1
|
Lao Y, Cui X, Xu Z, Yan H, Zhang Z, Zhang Z, Geng L, Li B, Lu Y, Guan Q, Pu X, Zhao S, Zhu J, Qin X, Sun B. Glutaryl-CoA dehydrogenase suppresses tumor progression and shapes an anti-tumor microenvironment in hepatocellular carcinoma. J Hepatol 2024; 81:847-861. [PMID: 38825017 DOI: 10.1016/j.jhep.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND & AIMS Crotonylation, a crotonyl-CoA-based non-enzymatic protein translational modification, affects diverse biological processes, such as spermatogenesis, tissue injury, inflammation, and neuropsychiatric diseases. Crotonylation is decreased in hepatocellular carcinomas (HCCs), but the mechanism remains unknown. In this study, we aim to describe the role of glutaryl-CoA dehydrogenase (GCDH) in tumor suppression. METHODS Three cohorts containing 40, 248 and 17 pairs of samples were used to evaluate the link between GCDH expression levels and clinical characteristics of HCC, as well as responses to anti-programmed cell death protein 1 (PD-1) treatment. Subcutaneous xenograft, orthotopic xenograft, Trp53Δhep/Δhep; MYC- and Ctnnboe; METoe-driven mouse models were adopted to validate the effects of GCDH on HCC suppression. RESULTS GCDH depletion promoted HCC growth and metastasis, whereas its overexpression reversed these processes. As GCDH converts glutaryl-CoA to crotonyl-CoA to increase crotonylation levels, we performed lysine crotonylome analysis and identified the pentose phosphate pathway (PPP) and glycolysis-related proteins PGD, TKT, and ALDOC as GCDH-induced crotonylation targets. Crotonyl-bound targets showed allosteric effects that controlled their enzymatic activities, leading to decreases in ribose 5-phosphate and lactate production, further limiting the Warburg effect. PPP blockade also stimulated peroxidation, synergizing with senescent modulators to induce senescence in GCDHhigh cells. These cells induced the infiltration of immune cells by the SASP (senescence-associated secretory cell phenotype) to shape an anti-tumor immune microenvironment. Meanwhile, the GCDHlow population was sensitized to anti-PD-1 therapy. CONCLUSION GCDH inhibits HCC progression via crotonylation-induced suppression of the PPP and glycolysis, resulting in HCC cell senescence. The senescent cell further shapes an anti-tumor microenvironment via the SASP. The GCDHlow population is responsive to anti-PD-1 therapy because of the increased presence of PD-1+CD8+ T cells. IMPACT AND IMPLICATIONS Glutaryl-CoA dehydrogenase (GCDH) is a favorable prognostic indicator in liver, lung, and renal cancers. In addition, most GCDH depletion-induced toxic metabolites originate from the liver, accumulate locally, and cannot cross the blood-brain barrier. Herein, we show that GCDH inhibits hepatocellular carcinoma (HCC) progression via crotonylation-induced suppression of the pentose phosphate pathway and glycolysis, resulting in HCC cell senescence. We also found that more PD-1+CD8+ T cells are present in the GCDHlow population, who are thus more responsive to anti-PD-1 therapy. Given that the GCDHlow and GCDHhigh HCC population can be distinguished based on serum glucose and ammonia levels, it will be worthwhile to evaluate the curative effects of pro-senescent and immune-therapeutic strategies based on the expression levels of GCDH.
Collapse
Affiliation(s)
- Yuanxiang Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Xiaohan Cui
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Hongyao Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Zhenwei Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Longpo Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qifei Guan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Xiaohong Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, China
| | - Suwen Zhao
- The iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Jiapeng Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu, China
| | - Xihu Qin
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
2
|
Liu L, Xu J, Huang X, Wang Y, Ma X, Wang X, Liu Y, Ren X, Li J, Wang Y, Zhou S, Yuan L. DHA dietary intervention caused different hippocampal lipid and protein profile in ApoE-/- and C57BL/6J mice. Biomed Pharmacother 2024; 177:117088. [PMID: 38971007 DOI: 10.1016/j.biopha.2024.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Changes in protein and lipid levels may occur in the Alzheimer's disease brain, and DHA can have beneficial effects on it. To investigate the impact of DHA dietary intervention on brain protein and lipid profile in ApoE-/- mice and C57 mice. METHOD Three-month-old ApoE-/- mice and C57 mice were randomly divided into two groups respectively, and fed with control diet and DHA-fortified diet for five months. Cortical TC, HDL-C and LDL-C levels and cholesterol metabolism-related protein expression were measured by ELISA or immunohistochemistry methods. Hippocampus were collected for proteomic and lipidomics analysis by LC-MS/MS and differential proteins and lipid metabolites were screened and further analyzed by GO functional annotation and KEGG pathway enrichment analysis. RESULTS DHA intervention decreased cortical TC level in both C57 and ApoE-/- mice (P < 0.05), but caused different change of cortical HDL-C, LDL-C level and LDL-C/HDL-C ratio in C57 and ApoE-/- mice (P < 0.05). Discrepant cortical and hippocampal LDLR, ABCG1, Lox1 and SORT1 protein expression was found between C57 and ApoE-/- mice (P < 0.05), and DHA treatment caused different changes of these proteins in C57 and ApoE-/- mice (P < 0.05). Differential hippocampal proteins and lipids profile were found in C57 and ApoE-/- mice before and after DHA treatment, which were mainly involved in vesicular transport and phospholipid metabolic pathways. CONCLUSION ApoE genetic defect caused abnormal cholesterol metabolism, and affected protein and lipid profile, as well as discrepant response of hippocampal protein and lipids profile in the brain of mice given DHA fortified diet intervention.
Collapse
Affiliation(s)
- Lu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jiahao Li
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yueyong Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases.
| |
Collapse
|
3
|
Wang Q, Ge L, Guo J, Zhang H, Chen T, Lian F, Li L, Xu Y, Xu J, Chen N, Zhang Y, Ruan Z, Xiao J, Zhang H, Yang L. Acid Neutralization by Composite Lysine Nanoparticles for Spinal Cord Injury Recovery through Mitigating Mitochondrial Dysfunction. ACS Biomater Sci Eng 2024; 10:4480-4495. [PMID: 38885615 DOI: 10.1021/acsbiomaterials.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
After spinal cord injury (SCI), significant alterations in the tissue microenvironment lead to mitochondrial dysfunction, inducing apoptosis and inhibiting the remodeling of neural circuits, thereby impeding recovery. Although previous studies have demonstrated a marked decrease in pH at the injury site, creating an acidic microenvironment, the impact of improving this acidic microenvironment on SCI recovery has not been investigated. This study prepared a lysine@hollow mesoporous silica nanoparticle/gelatin methacrylate (GelMA) (L@H/G) composite hydrogel. The L@H/G composite hydrogel was demonstrated to release lysine and efficiently improve the acidic microenvironment slowly. Significantly, the composite hydrogel reduced cell apoptosis, promoted nerve regeneration, inhibited glial scar formation, and ultimately enhanced motor function recovery in mice with SCI. Mechanistically, the L@H/G hydrogel improved the mitochondrial tricarboxylic acid (TCA) cycle and fatty acid metabolism, restoring energy supply and facilitating mitochondrial function recovery. To the best of our knowledge, this is the first report confirming that improving the acidic microenvironment could promote SCI repair, providing a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Qiuchen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiali Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haijuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianling Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feifei Lian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Li
- Science and Teaching Affairs Section, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhanwei Ruan
- Department of Emergency, The Third Affiliated Hospital, Wenzhou Medical University, No. 108 Wansong Road, Ruian, Wenzhou, Zhejiang 325200, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
- Central Laboratory, Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| |
Collapse
|
4
|
Harders AR, Spellerberg P, Dringen R. Exogenous Substrates Prevent the Decline in the Cellular ATP Content of Primary Rat Astrocytes During Glucose Deprivation. Neurochem Res 2024; 49:1188-1199. [PMID: 38341839 PMCID: PMC10991069 DOI: 10.1007/s11064-024-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Brain astrocytes are well known for their broad metabolic potential. After glucose deprivation, cultured primary astrocytes maintain a high cellular ATP content for many hours by mobilizing endogenous substrates, but within 24 h the specific cellular ATP content was lowered to around 30% of the initial ATP content. This experimental setting was used to test for the potential of various exogenous substrates to prevent a loss in cellular ATP in glucose deprived astrocytes. The presence of various extracellular monocarboxylates, purine nucleosides or fatty acids prevented the loss of ATP from glucose-deprived astrocytes. Of the 20 proteinogenic amino acids, only alanine, aspartate, glutamate, glutamine, lysine or proline maintained high ATP levels in starved astrocytes. Among these amino acids, proline was found to be the most potent one to prevent the ATP loss. The astrocytic consumption of proline as well as the ability of proline to maintain a high cellular ATP content was prevented in a concentration-dependent manner by the proline dehydrogenase inhibitor tetrahydro-2-furoic acid. Analysis of the concentration-dependencies obtained by considering the different carbon content of the applied substrates revealed that fatty acids and proline are more potent than glucose and monocarboxylates as exogenous substrates to prevent ATP depletion in glucose-deprived astrocytes. These data demonstrate that cultured astrocytes can utilise a wide range of extracellular substrates as fuels to support mitochondrial ATP regeneration and identify proline as potent exogenous substrate for the energy metabolism of starved astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Paul Spellerberg
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
5
|
Funck D, Sinn M, Forlani G, Hartig JS. Guanidine production by plant homoarginine-6-hydroxylases. eLife 2024; 12:RP91458. [PMID: 38619227 PMCID: PMC11018352 DOI: 10.7554/elife.91458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.
Collapse
Affiliation(s)
- Dietmar Funck
- Department of Chemistry, University of KonstanzKonstanzGermany
| | - Malte Sinn
- Department of Chemistry, University of KonstanzKonstanzGermany
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerraraItaly
| | - Jörg S Hartig
- Department of Chemistry, University of KonstanzKonstanzGermany
| |
Collapse
|
6
|
Chang FM. Update current understanding of neurometabolic disorders related to lysine metabolism. Epilepsy Behav 2023; 146:109363. [PMID: 37499576 DOI: 10.1016/j.yebeh.2023.109363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Fu-Man Chang
- Department of Pediatrics, Taitung MacKay Memorial Hospital, Taitung, Taiwan.
| |
Collapse
|
7
|
Barroso M, Gertzen M, Puchwein-Schwepcke AF, Preisler H, Sturm A, Reiss DD, Danecka MK, Muntau AC, Gersting SW. Glutaryl-CoA Dehydrogenase Misfolding in Glutaric Acidemia Type 1. Int J Mol Sci 2023; 24:13158. [PMID: 37685964 PMCID: PMC10487539 DOI: 10.3390/ijms241713158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Marcus Gertzen
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Alexandra F. Puchwein-Schwepcke
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Department of Pediatric Neurology and Developmental Medicine, University of Basel Children’s Hospital, 4056 Basel, Switzerland
| | - Heike Preisler
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Andreas Sturm
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Dunja D. Reiss
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 81377 Munich, Germany
| | - Marta K. Danecka
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Ania C. Muntau
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
- University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W. Gersting
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| |
Collapse
|
8
|
Barzi M, Johnson CG, Chen T, Rodriguiz RM, Hemmingsen M, Gonzalez TJ, Rosales A, Beasley J, Peck CK, Ma Y, Stiles AR, Wood TC, Maeso-Diaz R, Diehl AM, Young SP, Everitt JI, Wetsel WC, Lagor WR, Bissig-Choisat B, Asokan A, El-Gharbawy A, Bissig KD. Rescue of glutaric aciduria type I in mice by liver-directed therapies. Sci Transl Med 2023; 15:eadf4086. [PMID: 37075130 PMCID: PMC10676743 DOI: 10.1126/scitranslmed.adf4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/01/2023] [Indexed: 04/21/2023]
Abstract
Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.
Collapse
Affiliation(s)
- Mercedes Barzi
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tong Chen
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Cell Biology and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Madeline Hemmingsen
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alan Rosales
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - James Beasley
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Cheryl K Peck
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yunhan Ma
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashlee R Stiles
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy C Wood
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raquel Maeso-Diaz
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P Young
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Cell Biology and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beatrice Bissig-Choisat
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering (BME) at the Duke University Pratt School of Engineering, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Areeg El-Gharbawy
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Karl-Dimiter Bissig
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering (BME) at the Duke University Pratt School of Engineering, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
10
|
Zhao J, Zhao X, Yu J, Gao S, Zhang M, Yang T, Liu L. A multi-platform metabolomics reveals possible biomarkers for the early-stage esophageal squamous cell carcinoma. Anal Chim Acta 2022; 1220:340038. [PMID: 35868700 DOI: 10.1016/j.aca.2022.340038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent types of upper gastrointestinal malignancies. This work aimed to identify potential biomarkers for early screening for ESCC and characterize the systemic metabolic disturbances underlying ESCC using multi-platform metabolomics analysis. METHODS We divided 239 patients (the early-stage ESCC patients, n = 132; Healthy controls, n = 107) into discovery and validation sets after matching age and sex. Integrated statistical and multi-platform serum metabolomics analyses were used to screen and validate significant metabolites linked to ESCC patients. RESULTS Multi-platform metabolomics analyses showed that amino acid and lipid metabolism were crucial in the etiology of ESCC. Five metabolites, tryptophan (Trp), citrulline, l-carnitine, lysine, and acetyl-carnitine, were selected as potential biomarkers to establish a diagnosis panel, which showed high accuracy in distinguishing ESCC patients from healthy controls (area under the receiver operating characteristic curve, 0.873, 95% confidence interval [CI]: 0.825-0.925). CONCLUSIONS This work laid the groundwork for understanding the etiology of ESCC. The diagnostic panel showed potential usefulness in early-stage ESCC diagnosis in clinical practice.
Collapse
Affiliation(s)
- Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Xinshu Zhao
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin, PR China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Siqi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Mingjia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Tongshu Yang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin, PR China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
11
|
Díaz-Velasco S, Delgado J, Peña FJ, Estévez M. Protein oxidation marker, α-amino adipic acid, impairs proteome of differentiated human enterocytes: Underlying toxicological mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140797. [PMID: 35691541 DOI: 10.1016/j.bbapap.2022.140797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022]
Abstract
Protein oxidation and oxidative stress are involved in a variety of health disorders such as colorectal adenomas, inflammatory bowel's disease, neurological disorders and aging, among others. In particular, the specific final oxidation product from lysine, the α-amino adipic acid (α-AA), has been found in processed meat products and emphasized as a reliable marker of type II diabetes and obesity. Currently, the underlying mechanisms of the biological impairments caused by α-AA are unknown. To elucidate the molecular basis of the toxicological effect of α-AA, differentiated human enterocytes were exposed to dietary concentrations of α-AA (200 μM) and analyzed by flow cytometry, protein oxidation and proteomics using a Nanoliquid Chromatography-Orbitrap MS/MS. Cell viability was significantly affected by α-AA (p < 0.05). The proteomic study revealed that α-AA was able to alter cell homeostasis through impairment of the Na+/K+-ATPase pump, energetic metabolism, and antioxidant response, among other biological processes. These results show the importance of dietary oxidized amino acids in intestinal cell physiology and open the door to further studies to reveal the impact of protein oxidation products in pathological conditions.
Collapse
Affiliation(s)
- S Díaz-Velasco
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, Universidad de Extremadura, Cáceres, Spain
| | - Mario Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, Cáceres, Spain.
| |
Collapse
|
12
|
Pedrazini MC, da Silva MH, Groppo FC. L-lysine: its antagonism with L-arginine in controlling viral infection. Narrative Literature Review. Br J Clin Pharmacol 2022; 88:4708-4723. [PMID: 35723628 DOI: 10.1111/bcp.15444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Knowledge about viral characteristics, mechanisms of entry into the host cell and multiplication/dissemination can help in the control and treatment of viral pathologies. Several nutritional factors linked to the host may favor viral multiplication and their control, may lead to new prophylactic alternatives and/or antiviral therapies. The objective of this review is to discuss the relationship between the amino acid L-lysine and the control of viral infections, aiming at a possible therapeutic property. This research used databases such as PubMed, Web of Science, Scielo, Medline and Google Scholar, as well as searching for references cited by journals. The time frame covered the period between 1964 and January 2022. The observed studies have shown that the usual antiviral therapies are not able to interfere with the viruses in their latent state, however, they can interfere with the adhesion and fusion of viral particles or the production of proteins, which play an important role in viral epidemiology and control, particularly in the initial moment and in the reactivation. Lysine is an amino acid that can interfere mainly in the formation of capsid proteins and DNA by a competitive antagonism with amino acid arginine, which is an essential amino acid for some viruses and also by promoting the increase of arginase, increasing the catabolism of arginine. Although there is evidence of the importance of L-lysine in viral control, more studies are needed, with a view to new antiviral therapies.
Collapse
Affiliation(s)
- Maria Cristina Pedrazini
- Department of Biosciences, Piracicaba Dental School, FOP, UNICAMP, Campinas, São Paulo State, Brazil.,Department of Dental Sciences, São Leopoldo Mandic Research Center Campinas, São Paulo State, Brazil
| | - Mariliza Henrique da Silva
- Department of Infectology Diagnosis, IST/AIDS State Program, ITD/AIDS Reference and Training Center, São Paulo, São Paulo State, Brazil
| | - Francisco Carlos Groppo
- Department of Biosciences, Piracicaba Dental School, FOP, UNICAMP, Campinas, São Paulo State, Brazil
| |
Collapse
|
13
|
Krauze M, Ognik K, Mikulski D, Jankowski J. Assessment of Neurodegenerative Changes in Turkeys Fed Diets with Different Proportions of Arginine and Methionine Relative to Lysine. Animals (Basel) 2022; 12:ani12121535. [PMID: 35739872 PMCID: PMC9219421 DOI: 10.3390/ani12121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary It is important to take care of a properly balanced amino acid composition in the diet in order to inhibit or delay the occurrence of processes and changes related to the destruction of nervous tissue. Therefore, an attempt was made in this manuscript to evaluate the effect of different ratios of the key amino acids arginine and methionine, relative to lysine, in relation to two turkey feeding standards. The amino acid guidelines formulated by British United Turkeys (BUT) suggest higher levels of lysine (Lys) in turkey diets than those recommended by the National Research Council (NRC). In order to assess the impact of such supplementation, we analyzed the level of indicators informing the presence or degree of advancement of neurodegenerative processes in the nervous tissue (the level of acetylcholinesterase and amyloid-β; the concentration of AChE complexes with amyloid-β and Tau protein, called glycosylated acetylcholinesterase (GAChE), indicative of the destruction of neurons). The level of low-density lipoprotein receptor-related protein 1, or LRP-1, which facilitates the breakdown of toxic amyloid-β, was also assessed. In addition, the effect of different doses of these amino acids on neurodegenerative changes in DNA, especially the degree of methylation of histone proteins resulting from covalent modifications was compared between lysine and arginine residues. Abstract We postulated that the use of optimal levels and proportions of Arg and Met relative to a low or high concentration of Lys in diets for meat turkeys would reduce the occurrence of metabolic disturbances in the nervous tissue that can lead to neurodegenerative changes. The aim of the study was to determine the effect of various proportions of Lys, Arg, and Met in diets for turkeys, with a low content of Lys in accordance with NRC (Experiment 1) recommendations, and in diets with high Lys levels that are close to the recommendations of breeding companies (Experiment 2) on selected indicators of potential neurodegenerative effects in the brain and liver of turkeys. The Experiment 1 and Experiment 2 was conducted using 864 day-old turkey chicks randomly assigned to six groups, in eight replicates (6 groups × 18 birds × 8 replicates). A full description of the methodology can be found in previously published papers using the same experimental design. Indicators informing about the presence or advancement of neurodegenerative processes in the nervous tissue were determined in the brain and liver (level of: AChE, amyloid-β, GAChE, Tau protein, LRP1, and the degree of DNA methylation). It was established that in the case of both a low (National Research Council, NRC) and a high (British United Turkeys, BUT) level of Lys in the diet of turkeys, the Arg level can be reduced to 90% of the Lys level and Met to 30% of the Lys level, because this does not cause neurodegenerative changes in turkeys. Unfavorable neurodegenerative changes may appear if the Arg level is increased from 100 to 110% of the Lys level recommended by the NRC. However, due to the lack of such a relationship when Arg is increased from 100 to 110% of the Lys level recommended by BUT, at this stage of research no definitive conclusions can be drawn regarding the risk of neurodegenerative changes caused by increasing Arg in the diet of turkeys.
Collapse
Affiliation(s)
- Magdalena Krauze
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland;
- Correspondence:
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland;
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.M.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.M.); (J.J.)
| |
Collapse
|
14
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Yazdani M, Elgstøen KBP. Is oxidative stress an overlooked player in pyridoxine-dependent epilepsy? A focused review. Seizure 2021; 91:369-373. [PMID: 34298455 DOI: 10.1016/j.seizure.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 01/22/2023] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy that is responsive to pharmacologic doses of vitamin B6. The deficiency of antiquitin, an enzyme involved in the catabolism of lysine, is believed to be its key molecular basis. Research to date has tended to focus on two known catabolic pathways of lysine, namely, saccharopine and pipecolic acid. However, the occurrence of oxidative stress and the presence of its metabolites have been only briefly highlighted in the literature. Owing to the importance of the topic and its potential for future diagnosis, prognosis and therapy, this paper reviews the suggested mechanisms of oxidative stress in antiquitin deficiency along with the proposed reactions and intermediates, and finally, discusses the challenges and opportunities.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Metabolomics and Metabolic Molecular Biology Group, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway.
| | - Katja Benedikte Prestø Elgstøen
- Metabolomics and Metabolic Molecular Biology Group, Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|