, Mexico; (G.P.-P.); (O.E.D.R.-R.); (A.P.-A.); (R.G.C.-M.)
- Correspondence: (J.C.A.-H.); (R.V.-A.)
| | - Ernesto Morales-Almaráz
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote, Toluca 50000, Mexico;
| | - Oscar E. Del Razo-Rodríguez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Tulancingo de Bravo 43600, Mexico; (G.P.-P.); (O.E.D.R.-R.); (A.P.-A.); (R.G.C.-M.)
| | - Felipe López-González
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Instituto Literario No. 100 Ote, Toluca 50000, Mexico;
| | - Armando Peláez-Acero
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Tulancingo de Bravo 43600, Mexico; (G.P.-P.); (O.E.D.R.-R.); (A.P.-A.); (R.G.C.-M.)
| | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Tulancingo de Bravo 43600, Mexico; (G.P.-P.); (O.E.D.R.-R.); (A.P.-A.); (R.G.C.-M.)
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK;
| | - Rodolfo Vieyra-Alberto
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Tulancingo de Bravo 43600, Mexico; (G.P.-P.); (O.E.D.R.-R.); (A.P.-A.); (R.G.C.-M.)
- Correspondence: (J.C.A.-H.); (R.V.-A.)
| |
Collapse
|
4
|
Wang Y, Chen T, Gan Z, Li H, Li Y, Zhang Y, Zhao X. Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Res Vet Sci 2021; 139:51-58. [PMID: 34252702 DOI: 10.1016/j.rvsc.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Endometritis is among the most common bovine uterine diseases; as a cause of infertility, it affects the progress of the cattle industry. In this study, we used a novel technique based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for comparative metabolomics of uterine secretions in healthy cows and cows with endometritis, classified based on clinical symptoms. Univariate and multivariate statistical analyses revealed significant differences between the two groups (n = 12). Compared with healthy uterine secretion samples, in the clinical endometritis samples, coumaric acid, benzoic acid, and equol were downregulated. However, l-phenylalanine, glutamine, succinic acid, linoleate, arachidonic acid, and other metabolites were upregulated, revealing variations between healthy cows and cows with endometritis (p < 0.05). This metabolomic approach may provide an in-depth understanding of endometritis pathobiology, along with a theoretical framework for the diagnosis and treatment of this bovine disease.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ze Gan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haijiang Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Abstract
Conjugated linoleic acids (CLA) are distinctive polyunsaturated fatty acids. They are present in food produced by ruminant animals and they are accumulated in seeds of certain plants. These naturally occurring substances have demonstrated to have anti-carcinogenic activity. Their potential effect to inhibit cancer has been shown in vivo and in vitro studies. In this review, we present the multiple effects of CLA isomers on cancer development such as anti-tumor efficiency, anti-mutagenic and anti-oxidant activity. Although the majority of the studies in vivo and in vitro summarized in this review have demonstrated beneficial effects of CLA on the proliferation and apoptosis of tumor cells, further experimental work is needed to estimate the true value of CLA as a real anti-cancer agent.
Collapse
|
6
|
van Vliet S, Provenza FD, Kronberg SL. Health-Promoting Phytonutrients Are Higher in Grass-Fed Meat and Milk. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.555426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While commission reports and nutritional guidelines raise concerns about the effects of consuming red meat on human health, the impacts of how livestock are raised and finished on consumer health are generally ignored. Meat and milk, irrespective of rearing practices, provide many essential nutrients including bioavailable protein, zinc, iron, selenium, calcium, and/or B12. Emerging data indicate that when livestock are eating a diverse array of plants on pasture, additional health-promoting phytonutrients—terpenoids, phenols, carotenoids, and anti-oxidants—become concentrated in their meat and milk. Several phytochemicals found in grass-fed meat and milk are in quantities comparable to those found in plant foods known to have anti-inflammatory, anti-carcinogenic, and cardioprotective effects. As meat and milk are often not considered as sources of phytochemicals, their presence has remained largely underappreciated in discussions of nutritional differences between feedlot-fed (grain-fed) and pasture-finished (grass-fed) meat and dairy, which have predominantly centered around the ω-3 fatty acids and conjugated linoleic acid. Grazing livestock on plant-species diverse pastures concentrates a wider variety and higher amounts of phytochemicals in meat and milk compared to grazing monoculture pastures, while phytochemicals are further reduced or absent in meat and milk of grain-fed animals. The co-evolution of plants and herbivores has led to plants/crops being more productive when grazed in accordance with agroecological principles. The increased phytochemical richness of productive vegetation has potential to improve the health of animals and upscale these nutrients to also benefit human health. Several studies have found increased anti-oxidant activity in meat and milk of grass-fed vs. grain-fed animals. Only a handful of studies have investigated the effects of grass-fed meat and dairy consumption on human health and show potential for anti-inflammatory effects and improved lipoprotein profiles. However, current knowledge does not allow for direct linking of livestock production practices to human health. Future research should systematically assess linkages between the phytochemical richness of livestock diets, the nutrient density of animal foods, and subsequent effects on human metabolic health. This is important given current societal concerns about red meat consumption and human health. Addressing this research gap will require greater collaborative efforts from the fields of agriculture and medicine.
Collapse
|
7
|
Stanford K, Sultana H, He M, Dugan M, McAllister T. Effects of dietary flaxseed and vitamin E on fermentation, nutrient disappearance, fatty acid biohydrogenation, and microbial protein synthesis using a simulated rumen (Rusitec). CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two simulated rumens (Rusitecs) were used to assess the effects of flaxseed (FS) and (or) vitamin E (VE) on rumen fermentation, fatty acid (FA) biohydrogenation, and microbial protein synthesis. Ground FS replaced 0% or 15% of barley grain, along with VE at 0 or 1000 IU d−1 in a 2 × 2 factorial experiment. Flaxseed lowered neutral detergent fiber (P = 0.001) and acid detergent fiber (P = 0.01) and increased (P = 0.001) nitrogen (N) disappearance. Flaxseed also increased (P = 0.01) total volatile FA and decreased (P = 0.001) acetate production. When both FS and VE were included, the acetate:propionate ratio decreased (P = 0.04). Biohydrogenation of FA was not influenced by VE, but total FA and C18:0 in effluent were increased (P = 0.001) and C16:0 decreased (P = 0.001) by FS. With VE, total microbial N (MN) was increased (P = 0.001). In the concentrate, production of MN in feed-particle-bound bacteria was increased (P = 0.001) by VE. Vitamin E did not alter FA biohydrogenation but did promote MN production. The stable and relatively high pH in the Rusitec may have prevented the typical shift from C18:1 trans-11 to C18:1 trans-10 with concentrate diets. Future studies simulating subclinical acidosis in the Rusitec may illuminate ruminal mode(s) of action of VE on FA biohydrogenation.
Collapse
Affiliation(s)
- K. Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - H. Sultana
- Department of Animal Science, University of Florida, Gainesville, FL 32611, USA
| | - M.L. He
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - M. Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1V7, Canada
| | - T.A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
8
|
Vahmani P, Ponnampalam EN, Kraft J, Mapiye C, Bermingham EN, Watkins PJ, Proctor SD, Dugan MER. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci 2020; 165:108114. [PMID: 32272342 DOI: 10.1016/j.meatsci.2020.108114] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
Ruminant meat (RM) is an excellent source of high-quality protein, B vitamins and trace minerals and plays an important role in global food and nutrition security. However, nutritional guidelines commonly recommend reduced intake of RM mainly because of its high saturated fatty acid (SFA) content, and more recently because of its perceived negative environmental impacts. RM is, however, rich in heart healthy cis-monounsaturated fatty acids and can be an important source of long-chain omega-3 (n-3) fatty acids in populations with low fish consumption. In addition, RM is a source of bioactive phospholipids, as well as rumen-derived bioactive fatty acids including branched-chain, vaccenic and rumenic acids, which have been associated with several health benefits. However, the role of bioactive RM lipids in maintaining and improving consumers' health have been generally ignored in nutritional guidelines. The present review examines RM lipids in relation to human health, and evaluates the effectiveness of different feeding strategies and possibilities for future profile and content improvement.
Collapse
Affiliation(s)
- Payam Vahmani
- Department of Animal Science, University of California, 2201 Meyer Hall, Davis, California 95616, United States.
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia.
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, and Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, The University of Vermont, Burlington, VT 05405, USA.
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | - Peter J Watkins
- Commonwealth Scientific Industry Research Organisation, 671 Sneydes Road, Werribees, VIC 3030, Australia.
| | - Spencer D Proctor
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta T4L 1W1, Canada.
| |
Collapse
|
9
|
Zeng Y, Liu P, Yang X, Li H, Li H, Guo Y, Meng X, Liu X. The dietary c9,t11-conjugated linoleic acid enriched from butter reduces breast cancer progression in vivo. J Food Biochem 2020; 44:e13163. [PMID: 32030801 DOI: 10.1111/jfbc.13163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
The c9,t11-conjugated linoleic acid (CLA), which is the minor polyunsaturated fatty acid (PUFA) naturally present in butter, has gained attention due to its important preventive effect against breast cancer in vitro. In this paper, the enrichment of c9,t11-CLA from butter was optimized and the preventive effect of dietary c9,t11-CLA against breast cancer in vivo was investigated. Results showed that the concentration of c9,t11-CLA increased more than 10 times via a one-step urea complexation. Furthermore, the dietary c9,t11-CLA showed obvious preventive effect against breast cancer in decreasing the tumor weight and volume, and reducing the tumor incidence up to 50%. In addition, the expression of progesterone receptor and Ki-67 decreased significantly with the treatment of c9,t11-CLA. In conclusion, the dietary c9,t11-CLA enriched from butter showed a preventive effect against breast cancer in vivo via the inhibition of the hormonal receptor and cell proliferation. PRACTICAL APPLICATIONS: This paper provided new insight into the preparation of specific c9,t11-CLA isomer. It can be enriched from butter in large-scale with low-cost by urea complexation. Meanwhile, the enriched dietary c9,t11-CLA can be further processed into cancer prevention functional foods.
Collapse
Affiliation(s)
- Yanhong Zeng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ping Liu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaohu Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Huimei Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yuyun Guo
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaohua Liu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Antonio Gagliostro G, Elisabet Antonacci L, Daiana Pérez C, Rossetti L, Carabajal A. Improving Concentration of Healthy Fatty Acids in Milk, Cheese and Yogurt by Adding a Blend of Soybean and Fish Oils to the Ration of Confined Dairy Cows. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ojas.2020.101010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Khan IT, Nadeem M, Imran M, Asif M, Khan MK, Din A, Ullah R. Triglyceride, fatty acid profile and antioxidant characteristics of low melting point fractions of Buffalo Milk fat. Lipids Health Dis 2019; 18:59. [PMID: 30851732 PMCID: PMC6408781 DOI: 10.1186/s12944-019-0995-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/19/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Among the dietary lipids, milk fat is most complicated as it contains more than one hundred types of fatty acids and several triglycerides. Huge versatility in triglyceride and fatty composition makes it possible to convert milk fat into various fractions on the basis of melting characteristics. Functional properties of milk fat can be increased by converting it into different fractions. After cow milk, buffalo milk is the second largest source of milk and chemical characteristics of buffalo milk fat has been studied in a limited fashion. The main mandate was determination of triglyceride, fatty acid profile and antioxidant characteristics of low melting point fractions of buffalo milk fat for increased industrial applications. METHODS Buffalo milk fat (cream) was fractionated at three different temperatures i.e. 25, 15 and 10 °C by dry fractionation technique and packaged in 250 ml amber glass bottles and stored at ambient temperature for 90 days. The fraction of milk fat harvested at 25, 15 and 10 °C were declared as LMPF-25, LMPF-15 and LMPF-10. Unmodified milk fat was used as control (PBMF). Low melting point fractions were analyzed for triglyceride composition, fatty acid profile, total phenolic contents, DPPH free radicals scavenging activity, reducing power, free fatty acids, peroxide value, iodine value and conjugated dienes at 0, 45 and 90 days of storage. RESULTS In LMPF-10, concentrations of C36, C38, C40, and C42 were 2.58, 3.68, 6.49 and 3.85% lower than PBMF. In LMPF-25, concentrations of C44, C46, C48, C50, C52 and C54 were 0.71, 1.15, 2.53, 4.8, 0.39 and 2.39% higher than PBMF. In LMPF-15, concentrations of C44, C46, C48, C50, C52 and C54 were 2.45, 4.2, 3.47, 5.92, 2.38 and 3.16% higher than PBMF. In LMPF-10, concentrations of C44, C46, C48, C50, C52 and C54 were 2.8, 5.6, 5.37, 7.81, 3.81 and 4.45% higher than PBMF. LMPF-25, LMPF-15 and LMPF-10 had higher concentration of unsaturated fatty acids as compared PBMF. Total phenolic contents of buffalo milk fat and its fractions were in the order of LMPF-10 > LMPF-15, LMPF-25 > PBMF. Storage period of 45 days had a non-significant effect on total flavonoid content. 2, 2-Diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH) free radical scavenging activity of LMP-25, LMPF-15 and LMPF-10 were 4.8, 13.11 and 25.79% higher than PBMF. Reducing power of PBMF, LMPF-25, LMPF-15 and LMPF-10 were 22.81, 28.47, 37.51 and 48.14, respectively. Estimation of free fatty acids after the 90 days of storage duration, no significant difference was found in content of free fatty acids in unmodified milk fat and low melting point fractions. Testing of peroxide value in 90 days old samples showed that peroxide value of PBMF, LMPF-25, LMPF-15 and LMPF-10 was 0.54, 0.98, 1.46 and 2.22 (MeqO2/kg), respectively. Storage period up to 45 days had a non-significant effect on anisidine value, iodine value and conjugated dienes. CONCLUSION Low melting point fractions of buffalo milk fat had higher concentration of unsaturated fatty acids and more antioxidant capacity than unmodified milk fat with reasonable storage stability.
Collapse
Affiliation(s)
- Imran Taj Khan
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Muhammad Nadeem
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.
| | - Muhammad Imran
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Asif
- Planning and Development Division, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Muhammad Kamran Khan
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Ahmad Din
- Postharvest Research Center, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Rahman Ullah
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
12
|
Berwal R, Vasudeva N, Sharma S, Das S. Investigation on Biomolecules in Ethanol Extract of Fruits of Prosopis Juliflora (Sw.) DC. Using GC-MS. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/10496475.2019.1579148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ravi Berwal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| | - Sneha Das
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, India
| |
Collapse
|
13
|
Vahmani P, Rolland DC, Gzyl KE, Baines DDS, Dugan MER. The Growth-Inhibiting Effects of Beef Fatty Acids on MCF-7 Cells Are Influenced Mostly by the Depot Location and Inconsistently by the Biohydrogenation Intermediate Content. Lipids 2018; 53:699-708. [PMID: 30255942 DOI: 10.1002/lipd.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022]
Abstract
Biohydrogenation intermediates (BHI) including conjugated linoleic acid (CLA) isomers are formed during ruminal biohydrogenation of polyunsaturated fatty acids (PUFA) in ruminants. Although many studies have examined the anticarcinogenic effects of CLA, few studies have reported the anticarcinogenic properties of BHI in their natural form found in dairy and beef fats. The present study compared the growth-inhibitory effects of fatty acids from beef perirenal fat (PRF) or subcutaneous fat (SCF) with low or high levels of BHI in MCF-7 human breast cancer cells. Cells were exposed for 72 h to media containing increasing doses (50 to 400 μM) of different beef fat treatments. Fatty-acid analysis showed that BHI were readily incorporated into cell phospholipids (PL) in a treatment-dependent manner, but higher BHI in PL did not consistently inhibit growth. Culturing with low-BHI PRF or high-BHI PRF did not lead to growth inhibition, but low-BHI SCF inhibited growth, and inhibition was further increased by high-BHI SCF. Other classes of fatty acids may, therefore, be interacting with BHI resulting in differential effects on growth inhibition in human breast cancer cells.
Collapse
Affiliation(s)
- Payam Vahmani
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - David C Rolland
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Katherine E Gzyl
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Danica D S Baines
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave S., Lethbridge, Alberta, T1J 4B1, Canada
| | - Michael E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta, T4L 1W1, Canada
| |
Collapse
|
14
|
Affiliation(s)
- Aneta A. Koronowicz
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka, Krakow, Poland
| | - Paula Banks
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka, Krakow, Poland
| |
Collapse
|
15
|
Shokryzadan P, Rajion MA, Meng GY, Boo LJ, Ebrahimi M, Royan M, Sahebi M, Azizi P, Abiri R, Jahromi MF. Conjugated linoleic acid: A potent fatty acid linked to animal and human health. Crit Rev Food Sci Nutr 2018; 57:2737-2748. [PMID: 26252346 DOI: 10.1080/10408398.2015.1060190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid (C18:2 n-6), which is mostly found in the ruminant meat and dairy products. The CLA is known to have many potential health benefits, and considered a potent powerful fatty acid, which is linked to animal and human health. The present work aims to discuss the source and production, mechanism of action, and effects of CLA on humans, poultry, and ruminants by reviewing the recent studies carried out on CLA. Despite most of the recent studies indicating beneficial effects of CLA on improving body weight control parameters, its effects on reducing risk factors of cardiovascular diseases (CVD), inflammation, blood glucose, and insulin are still controversial, and need to be further studied in different hosts.
Collapse
Affiliation(s)
- Parisa Shokryzadan
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia.,b Agriculture Biotechnology Research Institute of Iran (ABRII) , East and North-East Branch , Mashhad , Iran
| | - Mohamed Ali Rajion
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Goh Yong Meng
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia.,c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Liang Juan Boo
- c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Mahdi Ebrahimi
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Maryam Royan
- d Agriculture Biotechnology Research Institute of Iran (ABRII) , North Branch , Rasht , Iran
| | - Mahbod Sahebi
- c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Parisa Azizi
- c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Rambod Abiri
- e Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Mohammad Faseleh Jahromi
- b Agriculture Biotechnology Research Institute of Iran (ABRII) , East and North-East Branch , Mashhad , Iran.,c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| |
Collapse
|
16
|
Fat storage in Drosophila suzukii is influenced by different dietary sugars in relation to their palatability. PLoS One 2017; 12:e0183173. [PMID: 28817633 PMCID: PMC5560726 DOI: 10.1371/journal.pone.0183173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/31/2017] [Indexed: 01/14/2023] Open
Abstract
The peripheral sensitivity and palatability of different carbohydrates was evaluated and their nutritional value assessed in adult females of D. suzukii by means of an electrophysiological, behavioural and metabolic approach. The electrophysiological responses were recorded from the labellar "l" type sensilla stimulated with metabolizable mono- and disaccharides (glucose and maltose) and a non-metabolizable sugar (sucralose); the response rating and the palatability to the same sugars, evaluated by recording the proboscis extension reflex (PER), was maltose>glucose>sucralose. The nutritional value of carbohydrates was assessed by means of survival trials and fatty acids profile. Flies fed on a diet containing maltose had a longer lifespan than flies on monosaccharides, while flies fed on a diet containing sucralose had a shorter one. In addition, the ability to store fat seems to be influenced by the different sugars in the diet and is in relationship with their palatability. In fact, data showed a higher synthesis of palmitic and palmitoleic acids, most likely derived from de-novo lipogenesis with glucose as precursor, in flies fed with maltose and glucose than with non-metabolizable sucralose. In conclusion, these results suggest that the ability to select different sugars on the basis of their palatability may favour the storage of energy reserves such as fat by de-novo lipogenesis, determining a longer survival capability during prolonged periods of fasting.
Collapse
|
17
|
Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017; 141:107-120. [PMID: 28804001 DOI: 10.1016/j.biochi.2017.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Consumption of milk and dairy products is important in Western industrialised countries. Fat content is an important constituent contributing to the nutritional quality of milk and dairy products. In order to improve the health of consumers, there is high interest in improving their fatty acid (FA) composition, which depends principally on rumen and mammary metabolism. This paper reviews the lipid metabolism in ruminants, with a particular focus on the production of trans and conjugated linoleic acids (CLA) and conjugated linolenic acids (CLnA) in the rumen. After the lipolysis of dietary lipids, an extensive biohydrogenation of unsaturated FA occurs by rumen bacteria, leading to numerous cis and trans isomers of 18:1, non-conjugated of 18:2, CLA and CLnA. The paper examines the different putative pathways of ruminal biohydrogenation of cis9-18:1, 18:2n-6, 18:3n-3 and long-chain FA and the bacteria implicated. Then mechanisms relative to the de novo mammary synthesis are presented. Ruminant diet is the main factor regulating the content and the composition of milk fat. Effects of nature of forage and lipid supplementation are analysed in cows and small ruminants species. Finally, the paper briefly presents the effects of these FA on animal models and human cell lines. We describe the properties of ruminant trans 18:1, when compared to industrial trans 18:1, CLA and CLnA on human health from meta-analyses of intervention studies and then explore the underlying mechanisms.
Collapse
Affiliation(s)
- Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France.
| | - Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | | | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France; CRNH Auvergne, F-63009, Clermont-Ferrand, France
| |
Collapse
|
18
|
Fatty Acids of CLA-Enriched Egg Yolks Can Induce Transcriptional Activation of Peroxisome Proliferator-Activated Receptors in MCF-7 Breast Cancer Cells. PPAR Res 2017; 2017:2865283. [PMID: 28458685 PMCID: PMC5385215 DOI: 10.1155/2017/2865283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/02/2017] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
In our previous study, we showed that fatty acids from CLA-enriched egg yolks (EFA-CLA) reduced the proliferation of breast cancer cells; however, the molecular mechanisms of their action remain unknown. In the current study, we used MCF-7 breast cancer cell line to determine the effect of EFA-CLA, as potential ligands for peroxisome proliferator-activated receptors (PPARs), on identified in silico PPAR-responsive genes: BCAR3, TCF20, WT1, ZNF621, and THRB (transcript TRβ2). Our results showed that EFA-CLA act as PPAR ligands with agonistic activity for all PPAR isoforms, with the highest specificity towards PPARγ. In conclusion, we propose that EFA-CLA-mediated regulation of PPAR-responsive genes is most likely facilitated by cis9,trans11CLA isomer incorporated in egg yolk. Notably, EFA-CLA activated PPAR more efficiently than nonenriched FA as well as synthetic CLA isomers. We also propose that this regulation, at least in part, can be responsible for the observed reduction in the proliferation of MCF-7 cells treated with EFA-CLA.
Collapse
|
19
|
Grażyna C, Hanna C, Adam A, Magdalena BM. Natural antioxidants in milk and dairy products. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12359] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cichosz Grażyna
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| | - Czeczot Hanna
- Department of Biochemistry; I Faculty of Medicine; Medical University of Warsaw; ul. Banacha 1 02-097 Warszawa Poland
| | - Ambroziak Adam
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| | - Bielecka Marika Magdalena
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| |
Collapse
|
20
|
Detection of goat body fat adulteration in pure ghee using ATR-FTIR spectroscopy coupled with chemometric strategy. Journal of Food Science and Technology 2016; 53:3752-3760. [PMID: 28017990 DOI: 10.1007/s13197-016-2353-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Ghee forms an important component of the diet of human beings due to its rich flavor and high nutritive value. This high priced fat is prone to adulteration with cheaper fats. ATR-FTIR spectroscopy coupled with chemometrics was applied for determining the presence of goat body fat in ghee (@1, 3, 5, 10, 15 and 20% level in the laboratory made/spiked samples). The spectra of pure (ghee and goat body fat) and spiked samples were taken in the wavenumber range of 4000-500 cm-1. Separated clusters of pure ghee and spiked samples were obtained on applying principal component analysis at 5% level of significance in the selected wavenumber range (1786-1680, 1490-919 and 1260-1040 cm-1). SIMCA was applied for classification of samples and pure ghee showed 100% classification efficiency. The value of R2 was found to be >0.99 for calibration and validation sets using partial least square method at all the selected wavenumber range which indicate that the model was well developed. The study revealed that the spiked samples of goat body fat could be detected even at 1% level in ghee.
Collapse
|
21
|
Martins SV, Pires VMR, Madeira AP, Nascimento M, Alfaia CM, Castro MF, Soveral G, Prates JA, Lopes PA. Novel anti-adipogenic properties of the individualtrans8,cis10 conjugated linoleic acid (CLA) isomer in 3T3-L1 adipocytes. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Susana V. Martins
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Virgínia M. R. Pires
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Ana P. Madeira
- Faculdade de Farmácia; Research Institute for Medicines (iMed.UL); Universidade de Lisboa; Lisboa Portugal
| | - Mafalda Nascimento
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Cristina M. Alfaia
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Matilde F. Castro
- Faculdade de Farmácia; Research Institute for Medicines (iMed.UL); Universidade de Lisboa; Lisboa Portugal
| | - Graça Soveral
- Faculdade de Farmácia; Research Institute for Medicines (iMed.UL); Universidade de Lisboa; Lisboa Portugal
- Faculdade de Farmácia; Dep. Bioquímica e Biologia Humana; Universidade de Lisboa; Lisboa Portugal
| | - José A.M. Prates
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| | - Paula A. Lopes
- Faculdade de Medicina Veterinária; CIISA; Universidade de Lisboa; Av. da Universidade Técnica; Pólo Universitário do Alto da Ajuda; Lisboa Portugal
| |
Collapse
|
22
|
Lipase-catalyzed enrichment of egg yolk phosphatidylcholine with conjugated linoleic acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Berryhill GE, Trott JF, Hovey RC. Mammary gland development--It's not just about estrogen. J Dairy Sci 2015; 99:875-83. [PMID: 26506542 DOI: 10.3168/jds.2015-10105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
The mammary gland (MG) is one of a few organs that undergoes most of its growth after birth. Much of this development occurs concurrently with specific reproductive states, such that the ultimate goal of milk synthesis and secretion is coordinated with the nutritional requirements of the neonate. Central to the reproductive-MG axis is its endocrine regulation, and pivotal to this regulation is the ovarian secretion of estrogen (E). Indeed, it is widely accepted that estrogens are essential for growth of the MG to occur, both for ductal elongation during puberty and for alveolar development during gestation. As the factors regulating MG development continually come to light from the fields of developmental biology, lactation physiology, and breast cancer research, a growing body of evidence serves as a reminder that the MG are not as exclusively dependent on estrogens as might have been thought. The objective of this review is to summarize the state of information regarding our understanding of how estrogen (E) has been implicated as the key regulator of MG development, and to highlight some of the alternative E-independent mechanisms that have been discovered. In particular, we review our findings that dietary trans-10,cis-12 conjugated linoleic acid promotes ductal elongation and that the combination of progesterone (P) and prolactin (PRL) can stimulate branching morphogenesis in the absence of E. Ultimately, these examples stand as a healthy challenge to the question of just how important estrogens are for MG development. Answers to this question, in turn, increase our understanding of MG development across all mammals and the ways in which it can affect milk production.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618
| | - Josephine F Trott
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618
| | - Russell C Hovey
- Department of Animal Science, University of California-Davis, 2145 Meyer Hall, One Shields Avenue, Davis 95618.
| |
Collapse
|
24
|
Abstract
The ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are two major families of PUFAs present as essential cellular components which possess diverse bioactivities. The ω-3s, mainly found in seafood, are associated with many beneficial effects on human health, while the ω-6s are more abundant in our daily diet and could be implicated in many pathological processes including cancer development. Increasing evidence suggests that the adverse effects of ω-6s may be largely attributed to arachidonic acid (AA, a downstream ω-6) and the metabolite prostaglandin E2 (PGE2) that stems from its cyclooxygenase (COX)-catalyzed lipid peroxidation. On the other hand, two of AA's upstream ω-6s, γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA), are shown to possess certain anti-cancer activities, including inducing cell apoptosis and inhibiting cell proliferation. In this paper, we review the documented anti-cancer activities of ω-6 PUFAs, including the recent findings regarding the anti-cancer effects of free radical-mediated DGLA peroxidation. The possible mechanisms and applications of DGLA (and other ω-6s) in inducing anti-cancer activity are also discussed. Considering the wide availability of ω-6s in our daily diet, the study of the potential beneficial effect of ω-6 PUFAs may guide us to develop an ω-6-based diet care strategy for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing and Allied Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
25
|
Conjugated linoleic acid-enriched butter improved memory and up-regulated phospholipase A2 encoding-genes in rat brain tissue. J Neural Transm (Vienna) 2015; 122:1371-80. [DOI: 10.1007/s00702-015-1401-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/10/2015] [Indexed: 12/11/2022]
|
26
|
Carta G, Murru E, Lisai S, Sirigu A, Piras A, Collu M, Batetta B, Gambelli L, Banni S. Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS One 2015; 10:e0120424. [PMID: 25775474 PMCID: PMC4361611 DOI: 10.1371/journal.pone.0120424] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
Background Several evidences suggest that the position of palmitic acid (PA) in dietary triacylglycerol (TAG) influences different biological functions. We aimed at evaluating whether dietary fat with highly enriched (87%) PA in sn-2 position (Hsn-2 PA), by increasing PA incorporation into tissue phospholipids (PL), modifies fatty acid profile and biosynthesis of fatty acid—derived bioactive lipids, such as endocannabinoids and their congeners. Study Design Rats were fed for 5 weeks diets containing Hsn-2 PA or fat with PA randomly distributed in TAG with 18.8% PA in sn-2 position (Lsn-2 PA), and similar total PA concentration. Fatty acid profile in different lipid fractions, endocannabinoids and congeners were measured in intestine, liver, visceral adipose tissue, muscle and brain. Results Rats on Hsn-2 PA diet had lower levels of anandamide with concomitant increase of its congener palmitoylethanolamide and its precursor PA into visceral adipose tissue phospholipids. In addition, we found an increase of oleoylethanolamide, an avid PPAR alpha ligand, in liver, muscle and brain, associated to higher levels of its precursor oleic acid in liver and muscle, probably derived by elongation and further delta 9 desaturation of PA. Changes in endocannabinoids and congeners were associated to a decrease of circulating TNF alpha after LPS challenge, and to an improved feed efficiency. Conclusions Dietary Hsn-2 PA, by modifying endocannabinoids and congeners biosynthesis in different tissues may potentially concur in the physiological regulation of energy metabolism, brain function and body fat distribution.
Collapse
Affiliation(s)
- Gianfranca Carta
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Elisabetta Murru
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Sara Lisai
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Annarita Sirigu
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Antonio Piras
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Maria Collu
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Barbara Batetta
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | | | - Sebastiano Banni
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
- * E-mail:
| |
Collapse
|
27
|
Koba K, Yanagita T. Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract 2014; 8:e525-32. [DOI: 10.1016/j.orcp.2013.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
28
|
Effect of conjugated linoleic acid mixture supplemented daily after carcinogen application on linoleic and arachidonic acid metabolites in rat serum and induced tumours. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2230-6. [DOI: 10.1016/j.bbadis.2014.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/07/2014] [Accepted: 08/28/2014] [Indexed: 12/26/2022]
|
29
|
Vafa TS, Naserian AA, Heravi Moussavi AR, Valizadeh R, Mesgaran MD. Effect of supplementation of fish and canola oil in the diet on milk Fatty Acid composition in early lactating holstein cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:311-9. [PMID: 25049568 PMCID: PMC4092963 DOI: 10.5713/ajas.2010.10014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 05/17/2010] [Accepted: 03/19/2010] [Indexed: 11/30/2022]
Abstract
This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows (42±12 DIM, 40±6 kg daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double 4×4 Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of milk.
Collapse
Affiliation(s)
- Toktam S Vafa
- Payame Noor University, EX phD student at Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas A Naserian
- Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163. Mashhad, Iran
| | - Ali R Heravi Moussavi
- Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163. Mashhad, Iran
| | - Reza Valizadeh
- Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163. Mashhad, Iran
| | - Mohsen Danesh Mesgaran
- Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box 91775-1163. Mashhad, Iran
| |
Collapse
|
30
|
Lock A, Givens D, Bauman D. Dairy Fat: Perceptions and Realities. MILK AND DAIRY PRODUCTS AS FUNCTIONAL FOODS 2014:174-197. [DOI: 10.1002/9781118635056.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Trans vaccenic acid (trans-11 18:1), a precursor of cis-9, trans-11-conjugated linoleic acid, exerts a direct anti-carcinogenic function in T47D breast carcinoma cells. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
|
33
|
Nadeem M, Situ C, Mahmud A, Khalique A, Imran M, Rahman F, Khan S. Antioxidant Activity of Sesame (Sesamum indicum L.) Cake Extract for the Stabilization of Olein Based Butter. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2432-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients 2014; 6:627-36. [PMID: 24518825 PMCID: PMC3942722 DOI: 10.3390/nu6020627] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022] Open
Abstract
Trans vaccenic acid (TVA; trans-11 18:1) is a positional and geometric isomer of oleic acid and it is the predominant trans isomer found in ruminant fats. TVA can be converted into cis-9, trans-11 conjugated linoleic acid (c9, t11-CLA), a CLA isomer that has many beneficial effects, by stearoyl CoA desaturase 1 (SCD1) in the mammary gland. The health benefits associated with CLA are well documented, but it is unclear whether trans fatty acids (TFAs) from ruminant products have healthy effects. Therefore, the effects of TVA on the proliferation of MCF-7 human breast adenocarcinoma cells and MCF-10A human breast epithelial cells were investigated in the present study. Results showed that TVA inhibited the proliferation of MCF-7 cells but not MCF-10A cells by down-regulating the expression of Bcl-2 as well as procaspase-9. In addition, the suppressive effect of TVA was confirmed in SCD1-depleted MCF-7 cells. Our results suggested that TVA exerts a direct anti-carcinogenic effect on MCF-7 cells. These findings provided a better understanding of the research on the anti-carcinogenic effects of TVA and this may facilitate the manufacture of TVA/c9, t11-CLA fortified ruminant products.
Collapse
|
35
|
Cicognini FM, Rossi F, Sigolo S, Gallo A, Prandini A. Conjugated linoleic acid isomer (cis9,trans11 and trans10,cis12) content in cheeses from Italian large-scale retail trade. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Caplan Z, Barbano D. Shelf life of pasteurized microfiltered milk containing 2% fat. J Dairy Sci 2013; 96:8035-46. [DOI: 10.3168/jds.2013-6657] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/05/2013] [Indexed: 11/19/2022]
|
37
|
Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions. SUSTAINABILITY 2013. [DOI: 10.3390/su5073009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
A rapid method of screening lactic acid bacterial strains for conjugated linoleic acid production. Biosci Biotechnol Biochem 2013; 77:648-50. [PMID: 23470735 DOI: 10.1271/bbb.120709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A more rapid and simpler method than those currently used was developed to screen conjugated linoleic acid (CLA)-producing bacteria isolated from cow milk. The screening of 500 strains was completed in 10 d and the screening efficiency was 10%. One strain resembling a Lactobacillus paracasei strain and two resembling L. helveticus strains converted free linoleic acid to total CLA ≥85%.
Collapse
|
39
|
Du M, Ahn DU, Nam KC, Sell JL. Influence of dietary conjugated linoleic acid on volatile profiles, color and lipid oxidation of irradiated raw chicken meat. Meat Sci 2012; 56:387-95. [PMID: 22062169 DOI: 10.1016/s0309-1740(00)00067-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Forty-eight, 27-week-old White Leghorn hens were fed a diet containing 0, 1.25, 2.5 or 5.0% conjugated linoleic acid (CLA) for 12 weeks. At the end of the 12-week feeding trial, hens were slaughtered, and boneless, skinless breast and leg meats were separated from carcasses. Meats were ground through 9 and 3-mm plates, and patties were prepared. Patties prepared from each dietary treatment were divided into two groups and either vacuum- or aerobic-packaged. Patties were irradiated at 0 or 3.0 kGy using a linear accelerator and stored at 4°C. Samples were analyzed for thiobarbituric acid reactive substances, volatile profiles, color and odor characteristics at 0 and 7 days of storage. Dietary CLA reduced the degree of lipid oxidation in raw chicken meat during storage. The content of hexanal and pentanal in raw chicken meat significantly decreased as dietary CLA level increased. Irradiation accelerated lipid oxidation in meat with aerobic packaging, but irradiation effect was not as significant as that of the packaging. Dietary CLA treatment improved the color stability of chicken patties. Color a*-value of irradiated raw chicken meat was higher than that of the nonirradiated meat. Dietary CLA decreased the content of polyunsaturated fatty acid and increased CLA in chicken muscles, which improved lipid and color stability and reduced volatile production in irradiated and nonirradiated raw chicken meat during storage.
Collapse
Affiliation(s)
- M Du
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | | | | | | |
Collapse
|
40
|
Liu JR, Chen BQ, Yang YM, Han XH, Xue YB, Wang XL, Zheng YM, Liu RH. Effects ofcis-9,trans-11-conjugated linoleic acid on cancer cell cycle. Environ Health Prev Med 2012. [PMID: 21432279 DOI: 10.1007/s11670-002-0021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To determine the effect of cis-9, trans-11-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and its possible mechanism of inhibition cancer growth. METHODS Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B(1), D(1), p16(ink4a) and p21(cip/wafl) of MCF-7 cells which were treated with various c9, t11-CLA concentrations (25 mM, 50 mM, 100 mM and 200 mM) of c9, t11-CLA for 24 and 48 h, with negative controls (0.1% ethanol). RESULTS The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9, t11-CLA. MCF-7 cells, after treatment with various c9, t11-CLA doses mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively and the inhibitory effect of c9, t11-CLA on DNA synthesis (except for 25 mM, 24 h) incorporated significantly less(3)H-TdR than did the negative control (P<0.05 andP<0.01). To further investigate the influence on the cell cycle progression, we found that c9, t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that MCF-7 cells preincubated in media supplemented with different c9, t11-CLA concentrations at various times significantly decreased the expressions of PCNA, and Cyclin, A, B(1), D(1) compared with the negative controls (P<0.01), whereas the expressions of p16(ink4a) and p21(cip/wafl), cyclin-dependent kinases inhibitors (CDKI), were increased. CONCLUSIONS The cell growth and proliferation of MCF-7 cells is inhibited by c9, t11-CLA by blocking the cell cycle, which reduces expressions of cyclin A, B(1), D(1) and enhances expressions of CDKI (p16(ink4a) and p21(cip/wafl)).
Collapse
Affiliation(s)
- Jia Ren Liu
- Public Health College of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, Heilongijang, P.R. China,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL. Influence of Dietary Conjugated Linoleic Acid and Fat Source on Body Fat and Apoptosis in Mice*. ACTA ACUST UNITED AC 2012; 12:1435-44. [PMID: 15483208 DOI: 10.1038/oby.2004.180] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether altered dietary essential fatty acid (linoleic and arachidonic acid) concentrations alter sensitivity to conjugated linoleic acid (CLA)-induced body fat loss or DNA fragmentation. RESEARCH METHODS AND PROCEDURES Mice were fed diets containing soy oil (control), coconut oil [essential fatty acid deficient (EFAD)], or fish oil (FO) for 42 days, and then diets were supplemented with a mixture of CLA isomers (0.5% of the diet) for 14 days. Body fat index, fat pad and liver weights, DNA fragmentation in adipose tissue, and fatty acid profiles of adipose tissue were determined. RESULTS The EFAD diet decreased (p < 0.05) linoleic and arachidonic acid in mouse adipose tissue but did not affect body fat. Dietary CLA caused a reduction (p < 0.05) in body fat. Mice fed the EFAD diet and then supplemented with CLA exhibited a greater reduction (p < 0.001) in body fat (20.21% vs. 6.94% in EFAD and EFAD + CLA-fed mice, respectively) compared with mice fed soy oil. Dietary FO decreased linoleic acid and increased arachidonic acid in mouse adipose tissue. Mice fed FO or CLA were leaner (p < 0.05) than control mice. FO + CLA-fed mice did not differ in body fat compared with FO-fed mice. Adipose tissue apoptosis was increased (p < 0.001) in CLA-supplemented mice and was not affected by fat source. DISCUSSION Reductions in linoleic acid concentration made mice more sensitive to CLA-induced body fat loss only when arachidonic acid concentrations were also reduced. Dietary essential fatty acids did not affect CLA-induced DNA fragmentation.
Collapse
Affiliation(s)
- Kimberly M Hargrave
- Department of Animal Science, University of Nebraska, C220 ANS, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br J Nutr 2012; 109:1453-62. [PMID: 22917075 DOI: 10.1017/s0007114512003224] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intake of dairy fat has long been considered as a risk factor for CVD. Pasture and dietary lipid supplementation have been reported to be reliable strategies in ruminant nutrition, in order to increase the content of α-linolenic acid (ALA), conjugated linoleic acid (CLA) and vaccenic acid (VA), and decrease SFA in milk fat. In the present study, we aimed at verifying whether consumption of a sheep cheese, naturally enriched in ALA, CLA and VA, would modify the plasma lipid and endocannabinoid profiles in mildly hypercholesterolaemic subjects. A total of forty-two adult volunteers (nineteen males and twenty-three females) with diagnosed mildly hypercholesterolaemia (total cholesterol 5·68-7·49 mmol/l) were randomly assigned to eat 90 g/d of a control or enriched cheese for 3 weeks, with a cross-over after 3 weeks of washout. Plasma lipids, endocannabinoids, adipokines and inflammatory markers were measured. The intake of enriched cheese significantly increased the plasma concentrations of CLA, VA, the n-3 fatty acids ALA and EPA, and more remarkably decreased that of the endocannabinoid anandamide. LDL-cholesterol decreased significantly (7%). No changes were detected in the levels of inflammatory markers; however, a significant correlation was found between the plasma levels of anandamide and leptin. The control cheese modified none of the parameters measured. The results obtained do not support the view that intake of dairy fat is detrimental to hypercholesterolaemic subjects. Indeed, they show that a naturally enriched cheese possesses beneficial properties, since it ameliorates the plasma lipid profile, and more remarkably reduces endocannabinoid biosynthesis.
Collapse
|
43
|
Kurokawa Y, Shibata H, Tateno S, Kanda S, Takaura K, Ishida S, Itabashi H. Rumen fermentation, milk production and conjugated linoleic acid in the milk of cows fed high fiber diets added with dried distillers grains with solubles. Anim Sci J 2012; 84:106-12. [PMID: 23384351 DOI: 10.1111/j.1740-0929.2012.01052.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of corn dried distillers grains with solubles (DDGS) feeding on rumen fermentation and milk production in cows were evaluated using diets high in neutral detergent fiber (NDF, 45.9-46.6%). The control diet (Control) consisted mainly of hay, corn silage and concentrates. In the experimental diets, the concentrates were replaced with DDGS as 10% dry matter (DM) (10%DDGS) and 20% DM (20%DDGS). Eight cows were used for each 14-day treatment period. Effect of DDGS feeding on DM intake was not significant. Ruminal volatile fatty acids and ammonia-N at 5 h after feeding of 20%DDGS were decreased compared to Control, whereas protozoal count at 2 h after feeding of 20%DDGS was higher than that of 10%DDGS. Milk yield of cows fed DDGS diets was greater than that of Control, although percentages of milk protein and solids-not-fat were decreased by DDGS diets. The proportions of C10:0, C12:0, C14:0 and C16:0 in the milk fat decreased, and those of C18:0, C18:1, C18:2 and cis-9, trans-11 conjugated linoleic acid (CLA) increased markedly with elevated DDGS. Increase in trans-11 C18:1 was observed in the rumen fluid at 5 h after feeding. These findings suggest that DDGS feeding enhanced milk yield, as well as CLA synthesis under a high dietary NDF condition.
Collapse
Affiliation(s)
- Yuzo Kurokawa
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The primary purpose of the present review was to determine if the scientific evidence available for potential human health benefits of conjugated linoleic acid (CLA) is sufficient to support health claims on foods based on milk naturally enriched with cis-9, trans-11-CLA (c9, t11-CLA). A search of the scientific literature was conducted and showed that almost all the promising research results that have emerged in relation to cancer, heart health, obesity, diabetes and bone health have been in animal models or in vitro. Most human intervention studies have utilised synthetic CLA supplements, usually a 50:50 blend of c9, t11-CLA and trans-10, cis-12-CLA (t10, c12-CLA). Of these studies, the only evidence that is broadly consistent is an effect on body fat and weight reduction. A previous review of the relevant studies found that 3.2 g CLA/d resulted in a modest body fat loss in human subjects of about 0.09 kg/week, but this effect was attributed to the t10, c12-CLA isomer. There is no evidence of a consistent benefit of c9, t11-CLA on any health conditions; and in fact both synthetic isomers, particularly t10, c12-CLA, have been suspected of having pro-diabetic effects in individuals who are already at risk of developing diabetes. Four published intervention studies using naturally enriched CLA products were identified; however, the results were inconclusive. This may be partly due to the differences in the concentration of CLA administered in animal and human studies. In conclusion, further substantiation of the scientific evidence relating to CLA and human health benefits are required before health claims can be confirmed.
Collapse
|
45
|
Identification of enriched conjugated linoleic acid isomers in cultures of ruminal microorganisms after dosing with 1-13C-linoleic acid. J Microbiol 2011; 49:622-7. [DOI: 10.1007/s12275-011-0415-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/20/2011] [Indexed: 10/17/2022]
|
46
|
Richter EK, Spangenberg JE, Klevenhusen F, Soliva CR, Kreuzer M, Leiber F. Stable Carbon Isotope Composition of c9,t11-Conjugated Linoleic Acid in Cow’s Milk as Related to Dietary Fatty Acids. Lipids 2011; 47:161-9. [DOI: 10.1007/s11745-011-3599-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/12/2011] [Indexed: 01/11/2023]
|
47
|
Degen C, Lochner A, Keller S, Kuhnt K, Dänicke S, Jahreis G. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells. Lipids Health Dis 2011; 10:131. [PMID: 21816049 PMCID: PMC3163618 DOI: 10.1186/1476-511x-10-131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/04/2011] [Indexed: 12/22/2022] Open
Abstract
Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA) are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA) solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29). Methods FAME of conventional and Alpine milk lipids (MLcon, MLalp) and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag+-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue®-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride), respectively. Results Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. MLalp showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to MLcon but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein) after 8 h of incubation compared to 24 h; 200 μM of MLcon (C16:0, 206 ± 43), 200 μM of MLalp (C18:1 c9, (223 ± 19). Vaccenic acid (C18:1 t11) contained in milk lipids was converted to c9,t11-CLA in HT-29 cells. Notably, the ratio of t11,c13-CLA/t7,c9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from MLalp (3.6 - 4.8), compared to lipids from MLcon (0.3 - 0.6). Conclusions Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular lipid composition suggested a milk lipid-depending influence on cell sensitivity. It is expected that similar changes may also be evident in other cell lines. To our knowledge, this is the first study showing a varied impact of complex milk lipids on fatty acid distribution in a colon cancer cell line.
Collapse
Affiliation(s)
- Christian Degen
- Institute of Nutrition, Dept. of Nutritional Physiology, Friedrich-Schiller-University, Dornburger Strasse 24, Jena, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Heinze VM, Actis AB. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review. Int J Food Sci Nutr 2011; 63:66-78. [PMID: 21762028 DOI: 10.3109/09637486.2011.598849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.
Collapse
Affiliation(s)
- Verónica M Heinze
- Facultad de Ciencias de la Salud, Universidad Adventista del Plata, 25 de Mayo 99, 3103 Libertador San Martín, Entre Ríos, Argentina.
| | | |
Collapse
|
49
|
Gebauer SK, Chardigny JM, Jakobsen MU, Lamarche B, Lock AL, Proctor SD, Baer DJ. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Adv Nutr 2011; 2:332-54. [PMID: 22332075 PMCID: PMC3125683 DOI: 10.3945/an.111.000521] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are 2 predominant sources of dietary trans fatty acids (TFA) in the food supply, those formed during the industrial partial hydrogenation of vegetable oils (iTFA) and those formed by biohydrogenation in ruminants (rTFA), including vaccenic acid (VA) and the naturally occurring isomer of conjugated linoleic acid, cis-9, trans-11 CLA (c9,t11-CLA). The objective of this review is to evaluate the evidence base from epidemiological and clinical studies to determine whether intake of rTFA isomers, specifically VA and c9,t11-CLA, differentially affects risk of cardiovascular disease (CVD) and cancer compared with iTFA. In addition, animal and cell culture studies are reviewed to explore potential pro- and antiatherogenic mechanisms of VA and c9,t11-CLA. Some epidemiological studies suggest that a positive association with coronary heart disease risk exists between only iTFA isomers and not rTFA isomers. Small clinical studies have been conducted to establish cause-and-effect relationships between these different sources of TFA and biomarkers or risk factors of CVD with inconclusive results. The lack of detection of treatment effects reported in some studies may be due to insufficient statistical power. Many studies have used doses of rTFA that are not realistically attainable via diet; thus, further clinical studies are warranted. Associations between iTFA intake and cancer have been inconsistent, and associations between rTFA intake and cancer have not been well studied. Clinical studies have not been conducted investigating the cause-and-effect relationship between iTFA and rTFA intake and risk for cancers. Further research is needed to determine the health effects of VA and c9,t11-CLA in humans.
Collapse
Affiliation(s)
- Sarah K. Gebauer
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705
| | - Jean-Michel Chardigny
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Marianne Uhre Jakobsen
- Department of Epidemiology, School of Public Health, Aarhus University, DK-8000 Aarhus, Denmark
| | - Benoît Lamarche
- Institute on Nutraceuticals and Functional Foods, Laval University, Québec, QC, Canada G1V 0A
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48864
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Laboratory, Alberta Institute for Human Nutrition and Alberta Diabetes Institute, University of Alberta, AB, Canada T6G2P5
| | - David J. Baer
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705
| |
Collapse
|
50
|
Philippaerts A, Goossens S, Jacobs PA, Sels BF. Catalytic production of conjugated fatty acids and oils. CHEMSUSCHEM 2011; 4:684-702. [PMID: 21634014 DOI: 10.1002/cssc.201100086] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 05/30/2023]
Abstract
The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2) absence of catalyst acidity, (3) high metal dispersion, and (4) highly accessible pore architecture.
Collapse
Affiliation(s)
- An Philippaerts
- Department M2S, K.U. Leuven, Kasteelpark Arenberg 23, 3001 Heverlee, Belgium
| | | | | | | |
Collapse
|