1
|
Li Y, Wang Z, Xia W, Chai Z, Feng J, Teng C, Ma K, Hu X, Xu L. Sodium alginate coated ferritin as ACE inhibitory peptide carrier: Prolonged release property and enhanced transepithelial transport. Food Sci Biotechnol 2025; 34:1867-1878. [PMID: 40196322 PMCID: PMC11972238 DOI: 10.1007/s10068-025-01826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 04/09/2025] Open
Abstract
The application of Ala-His-Leu-Leu (AHLL), an angiotensin converting enzyme (ACE) inhibitory peptide, is limited due to its low stability. In this work, horse spleen apoferritin (HSF) deposited with a layer of sodium alginate (SA) was employed to carry AHLL. The HSF encapsulation and SA decoration exhibited remarkable protection capacity for loaded AHLL from UV irradiation and thermal treatment. The ACE inhibitory activity of AHLL-HSF@SA nanoparticles maintained 60%-75% within the digestion process since the compact structure and the coverage of enzyme reaction sites. Intestinal permeability investigation unveiled that HSF encapsulation facilitated the AHLL absorption, and the P app value was (2.70 ± 0.02) × 10-5 cm/s. Moreover, the transepithelial transport of free AHLL was primarily mediated through the paracellular pathway, whereas the transport of AHLL-HSF nanoparticles might rely on AP2-mediated endocytosis. Owing to positive effects on structural stability, release property and intestinal absorption, polysaccharides coated ferritin is a promising vehicle for peptides. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-025-01826-x.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Ziyin Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Weirong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Cong Teng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Kaiyang Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Xindi Hu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Lujing Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| |
Collapse
|
2
|
Lampe BJ, Dziwenka M, Hackel VP. Preclinical safety evaluation of SloIron CFTN-PS 5: A pea-derived ferritin product. Food Chem Toxicol 2025; 197:115291. [PMID: 39900131 DOI: 10.1016/j.fct.2025.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Ferritins are proteins present in plants and animals that are highly effective in storing iron and maintaining iron homeostasis. Iron deficiency anemia is a widespread nutritional disorder, and plant ferritins (phytoferritin) are potential sources of bioavailable iron with slow-release characteristics that prevent oxidative damage. These characteristics are related to receptor mediated endocytosis, the primary absorption mechanism in humans. However, the available toxicological data are insufficient to determine whether the use of phytoferritin as a nutritional supplement to enhance iron consumption in human populations is safe. Therefore, several GLP-compliant toxicology studies have been conducted with phytoferritin prepared from the seed of Psium sativum (trade name: SloIron CFTN-PS5). SloIron CFTN-PS5 was non-mutagenic and non-clastogenic in vitro and did not induce the formation of micronuclei in vivo. SloIron CFTN-PS5 was well-tolerated in a 90-day subchronic toxicity studies conducted in Sprague-Dawley rats at doses up to 1950 mg/kg bw/day. These findings suggest that the oral consumption of SloIron CFTN-PS5 is of low toxicological concern, with a 90-day oral subchronic No Observed Adverse Effect Level (NOAEL) of 1950 mg/kg-day, the highest dose tested.
Collapse
Affiliation(s)
| | | | - Vincent P Hackel
- SloIron Inc, 1547 Palos Verdes Mall #131, 94597, Walnut Creek, CA, USA
| |
Collapse
|
3
|
Buhl EH, Christensen B, Pedersen FH, S Rensen ES. Milk osteopontin has high iron-binding capacity and facilitates iron absorption in intestinal cells. J Dairy Sci 2025; 108:90-100. [PMID: 39694241 DOI: 10.3168/jds.2024-25305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/02/2024] [Indexed: 12/20/2024]
Abstract
Insufficient absorption of iron and the consequent development of iron deficiency have serious health consequences. Hence, identification and development of iron delivery systems that can increase the bioavailability and uptake of dietary iron are important. Osteopontin (OPN) is an acidic and highly phosphorylated integrin-binding protein found in milk where it exists as a full-length protein and as N-terminally derived fragments. Milk OPN can be taken up by enterocytes and transported across the intestinal barrier into the circulation. Milk OPN has previously been shown to bind calcium and magnesium. This study investigates milk OPN as a carrier of iron and its potential to increase iron absorption in intestinal cells. Full-length OPN and N-terminal fragments of OPN were shown to bind ∼30 and ∼10 mol of iron, respectively, and the phosphorylated residues were crucial for iron binding. Osteopontin retained iron bound after simulated gastrointestinal digestion. Immunodetection of digested OPN and OPN-Fe complexes showed that the OPN-Fe complexes were more resistant to pepsin digestion than OPN without bound iron. The cellular uptake of iron was investigated by measuring intracellular ferritin formation and mRNA expression of divalent metal transporter 1 in Caco-2 cells. Osteopontin increased the uptake of iron even in the presence of phytic acid, a dietary inhibitor of iron absorption. These data indicate that OPN can function as an iron carrier for use in alternative strategies for delivering iron in a bioavailable form for intestinal uptake.
Collapse
Affiliation(s)
- Emilie H Buhl
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Freja H Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Esben S S Rensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Raut RK, Bhattacharyya G, Behera RK. Gastric stability of bare and chitosan-fabricated ferritin and its bio-mineral: implication for potential dietary iron supplements. Dalton Trans 2024; 53:13815-13830. [PMID: 39109655 DOI: 10.1039/d4dt01839g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Iron deficiency anaemia (IDA), the most widespread nutritional disorder, is a persistent global health issue affecting millions, especially in resource-limited geographies. Oral iron supplementation is usually the first choice for exogenous iron administration owing to its convenience, effectiveness and low cost. However, commercially available iron supplementations are often associated with oxidative stress, gastrointestinal side effects, infections and solubility issues. Herein, we aim to address these limitations by employing ferritin proteins-self-assembled nanocaged architectures functioning as a soluble cellular iron repository-as a non-toxic and biocompatible alternative. Our in vitro studies based on PAGE and TEM indicate that bare ferritin proteins are resistant to gastric conditions but their cage integrity is compromised under longer incubation periods and at higher concentrations of pepsin, which is a critical component of gastric juice. To ensure the safe delivery of encapsulated iron cargo, with minimal cage disintegration/degradation and iron leakage along the gastrointestinal tract, we fabricated the surface of ferritin with chitosan. Further, the stoichiometry and absorptivity of iron-chelator complexes at both gastric and circumneutral pH were estimated using Job's plot. Unlike bipyridyl, deferiprone exhibited pH dependency. In vitro kinetics was studied to evaluate iron release from bare and chitosan-fabricated ferritins employing both reductive (in the presence of ascorbate and bipyridyl) and non-reductive (direct chelation by deferiprone) pathways to determine their bio-mineral stabilities. Chitosan-decorated ferritin displayed superior cage integrity and iron retention capability over bare ferritin in simulated gastric fluid. The ability of ferritins to naturally facilitate controlled iron release in conjugation with enteric coating provided by chitosan may mitigate the aforementioned side effects and enhance iron absorption in the intestine. The results of the current study could pave the way for the development of an oral formulation based on ferritin-caged iron bio-mineral that can be a promising alternative for the treatment of IDA, offering better therapeutic outcomes.
Collapse
Affiliation(s)
- Rohit Kumar Raut
- Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, India.
| | - Gargee Bhattacharyya
- Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, India.
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, India.
| |
Collapse
|
5
|
Wu J, Li Y, Wu H, Zhang H, Sha X, Ma J, Yang R. The application of ferritin in transporting and binding diverse metal ions. Food Chem 2024; 439:138132. [PMID: 38081094 DOI: 10.1016/j.foodchem.2023.138132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The ferritin cage can not only load iron ions in its inner cavity, but also has the capacity to carry other metal ions, thus constructing a new biological nano-transport system. The nanoparticles formed by ferritin and minerals can be used as ingredients of mineral supplements, which overcome the shortcomings of traditional mineral ingredients such as low bioavailability. Moreover, ferritin can be used to remove heavy metal ions from contaminated food. Silver and palladium nanoparticles formed by ferritin are also applied as anticancer agents. Ferritin combined with metal ions can be also used to detect harmful substances. This review aims to provide a comprehensive overview of ferritin's function in transporting and binding metal ions, and discusses the limitations and future prospects, which offers valuable insights for the application of ferritin in mineral supplements, food detoxifiers, anticancer agents, and food detections.
Collapse
Affiliation(s)
- Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huimin Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haotong Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Xia X, Li H, Zang J, Cheng S, Du M. Advancements of the Molecular Directed Design and Structure-Activity Relationship of Ferritin Nanocage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7629-7654. [PMID: 38518374 DOI: 10.1021/acs.jafc.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Świątek M, Antosik A, Kochanowska D, Jeżowski P, Smarzyński K, Tomczak A, Kowalczewski PŁ. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci 2023; 18:20220805. [PMID: 38152583 PMCID: PMC10751998 DOI: 10.1515/biol-2022-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Iron is an essential component for the body, but it is also a major cause for the development of many diseases such as cancer, cardiovascular diseases, and autoimmune diseases. It has been suggested that a diet rich in meat products, especially red meat and highly processed products, constitute a nutritional model that increases the risk of developing. In this context, it is indicated that people on an elimination diet (vegetarians and vegans) may be at risk of deficiencies in iron, because this micronutrient is found mainly in foods of animal origin and has lower bioavailability in plant foods. This article reviews the knowledge on the use of leghemoglobin and plant ferritin as sources of iron and discusses their potential for use in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Michał Świątek
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Adrianna Antosik
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Dominika Kochanowska
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965Poznań, Poland
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| |
Collapse
|
8
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
9
|
Harahap IA, Kuligowski M, Schmidt M, Suliburska J. The impact of soy products, isoflavones, and Lactobacillus acidophilus on iron status and morphological parameters in healthy female rats. J Trace Elem Med Biol 2023; 78:127183. [PMID: 37120971 DOI: 10.1016/j.jtemb.2023.127183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Isoflavones and probiotics are two major factors involved in bone health. Osteoporosis and disturbances in iron (Fe) levels are common health problems in aging women. This study aimed to analyze how soybean products, daidzein, genistein, and Lactobacillus acidophilus (LA) affect Fe status and blood morphological parameters in healthy female rats. METHODS A total of 48 Wistar rats aged 3 months were randomly divided into six groups. The control group (K) received a standard diet (AIN 93 M). The remaining five groups received a standard diet supplemented with the following: tempeh flour (TP); soy flour (RS); daidzein and genistein (DG); Lactobacillus acidophilus DSM20079 (LA); as well as a combination of daidzein, genistein, and L. acidophilus DSM20079 (DGLA). After 8 weeks of intervention, blood samples of the rats were collected for morphological analysis, whereas tissue samples were collected and kept at -80 °C until Fe analysis. Red blood cells, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets (PLTs), red cell distribution width, white blood cells, neutrophils (NEUT), lymphocytes (LYM), monocytes, eosinophils (EOS), and basophils were measured for blood morphological analysis. Fe concentrations were determined using flame atomic spectrometry. For statistical analysis, an ANOVA test for significance at the 5 % level was used. The relationship between tissue Fe levels and blood morphological parameters was determined using Pearson's correlation. RESULTS Although no significant differences were observed in the Fe content between all diets, the TP group showed significantly higher levels of NEUT and lower levels of LYM than the control group. Compared with the DG and DGLA groups, the TP group showed a dramatically higher PLT level. In addition, the RS group showed significantly higher Fe concentrations in the spleen compared with the standard diet. Compared with the DG, LA, and DGLA groups, the RS group also showed significantly higher Fe concentrations in the liver. Compared with the TP, DG, LA, and DGLA groups, the RS group showed dramatically higher Fe concentrations in the femur. Pearson's correlations between blood morphological parameters and Fe levels in tissues were observed, especially a negative correlation between the Fe level in the femur and the NEUT concentration (-0.465) and a strong positive correlation between the Fe level in the femur and the LYM concentration (0.533). CONCLUSION Soybean flour was found to increase Fe levels in rats, whereas tempeh may alter anti-inflammatory blood parameters. Isoflavones and probiotics did not affect Fe status in healthy female rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
10
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
11
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Zielińska-Dawidziak M, Białas W, Piasecka-Kwiatkowska D, Staniek H, Niedzielski P. Digestibility of Protein and Iron Availability from Enriched Legume Sprouts. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01045-x. [PMID: 36729316 PMCID: PMC10363042 DOI: 10.1007/s11130-023-01045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plant ferritin is suggested as a good source of iron for human. Usually present in trace amounts, it was induced in legumes seeds by their sprouting in FeSO4 solution. Fortified sprouts were digested in the in vitro model of the human gastrointestinal tract. ~49% of lupine and ~ 45% of soy proteins were extracted into gastric fluid and next ~ 12% and only ~ 1% into intestine fluid from lupine and soybean, respectively. Gastric digestion released mainly ferrous iron (~ 85% from lupine and ~ 95% in soybean sprouts). Complexed iron constituted ~ 43% of total iron in intestine after lupine digestion and ~ 55% after soybean digestion. Intestine digestion doubled the total iron released from lupine sprouts (from ~ 21% up to 38%), while in soybean it increased from ~ 16% up to ~ 23%. Ferritin presence was confirmed by the specific antibodies in digestive fluids, but it is only partially extracted from sprouts during in vitro digestion.
Collapse
Affiliation(s)
- Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Halina Staniek
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Wang W, Wang Y, Xi H, Song Z, Zhang W, Xie L, Ma D, Qin N, Wang H. Extension Peptide of Plant Ferritin from Setaria italica Presents a Novel Fold. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:934-943. [PMID: 36576327 DOI: 10.1021/acs.jafc.2c07595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The extension peptide (EP) is the most distinctive feature of mature plant ferritin. Some EPs have exhibited serine-like protease activity, which is associated with iron uptake and release. EP forms a helix and a long loop, followed by a conserved core helical bundle. However, whether the EP adopts a stable or uniform folding pattern in all plants remains unclear. To clarify this, we investigated the crystal structure of ferritin-1 from Setaria italica (SiFer1), a type of monocotyledon. In our structure of SiFer1, the EP is different from other EPs in other solved structures of plant ferritins and consisted of a pair of β-sheets, a shorter helix, and two loops, which masks two hydrophobic pockets on the outer surface of every subunit. Furthermore, sequence analysis and structure comparison suggest that the EPs in ferritins from monocotyledons may adopt a novel fold pattern, and the conformations of EPs in ferritins are alterable among different plant species. Furthermore, additional eight iron atoms were first founded binding in the fourfold channels, demonstrating the vital function of fourfold channels in iron diffusion. In all, our structure provides new clues for understanding plant ferritins and the functions of the EP.
Collapse
Affiliation(s)
- Wenming Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuan Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfang Xi
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zidan Song
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wenlong Zhang
- College of Chinese Medicine and Food Engineering, Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Leilei Xie
- College of Chinese Medicine and Food Engineering, Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Danyang Ma
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Nan Qin
- College of Chinese Medicine and Food Engineering, Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Hongfei Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
14
|
Comparison of bioavailability and transporters gene expression of four iron fortificants added to infant cereals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Cegarra L, Aguirre P, Nuñez MT, Gerdtzen ZP, Salgado JC. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis. Am J Physiol Cell Physiol 2022; 323:C1791-C1806. [PMID: 36342159 DOI: 10.1152/ajpcell.00411.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| | - Pabla Aguirre
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Marco T Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.,Millennium Nucleus Marine Agronomy of Seaweed Holobionts, Puerto Mont, Chile
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| |
Collapse
|
16
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
17
|
Collins JF. A Synthetic Ferritin Core Analog Functions as a Next-Generation Iron Supplement. J Nutr 2022; 152:651-652. [PMID: 35134990 PMCID: PMC8891172 DOI: 10.1093/jn/nxab436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
18
|
OUP accepted manuscript. Nutr Rev 2022; 80:1974-1984. [DOI: 10.1093/nutrit/nuac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Giordano G, Napolitano M, Di Battista V, Lucchesi A. Oral high-dose sucrosomial iron vs intravenous iron in sideropenic anemia patients intolerant/refractory to iron sulfate: a multicentric randomized study. Ann Hematol 2021; 100:2173-2179. [PMID: 33263170 PMCID: PMC8357646 DOI: 10.1007/s00277-020-04361-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
Iron deficiency anemia is among the most frequent causes of disability. Intravenous iron is the quickest way to correct iron deficiency, bypassing the bottleneck of iron intestinal absorption, the only true mechanism of iron balance regulation in human body. Intravenous iron administration is suggested in patients who are refractory/intolerant to oral iron sulfate. However, the intravenous way of iron administration requires several precautions; as the in-hospital administration requires a resuscitation service, as imposed in Europe by the European Medicine Agency, it is very expensive and negatively affects patient's perceived quality of life. A new oral iron formulation, Sucrosomial iron, bypassing the normal way of absorption, seems to be cost-effective in correcting iron deficiency anemia at doses higher than those usually effective with other oral iron formulations. In this multicentric randomized study, we analyze the cost-effectiveness of intravenous sodium ferrigluconate vs oral Sucrosomial iron in patients with iron deficiency anemia refractory/intolerant to oral iron sulfate without other interfering factors on iron absorption.
Collapse
Affiliation(s)
- Giulio Giordano
- Division of Internal Medicine, Hematology Service, Regional Hospital "A. Cardarelli", Campobasso, Italy
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Haematology Unit, University Hospital "P. Giaccone", University of Palermo, Via del Vespro 127, 90127, Palermo, Italy.
| | - Valeria Di Battista
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro Lucchesi
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
20
|
Entrapment of an ACE inhibitory peptide into ferritin nanoparticles coated with sodium deoxycholate: Improved chemical stability and intestinal absorption. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Meng D, Zhu L, Zhang L, Ma T, Zhang Y, Chen L, Shan Y, Wang Y, Wang Z, Zhou Z, Yang R. Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis. Food Chem 2021; 361:130069. [PMID: 34058660 DOI: 10.1016/j.foodchem.2021.130069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022]
Abstract
Ferritin, a protein with an 8-nm cage structure, can encapsulate and deliver bioactive molecules. In this study, succinylation was adopted to modify plant ferritin to fabricate succinylated red been ferritin (SRBF) at pH 8.0. The SRBF was retained as a cage-like shape (12 nm diameter), while its secondary structure was altered, rendering higher negative charge accompanies by decreased surface hydrophobicity. The SRBF also demonstrated favorable property of reversible assembly regulated by pH-transitions (pH 2.0/7.0), thus enabled successful encapsulation of epigallocatechin gallate (EGCG) for fabrication of EGCG-loaded SRBF complexes with a diameter of ~12 nm. Succinylation enhanced the thermal stabilities of ferritin and the embedded EGCG. Moreover, SRBF markedly improved the transport efficiency of EGCG in Caco-2 monolayers relative to EGCG and that encapsulated in unmodified ferritin. These findings have extended the succinylation reaction for the cage-like protein modification, and facilitated the usage of ferritin variant in delivery of bioactive molecules.
Collapse
Affiliation(s)
- Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liqun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tianhua Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yimeng Shan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yiwen Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
22
|
Kawakami Y, Bhullar NK. Delineating the future of iron biofortification studies in rice: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2099-2113. [PMID: 32974681 DOI: 10.1093/jxb/eraa446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) deficiency in humans is a widespread problem worldwide. Fe biofortification of rice (Oryza sativa) is a promising approach to address human Fe deficiency. Since its conceptualization, various biofortification strategies have been developed, some of which have resulted in significant increases in grain Fe concentration. However, there are still many aspects that have not yet been addressed in the studies to date. In this review, we first overview the important rice Fe biofortification strategies reported to date and the complications associated with them. Next, we highlight the key outstanding questions and hypotheses related to rice Fe biofortification. Finally, we make suggestions for the direction of future rice biofortification studies.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
23
|
Yang R, Zhu L, Meng D, Wang Q, Zhou K, Wang Z, Zhou Z. Proteins from leguminous plants: from structure, property to the function in encapsulation/binding and delivery of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:5203-5223. [PMID: 33569994 DOI: 10.1080/10408398.2021.1883545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leguminous proteins are important nutritional components in leguminous plants, and they have different structures and functions depending on their sources. Due to their specific structures and physicochemical properties, leguminous proteins have received much attention in food and nutritional applications, and they can be applied as various carriers for binding/encapsulation and delivery of food bioactive compounds. In this review, we systematically summarize the different structures and functional properties of several leguminous proteins which can be classified as ferritin, trypsin inhibitor, β-conglycinin, glycinin, and various leguminous proteins isolates. Moreover, we review the development of leguminous proteins as carriers of food bioactive compounds, and emphasize the functions of leguminous protein-based binding/encapsulation and delivery in overcoming the low bioavailability, instability and low absorption efficiency of food bioactive compounds. The limitations and challenges of the utilization of leguminous proteins as carriers of food bioactive compounds are also discussed. Possible approaches to resolve the limitations of applying leguminous proteins such as instability of proteins and poor absorption of bioactive compounds are recommended.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Lei Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Demei Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Zhiwei Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
24
|
Venkataramani V. Iron Homeostasis and Metabolism: Two Sides of a Coin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:25-40. [PMID: 34370286 DOI: 10.1007/978-3-030-62026-4_3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron is an ancient, essential and versatile transition metal found in almost all living organisms on Earth. This fundamental trace element is used in the synthesis of heme and iron-sulfur (Fe-S) containing proteins and other vital cofactors that are involved in respiration, redox reactions, catalysis, DNA synthesis and transcription. At the same time, the ability of iron to cycle between its oxidized, ferric (Fe3+) and its reduced, ferrous (Fe2+) state contributes to the production of free radicals that can damage biomolecules, including proteins, lipids and DNA. In particular, the regulated non-apoptotic cell death ferroptosis is driven by Fe2+-dependent lipid peroxidation that can be prevented by iron chelation or genetic inhibition of cellular iron uptake. Therefore, iron homeostasis must be tightly regulated to avoid iron toxicity. This review provides an overview of the origin and chemistry of iron that makes it suitable for a variety of biological functions and addresses how organisms evolved various strategies, including their scavenging and antioxidant machinery, to manage redox-associated drawbacks. Finally, key mechanisms of iron metabolism are highlighted in human diseases and model organisms, underlining the perils of dysfunctional iron handlings.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany.
| |
Collapse
|
25
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review. Compr Rev Food Sci Food Saf 2020; 20:652-685. [PMID: 33443794 DOI: 10.1111/1541-4337.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding of the mechanism of interactions between dietary elements, their salts, and complexing/binding ligands is vital to manage both deficiency and toxicity associated with essential element bioavailability. Numerous mineral ligands are found in both animal and plant foods and are known to exert bioactivity via element chelation resulting in modulation of antioxidant capacity or micobiome metabolism among other physiological outcomes. However, little is explored in the context of dietary mineral ligands and element bioavailability enhancement, particularly with respect to ligands from plant-derived food sources. This review highlights a novel perspective to consider various plant macro/micronutrients as prospective bioavailability enhancing ligands of three essential elements (Fe, Zn, and Ca). We also delineate the molecular mechanisms of the ligand-binding interactions underlying mineral bioaccessibility at the luminal level. We conclude that despite current understandings of some of the structure-activity relationships associated with strong mineral-ligand binding, the physiological links between ligands as element carriers and uptake at targeted sites throughout the gastrointestinal (GI) tract still require more research. The binding behavior of potential ligands in the human diet should be further elucidated and validated using pharmacokinetic approaches and GI models.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,CSIRO Agriculture & Food, Werribee, VIC, Australia
| | | | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Iron Metabolism in Obesity and Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21155529. [PMID: 32752277 PMCID: PMC7432525 DOI: 10.3390/ijms21155529] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is an excessive adipose tissue accumulation that may have detrimental effects on health. Particularly, childhood obesity has become one of the main public health problems in the 21st century, since its prevalence has widely increased in recent years. Childhood obesity is intimately related to the development of several comorbidities such as nonalcoholic fatty liver disease, dyslipidemia, type 2 diabetes mellitus, non-congenital cardiovascular disease, chronic inflammation and anemia, among others. Within this tangled interplay between these comorbidities and associated pathological conditions, obesity has been closely linked to important perturbations in iron metabolism. Iron is the second most abundant metal on Earth, but its bioavailability is hampered by its ability to form highly insoluble oxides, with iron deficiency being the most common nutritional disorder. Although every living organism requires iron, it may also cause toxic oxygen damage by generating oxygen free radicals through the Fenton reaction. Thus, iron homeostasis and metabolism must be tightly regulated in humans at every level (i.e., absorption, storage, transport, recycling). Dysregulation of any step involved in iron metabolism may lead to iron deficiencies and, eventually, to the anemic state related to obesity. In this review article, we summarize the existent evidence on the role of the most recently described components of iron metabolism and their alterations in obesity.
Collapse
|
27
|
Feng X, Jiang S, Zhang F, Wang R, Zhao Y, Zeng M. Siderophore (from Synechococcus sp. PCC 7002)-Chelated Iron Promotes Iron Uptake in Caco-2 Cells and Ameliorates Iron Deficiency in Rats. Mar Drugs 2019; 17:md17120709. [PMID: 31888208 PMCID: PMC6950231 DOI: 10.3390/md17120709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
Siderophores are iron chelators with low molecular weight secreted by microorganisms. Siderophores have the potential to become natural iron fortifiers. To explore the feasibility of the application of Synechococcus sp. PCC7002-derived siderophores as iron fortifiers, Synechococcus sp. PCC7002, as a carrier, was fermented to produce siderophores. The absorption mechanism and anemia intervention effect of siderophores-chelated iron (SCI) were studied through the polarized Caco-2 Cell monolayers and the rat model of iron-deficiency anemia, respectively. The results indicated that siderophores (from Synechococcus sp. PCC7002) had an enhancing effect on iron absorption in polarized Caco-2 cell monolayers. The main absorption site of SCI was duodenum with pH 5.5, and the absorption methods included endocytosis and DMT1, with endocytosis being dominant. The effect of sodium phytate on SCI was less than that of ferrous sulfate. Therefore, SCI could resist inhibitory iron absorption factors in polarized Caco-2 cell monolayers. SCI showed significantly higher relative bioavailability (133.58 ± 15.42%) than ferrous sulfate (100 ± 14.84%) and ferric citrate (66.34 ± 8.715%) in the rat model. Food intake, hemoglobin concentration, and hematocrit and serum iron concentration of rats improved significantly after Fe-repletion. Overall, this study indicated that siderophores derived from Synechococcus sp. PCC7002 could be an effective and feasible iron nutritive fortifier.
Collapse
Affiliation(s)
| | | | | | | | - Yuanhui Zhao
- Correspondence: (Y.Z.); (M.Z.); Tel./Fax: +86-53-28-2032-400 (Y.Z.); +86-53-28-2032-783 (M.Z.)
| | - Mingyong Zeng
- Correspondence: (Y.Z.); (M.Z.); Tel./Fax: +86-53-28-2032-400 (Y.Z.); +86-53-28-2032-783 (M.Z.)
| |
Collapse
|
28
|
Liu Y, Yang R, Liu J, Meng D, Zhou Z, Zhang Y, Blanchard C. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chem 2019; 299:125097. [DOI: 10.1016/j.foodchem.2019.125097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
29
|
Kyosaka I, Fujita S, Shimizu Y, Saeki H. Digestibility in the gastrointestinal tract and migration to blood of β'-component (Onk k 5), a major salmon roe IgE-binding protein. Food Chem 2019; 289:694-700. [PMID: 30955667 DOI: 10.1016/j.foodchem.2019.03.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
The major allergen of chum salmon (Oncorhynchus keta) roe is the β'-component (Onc k 5, β'-c), which is a yolk protein and a fragment of vitellogenin. When yolk content containing β'-c was orally administered to mice, β'-c passed through the gastrointestinal tract and was excreted in feces without marked degradation. The direct administration of β'-c to ligated jejunal and ileal loops showed that β'-c was absorbed through the small intestine and transferred into the blood. Immunohistochemical staining showed that orally administered β'-c was distributed from the apical side to the basal side of intestinal epithelial cells, suggesting that endocytosis may be involved in the intestinal absorption of β'-c. In conclusion, β'-c is absorbed along a large portion of the small intestine and circulates in the blood stream without significant digestion. The resistance of β'-c to gastrointestinal digestion seems to contribute to its strong allergenicity.
Collapse
Affiliation(s)
- Issei Kyosaka
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Shingo Fujita
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
30
|
Cheng C, Huang DC, Zhao LY, Cao CJ, Chen GT. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (III) complex from Flammulina velutipes. Int J Biol Macromol 2019; 132:801-810. [DOI: 10.1016/j.ijbiomac.2019.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
|
31
|
Pereira DI, Mohammed NI, Ofordile O, Camara F, Baldeh B, Mendy T, Sanyang C, Jallow AT, Hossain I, Wason J, Prentice AM. A novel nano-iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT-GUT double-blind, randomised, placebo-controlled trial protocol. Gates Open Res 2018; 2:48. [PMID: 30569038 PMCID: PMC6266659 DOI: 10.12688/gatesopenres.12866.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Iron deficiency and its associated anaemia (IDA) are the leading forms of micronutrient malnutrition worldwide. Here we describe the rationale and design of the first clinical trial evaluating the efficacy and safety of an innovative nano iron supplement, iron hydroxide adipate tartrate (IHAT), for the treatment of IDA in young children (IHAT-GUT trial). Oral iron is often ineffective due to poor absorption and/or gastrointestinal adverse effects. IHAT is novel since it is effectively absorbed whilst remaining nanoparticulate in the gut, therefore should enable supplementation with fewer symptoms. Methods: IHAT-GUT is a three-arm, double-blind, randomised, placebo-controlled phase II trial conducted in Gambian children 6-35 months of age. The intervention consists of a 12-week supplementation with either IHAT, ferrous sulphate (both at doses bioequivalent to 12.5 mg Fe/day) or placebo. The trial aims to include 705 children with IDA who will be randomly assigned (1:1:1) to each arm. The primary objectives are to test non-inferiority of IHAT in relation to ferrous sulphate at treating IDA, and to test superiority of IHAT in relation to ferrous sulphate and non-inferiority in relation to placebo in terms of diarrhoea incidence and prevalence. Secondary objectives are mechanistic assessments, to test whether IHAT reduces the burden of enteric pathogens, morbidity, and intestinal inflammation, and that it does not cause detrimental changes to the gut microbiome, particularly in relation to Lactobacillaceae, Bifidobacteriaceae and Enterobacteriaceae. Discussion: This trial will test the hypothesis that supplementation with IHAT eliminates iron deficiency and improves haemoglobin levels without inducing gastrointestinal adverse effects. If shown to be the case, this would open the possibility for further testing and use of IHAT as a novel iron source for micronutrient intervention strategies in resource-poor countries, with the ultimate aim to help reduce the IDA global burden. Registration: This trial is registered at clinicaltrials.gov ( NCT02941081).
Collapse
Affiliation(s)
- Dora I.A. Pereira
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Nuredin I. Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ogochukwu Ofordile
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Famalang Camara
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Bakary Baldeh
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Thomas Mendy
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Chilel Sanyang
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Amadou T. Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ilias Hossain
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - James Wason
- MRC Biostatistics Unit, Institute of Public Health, University of Cambridge, Cambridge, CB2 0SR, UK
- Institute of Health and Society, Newcastle University, Newcastle, NE2 4BN, UK
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
32
|
Pereira DIA, Mohammed NI, Ofordile O, Camara F, Baldeh B, Mendy T, Sanyang C, Jallow AT, Hossain I, Wason J, Prentice AM. A novel nano-iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT-GUT double-blind, randomised, placebo-controlled trial protocol. Gates Open Res 2018. [PMID: 30569038 DOI: 10.12688/gatesopenres.12866.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Iron deficiency and its associated anaemia (IDA) are the leading forms of micronutrient malnutrition worldwide. Here we describe the rationale and design of the first clinical trial evaluating the efficacy and safety of an innovative nano iron supplement, iron hydroxide adipate tartrate (IHAT), for the treatment of IDA in young children (IHAT-GUT trial). Oral iron is often ineffective due to poor absorption and/or gastrointestinal adverse effects. IHAT is novel since it is effectively absorbed whilst remaining nanoparticulate in the gut, therefore should enable supplementation with fewer symptoms. Methods: IHAT-GUT is a three-arm, double-blind, randomised, placebo-controlled phase II trial conducted in Gambian children 6-35 months of age. The intervention consists of a 12-week supplementation with either IHAT, ferrous sulphate (both at doses bioequivalent to 12.5 mg Fe/day) or placebo. The trial aims to include 705 children with IDA who will be randomly assigned (1:1:1) to each arm. The primary objectives are to test non-inferiority of IHAT in relation to ferrous sulphate at treating IDA, and to test superiority of IHAT in relation to ferrous sulphate and non-inferiority in relation to placebo in terms of diarrhoea incidence and prevalence. Secondary objectives are mechanistic assessments, to test whether IHAT reduces the burden of enteric pathogens, morbidity, and intestinal inflammation, and that it does not cause detrimental changes to the gut microbiome, particularly in relation to Lactobacillaceae, Bifidobacteriaceae and Enterobacteriaceae. Discussion: This trial will test the hypothesis that supplementation with IHAT eliminates iron deficiency and improves haemoglobin levels without inducing gastrointestinal adverse effects. If shown to be the case, this would open the possibility for further testing and use of IHAT as a novel iron source for micronutrient intervention strategies in resource-poor countries, with the ultimate aim to help reduce the IDA global burden. Registration: This trial is registered at clinicaltrials.gov ( NCT02941081).
Collapse
Affiliation(s)
- Dora I A Pereira
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.,Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Nuredin I Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ogochukwu Ofordile
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Famalang Camara
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Bakary Baldeh
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Thomas Mendy
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Chilel Sanyang
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Amadou T Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ilias Hossain
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - James Wason
- MRC Biostatistics Unit, Institute of Public Health, University of Cambridge, Cambridge, CB2 0SR, UK.,Institute of Health and Society, Newcastle University, Newcastle, NE2 4BN, UK
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
33
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
34
|
Turiel-Fernández D, Bettmer J, Montes-Bayón M. Evaluation of the uptake, storage and cell effects of nano-iron in enterocyte-like cell models. J Trace Elem Med Biol 2018; 49:98-104. [PMID: 29895379 DOI: 10.1016/j.jtemb.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/08/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022]
Abstract
The therapy with nanocompounds is widely used to treat Fe deficiency and an emerging trend to inhibit tumor growth. The present work aims to address the management of different FeONP, comparing sucrose covered FeONP and Fe nanoparticles in the form of the ferritin with non-particulated inorganic Fe (II) by enterocytes-like colon cancer cell lines (Caco-2 and HT-29). Iron uptake results revealed significantly higher Fe incorporation in the case of nanoparticulated Fe, first in the form of FeONP and second in the form of ferritin with respect to inorganic Fe (II). Furthermore, the intracellular Fe fractionation, conducted by size exclusion chromatography coupled on line to inductively coupled plasma mass spectrometry (SEC-ICP-MS) showed a significant increase of the Fe-ferritin peak upon exposure of cells to the following compounds ferritin > FeONP > FeSO4. Such results point out that the sucrose coated FeONP released Fe into the cell cytosol that was used to replenish the existing cytosolic ferritin without inducing changes in the protein concentration. On the other hand, the increase of the Fe-ferritin peak in cells exposed to ferritin as iron source is due to a significant increase on the intracellular protein concentration, as proved by using an ICP-MS linked ferritin sandwich immune assay. Cell viability experiments conducted with concentrations up to 1000 μmol L-1 (as Fe) of each compound under scrutiny did not reveal significant differences among Fe species regarding global cellular toxicity. However, significant cell DNA damage was detected when treating the cells with FeONP (500 μmol L-1).
Collapse
Affiliation(s)
- Daniel Turiel-Fernández
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Jörg Bettmer
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Maria Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
35
|
Perfecto A, Rodriguez-Ramiro I, Rodriguez-Celma J, Sharp P, Balk J, Fairweather-Tait S. Pea Ferritin Stability under Gastric pH Conditions Determines the Mechanism of Iron Uptake in Caco-2 Cells. J Nutr 2018; 148:1229-1235. [PMID: 29939292 PMCID: PMC6074850 DOI: 10.1093/jn/nxy096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/26/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Iron deficiency is an enduring global health problem that requires new remedial approaches. Iron absorption from soybean-derived ferritin, an ∼550-kDa iron storage protein, is comparable to bioavailable ferrous sulfate (FeSO4). However, the absorption of ferritin is reported to involve an endocytic mechanism, independent of divalent metal ion transporter 1 (DMT-1), the transporter for nonheme iron. Objective Our overall aim was to examine the potential of purified ferritin from peas (Pisum sativum) as a food supplement by measuring its stability under gastric pH treatment and the mechanisms of iron uptake into Caco-2 cells. Methods Caco-2 cells were treated with native or gastric pH-treated pea ferritin in combination with dietary modulators of nonheme iron uptake, small interfering RNA targeting DMT-1, or chemical inhibitors of endocytosis. Cellular ferritin formation, a surrogate measure of iron uptake, and internalization of pea ferritin with the use of specific antibodies were measured. The production of reactive oxygen species (ROS) in response to equimolar concentrations of native pea ferritin and FeSO4 was also compared. Results Pea ferritin exposed to gastric pH treatment was degraded, and the released iron was transported into Caco-2 cells by DMT-1. Inhibitors of DMT-1 and nonheme iron absorption reduced iron uptake by 26-40%. Conversely, in the absence of gastric pH treatment, the iron uptake of native pea ferritin was unaffected by inhibitors of nonheme iron absorption, and the protein was observed to be internalized in Caco-2 cells. Chlorpromazine (clathrin-mediated endocytosis inhibitor) reduced the native pea ferritin content within cells by ∼30%, which confirmed that the native pea ferritin was transported into cells via a clathrin-mediated endocytic pathway. In addition, 60% less ROS production resulted from native pea ferritin in comparison to FeSO4. Conclusion With consideration that nonheme dietary inhibitors display no effect on iron uptake and the low oxidative potential relative to FeSO4, intact pea ferritin appears to be a promising iron supplement.
Collapse
Affiliation(s)
- Antonio Perfecto
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Jorge Rodriguez-Celma
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Center, Norwich, United Kingdom
| | - Paul Sharp
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Janneke Balk
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Center, Norwich, United Kingdom
| | | |
Collapse
|
36
|
Abstract
AbstractDietary deficiencies in Fe and Zn are globally widespread, causing serious health problems such as anaemia, poor pregnancy outcomes, increased risk of morbidity and mortality, stunted growth and impaired physical and cognitive development. Edible insects, of which a diversity of over 2000 species is available, are dietary components for about 2 billion individuals and are a valuable source of animal protein. In the present paper, we review the available information on Fe and Zn in edible insects and their potential as a source of these micronutrients for the rapidly growing human population. The levels of Fe and Zn present in eleven edible insect species that are mass-reared and six species that are collected from nature are similar to or higher than in other animal-based food sources. High protein levels in edible insect species are associated with high Fe and Zn levels. Fe and Zn levels are significantly positively correlated. Biochemically, Fe and Zn in insects occur predominantly in non-haem forms, bound to the proteins ferritin, transferrin and other transport and storage proteins. Knowledge gaps exist for bioavailability in the human alimentary tract, the effect of anti-nutritional factors in other dietary components such as grains on Fe and Zn absorption and the effect of food preparation methods. We conclude that edible insects present unique opportunities for improving the micronutrient status of both resource-poor and Western populations.
Collapse
|
37
|
Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 2018; 101:2763-2813. [PMID: 29397180 DOI: 10.3168/jds.2017-13112] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Several minerals are required for life to exist. In animals, 7 elements (Ca, P, Mg, Na, K, Cl, and S) are required to be present in the diet in fairly large amounts (grams to tens of grams each day for the dairy cow) and are termed macrominerals. Several other elements are termed microminerals or trace minerals because they are required in much smaller amounts (milligrams to micrograms each day). In most cases the mineral in the diet must be absorbed across the gastrointestinal mucosa and enter the blood if it is to be of value to the animal. The bulk of this review discusses the paracellular and transcellular mechanisms used by the gastrointestinal tract to absorb each of the various minerals needed. Unfortunately, particularly in ruminants, interactions between minerals and other substances within the diet can occur within the digestive tract that impair mineral absorption. The attributes of organic or chelated minerals that might permit diet minerals to circumvent factors that inhibit absorption of more traditional inorganic forms of these minerals are discussed. Once absorbed, minerals are used in many ways. One focus of this review is the effect macrominerals have on the acid-base status of the animal. Manipulation of dietary cation and anion content is commonly used as a tool in the dry period and during lactation to improve performance. A section on how the strong ion theory can be used to understand these effects is included. Many microminerals play a role in the body as cofactors of enzymes involved in controlling free radicals within the body and are vital to antioxidant capabilities. Those same minerals, when consumed in excess, can become pro-oxidants in the body, generating destructive free radicals. Complex interactions between minerals can compromise the effectiveness of a diet in promoting health and productivity of the cow. The objective of this review is to provide insight into some of these mechanisms.
Collapse
Affiliation(s)
- Jesse P Goff
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011.
| |
Collapse
|
38
|
Zang J, Chen H, Zhao G, Wang F, Ren F. Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications. Crit Rev Food Sci Nutr 2018; 57:3673-3683. [PMID: 26980693 DOI: 10.1080/10408398.2016.1149690] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ferritin is a class of naturally occurring iron storage proteins, which is distributed widely in animal, plant, and bacteria. It usually consists of 24 subunits that form a hollow protein shell with high symmetry. One holoferritin molecule can store up to 4500 iron atom within its inner cavity, and it becomes apoferritin upon removal of iron from the cavity. Recently, scientists have subverted these nature functions and used reversibly self-assembled property of apoferritin cage controlled by pH for the encapsulation and delivery of bioactive nutrients or anticancer drug. In all these cases, the ferritin cages shield their cargo from the influence of external conditions and provide a controlled microenvironment. More importantly, upon encapsulation, ferritin shell greatly improved the water solubility, thermal stability, photostability, and cellular uptake activity of these small bioactive compounds. This review aims to highlight recent advances in applications of ferritin cage as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to follow for further studies.
Collapse
Affiliation(s)
- Jiachen Zang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing , P. R. China
| | - Hai Chen
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing , P. R. China
| | - Guanghua Zhao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing , P. R. China
| | - Fudi Wang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing , P. R. China
| | - Fazheng Ren
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing , P. R. China.,b Beijing Laboratory for Food Quality and Safety , Beijing , P. R. China
| |
Collapse
|
39
|
Yang R, Tian J, Wang D, Blanchard C, Zhou Z. Chitosan binding onto the epigallocatechin-loaded ferritin nanocage enhances its transport across Caco-2 cells. Food Funct 2018. [DOI: 10.1039/c8fo00097b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The binding of chitosan to epigallocatechin-encapsulated ferritin enhances epigallocatechin transport across Caco-2 cells through the transferrin receptor 1 (TfR1)-mediated absorption pathway.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
- China
| | - Jing Tian
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
- China
| | | | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains
- Wagga Wagga
- Australia
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin
- China
| |
Collapse
|
40
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Perfecto A, Elgy C, Valsami-Jones E, Sharp P, Hilty F, Fairweather-Tait S. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells. Nutrients 2017; 9:nu9040359. [PMID: 28375175 PMCID: PMC5409698 DOI: 10.3390/nu9040359] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Food fortification programs to reduce iron deficiency anemia require bioavailable forms of iron that do not cause adverse organoleptic effects. Rodent studies show that nano-sized ferric phosphate (NP-FePO4) is as bioavailable as ferrous sulfate, but there is controversy over the mechanism of absorption. We undertook in vitro studies to examine this using a Caco-2 cell model and simulated gastrointestinal (GI) digestion. Supernatant iron concentrations increased inversely with pH, and iron uptake into Caco-2 cells was 2–3 fold higher when NP-FePO4 was digested at pH 1 compared to pH 2. The size and distribution of NP-FePO4 particles during GI digestion was examined using transmission electron microscopy. The d50 of the particle distribution was 413 nm. Using disc centrifugal sedimentation, a high degree of agglomeration in NP-FePO4 following simulated GI digestion was observed, with only 20% of the particles ≤1000 nm. In Caco-2 cells, divalent metal transporter-1 (DMT1) and endocytosis inhibitors demonstrated that NP-FePO4 was mainly absorbed via DMT1. Small particles may be absorbed by clathrin-mediated endocytosis and micropinocytosis. These findings should be considered when assessing the potential of iron nanoparticles for food fortification.
Collapse
Affiliation(s)
- Antonio Perfecto
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Christine Elgy
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Eugenia Valsami-Jones
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Paul Sharp
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Florentine Hilty
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Susan Fairweather-Tait
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| |
Collapse
|
42
|
Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 2017; 75:49-60. [PMID: 27974599 PMCID: PMC5155616 DOI: 10.1093/nutrit/nuw055] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In light of evidence that high-dose iron supplements lead to a range of adverse events in low-income settings, the safety and efficacy of lower doses of iron provided through biological or industrial fortification of foodstuffs is reviewed. First, strategies for point-of-manufacture chemical fortification are compared with biofortification achieved through plant breeding. Recent insights into the mechanisms of human iron absorption and regulation, the mechanisms by which iron can promote malaria and bacterial infections, and the role of iron in modifying the gut microbiota are summarized. There is strong evidence that supplemental iron given in nonphysiological amounts can increase the risk of bacterial and protozoal infections (especially malaria), but the use of lower quantities of iron provided within a food matrix, ie, fortified food, should be safer in most cases and represents a more logical strategy for a sustained reduction of the risk of deficiency by providing the best balance of risk and benefits. Further research into iron compounds that would minimize the availability of unabsorbed iron to the gut microbiota is warranted.
Collapse
Affiliation(s)
- Andrew M Prentice
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | - Yery A Mendoza
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dora Pereira
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Carla Cerami
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rita Wegmuller
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Constable
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jörg Spieldenner
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin. Food Chem 2016; 213:260-267. [DOI: 10.1016/j.foodchem.2016.06.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 01/02/2023]
|
44
|
Kujawska M, Ewertowska M, Ignatowicz E, Adamska T, Szaefer H, Zielińska-Dawidziak M, Piasecka-Kwiatkowska D, Jodynis-Liebert J. Evaluation of Safety of Iron-Fortified Soybean Sprouts, a Potential Component of Functional Food, in Rat. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:13-18. [PMID: 26880214 PMCID: PMC4786607 DOI: 10.1007/s11130-016-0535-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ferritin-iron is currently considered as one of the most promising iron forms to prevent iron deficiency anaemia. We found that the cultivation of soybean seeds in a solution of ferrous sulfate results in material with extremely high iron content - 560.6 mg Fe/100 g of dry matter, while ferritin iron content was 420.5 mg/100 g dry matter. To assess the potential adverse effects of a preparation containing such a high concentration of iron, male and female Wistar rats were exposed via diet to 10, 30, 60 g soybean sprouts powder/kg feed for 90 days. There were no differences in final body weight and mean food consumption between controls and rats administered sprouts. No statistically significant differences in haematology and clinical chemistry parameters were found between controls and treated rats. Microscopic examination of 22 tissues did not reveal any pathology due to soybean sprouts intake. Long term administration of the test material did not cause oxidative damage to DNA and protein in the liver as evidenced by the unchanged basal levels of DNA damage as well as carbonyl groups content. Lipid peroxidation was slightly increased only in females. The activity of several antioxidant enzymes: superoxide dismutase, glutathione peroxidase and glutathione S-transferase was increased, which substantially enhanced the antioxidant status in the liver from the rats treated with soybean sprouts. Hence, the material tested can be recommended as a component of food supplements for individuals with iron deficiency anaemia and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631, Poznań, Poland
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631, Poznań, Poland
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcicki Str., 60-781, Poznań, Poland
| | - Teresa Adamska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631, Poznań, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcicki Str., 60-781, Poznań, Poland
| | - Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, 48 Mazowiecka Str., 60-623, Poznań, Poland
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, 48 Mazowiecka Str., 60-623, Poznań, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631, Poznań, Poland.
| |
Collapse
|
45
|
|
46
|
Masuda T. Soybean Ferritin Forms an Iron-Containing Oligomer in Tofu Even after Heat Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8890-5. [PMID: 26390371 DOI: 10.1021/acs.jafc.5b03080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ferritin, a multimeric iron storage protein distributed in almost all living kingdoms, has been highlighted recently as a nutritional iron source in plant-derived foodstuffs, because ferritin iron is suggested to have high bioavailability. In soybean seeds, ferritin contributes largely to the net iron contents. Here, the oligomeric states and iron contents of soybean ferritin during food processing (especially tofu gel formation) were analyzed. Ferritin was purified from tofu gel as an iron-containing oligomer (approximately 1000 Fe atoms per oligomer), which was composed of two types of subunits similar to the native soybean seed ferritin. Circular dichroism spectra also showed no differences in α-helical structure between native soybean ferritin and tofu ferritin. The present data demonstrate that ferritin was stable during the heat treatment (boiling procedure) in food processing, although partial denaturation was observed at temperatures higher than 80 °C.
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
47
|
Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ, Gombau L, Tsytsikova L, Canady R, Pereira DIA, Lefebvre DE. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:609-22. [PMID: 25641962 PMCID: PMC4949541 DOI: 10.1002/wnan.1333] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022]
Abstract
Many natural chemicals in food are in the nanometer size range, and the selective uptake of nutrients with nanoscale dimensions by the gastrointestinal (GI) tract is a normal physiological process. Novel engineered nanomaterials (NMs) can bring various benefits to food, e.g., enhancing nutrition. Assessing potential risks requires an understanding of the stability of these entities in the GI lumen, and an understanding of whether or not they can be absorbed and thus become systemically available. Data are emerging on the mammalian in vivo absorption of engineered NMs composed of chemicals with a range of properties, including metal, mineral, biochemical macromolecules, and lipid-based entities. In vitro and in silico fluid incubation data has also provided some evidence of changes in particle stability, aggregation, and surface properties following interaction with luminal factors present in the GI tract. The variables include physical forces, osmotic concentration, pH, digestive enzymes, other food, and endogenous biochemicals, and commensal microbes. Further research is required to fill remaining data gaps on the effects of these parameters on NM integrity, physicochemical properties, and GI absorption. Knowledge of the most influential luminal parameters will be essential when developing models of the GI tract to quantify the percent absorption of food-relevant engineered NMs for risk assessment.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Dragan Momcilovic
- Department of Health and Human Services, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | - Lyubov Tsytsikova
- Center for Risk Science Innovation and Application, ILSI Research Foundation, Washington, DC, USA
| | - Richard Canady
- Center for Risk Science Innovation and Application, ILSI Research Foundation, Washington, DC, USA
| | - Dora I A Pereira
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - David E Lefebvre
- Regulatory Toxicology Research Division, Food Directorate, Health Canada, Ottawa, Canada
| |
Collapse
|
48
|
Esparza A, Gerdtzen ZP, Olivera-Nappa A, Salgado JC, Núñez MT. Iron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 309:C558-67. [PMID: 26289753 DOI: 10.1152/ajpcell.00412.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
Recent evidence shows that iron induces the endocytosis of the iron transporter dimetal transporter 1 (DMT1) during intestinal absorption. We, and others, have proposed that iron-induced DMT1 internalization underlies the mucosal block phenomena, a regulatory response that downregulates intestinal iron uptake after a large oral dose of iron. In this work, we investigated the participation of reactive oxygen species (ROS) in the establishment of this response. By means of selective surface protein biotinylation of polarized Caco-2 cells, we determined the kinetics of DMT1 internalization from the apical membrane after an iron challenge. The initial decrease in DMT1 levels in the apical membrane induced by iron was followed at later times by increased levels of DMT1. Addition of Fe(2+), but not of Cd(2+), Zn(2+), Cu(2+), or Cu(1+), induced the production of intracellular ROS, as detected by 2',7'-dichlorofluorescein (DCF) fluorescence. Preincubation with the antioxidant N-acetyl-l-cysteine (NAC) resulted in increased DMT1 at the apical membrane before and after addition of iron. Similarly, preincubation with the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) resulted in the enhanced presence of DMT1 at the apical membrane. The decrease of DMT1 levels at the apical membrane induced by iron was associated with decreased iron uptake rates. A kinetic mathematical model based on operational rate constants of DMT1 endocytosis and exocytosis is proposed. The model qualitatively captures the experimental observations and accurately describes the effect of iron, NAC, and DMSO on the apical distribution of DMT1. Taken together, our data suggest that iron uptake induces the production of ROS, which modify DMT1 endocytic cycling, thus changing the iron transport activity at the apical membrane.
Collapse
Affiliation(s)
- Andrés Esparza
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - Alvaro Olivera-Nappa
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - Marco T Núñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile;
| |
Collapse
|
49
|
Yang R, Zhou Z, Sun G, Gao Y, Xu J. Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Lv C, Zhao G, Lönnerdal B. Bioavailability of iron from plant and animal ferritins. J Nutr Biochem 2015; 26:532-40. [DOI: 10.1016/j.jnutbio.2014.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|