1
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Cui S, Yu Y, Zhan T, Gao Y, Zhang J, Zhang L, Ge Z, Liu W, Zhang C, Zhuang S. Carcinogenic Risk of 2,6-Di- tert-Butylphenol and Its Quinone Metabolite 2,6-DTBQ Through Their Interruption of RARβ: In Vivo, In Vitro, and In Silico Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:480-490. [PMID: 34927421 DOI: 10.1021/acs.est.1c06866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thousands of contaminants are used worldwide and eventually released into the environment, presenting a challenge of health risk assessment. The identification of key toxic pathways and characterization of interactions with target biomacromolecules are essential for health risk assessments. The adverse outcome pathway (AOP) incorporates toxic mechanisms into health risk assessment by emphasizing the relationship among molecular initiating events (MIEs), key events (KEs), and adverse outcome (AO). Herein, we attempted the use of AOP to decipher the toxic effects of 2,6-di-tert-butylphenol (2,6-DTBP) and its para-quinone metabolite 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTBQ) based on integrated transcriptomics, molecular modeling, and cell-based assays. Through transcriptomics and quantitative real-time PCR validation, we identified retinoic acid receptor β (RARβ) as the key target biomacromolecule. The epigenetic analysis and molecular modeling revealed RARβ interference as one MIE, including DNA methylation and conformational changes. In vitro assays extended subsequent KEs, including altered protein expression of p-Erk1/2 and COX-2, and promoted cancer cell H4IIE proliferation and metastasis. These toxic effects altogether led to carcinogenic risk as the AO of 2,6-DTBP and 2,6-DTBQ, in line with chemical carcinogenesis identified from transcriptome profiling. Overall, our simplified AOP network of 2,6-DTBP and 2,6-DTBQ facilitates relevant health risk assessment.
Collapse
Affiliation(s)
- Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Yu
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment (MEE), Beijing 100029, China
| | - Tingjie Zhan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
3
|
Kim JA, Jang JH, Lee SY. An Updated Comprehensive Review on Vitamin A and Carotenoids in Breast Cancer: Mechanisms, Genetics, Assessment, Current Evidence, and Future Clinical Implications. Nutrients 2021; 13:3162. [PMID: 34579037 PMCID: PMC8465379 DOI: 10.3390/nu13093162] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin A and carotenoids are fat-soluble micronutrients that play important role as powerful antioxidants modulating oxidative stress and cancer development. Breast cancer is the most common malignancy in women. As the risk of breast cancer is dependent on various lifestyle factors such as dietary modifications, there is increasing interest surrounding the anti-cancerous properties of vitamin A and carotenoids. Despite the suggested protective roles of vitamin A and carotenoids in breast cancer development, their clinical application for the prevention and treatment of breast cancer is limited. In this narrative review, we discuss the roles of vitamin A and carotenoids along with the evaluation method of vitamin A status. We also exhibit the association of genetic variations involved in metabolism of vitamin A and carotenoids with cancers and other diseases. We demonstrate the epidemiological evidence for the relationship of vitamin A and carotenoids with breast cancer risk, their effects on cancer mechanism, and the recent updates in clinical practice of vitamin A or carotenoids as a potential therapeutic agent against breast cancer. This review provides insight into the preventive and therapeutic roles of vitamin A and carotenoids in breast cancer development and progression.
Collapse
Affiliation(s)
- Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.A.K.); (J.-H.J.)
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.A.K.); (J.-H.J.)
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.A.K.); (J.-H.J.)
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Health Science and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, 115 Irwon-ro, Gangnam-gu, Seoul 06355, Korea
| |
Collapse
|
4
|
Tawe L, Grover S, Zetola N, Robertson ES, Gaseitsiwe S, Moyo S, Kasvosve I, Paganotti GM, Narasimhamurthy M. Promoter Hypermethylation Analysis of Host Genes in Cervical Cancer Patients With and Without Human Immunodeficiency Virus in Botswana. Front Oncol 2021; 11:560296. [PMID: 33718129 PMCID: PMC7952881 DOI: 10.3389/fonc.2021.560296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Epidemics of human immunodeficiency virus (HIV) and cervical cancer are interconnected. DNA hypermethylation of host genes' promoter in cervical lesions has also been recognized as a contributor to cervical cancer progression. Methods: For this purpose we analyzed promoter methylation of four tumor suppressor genes (RARB, CADM1, DAPK1 and PAX1) and explored their possible association with cervical cancer in Botswana among women of known HIV status. Overall, 228 cervical specimens (128 cervical cancers and 100 non-cancer subjects) were used. Yates-corrected chi-square test and Fisher's exact test were used to explore the association of promoter methylation for each host gene and cancer status. Subsequently, a logistic regression analysis was performed to find which factors, HIV status, high risk-HPV genotypes, patient's age and promoter methylation, were associated with the following dependent variables: cancer status, cervical cancer stage and promoter methylation rate. Results: In patients with cervical cancer the rate of promoter methylation observed was greater than 64% in all the genes studied. Analysis also showed a higher risk of cervical cancer according to the increased number of methylated promoter genes (OR = 6.20; 95% CI: 3.66–10.51; P < 0.001). RARB methylation showed the strongest association with cervical cancer compared to other genes (OR = 15.25; 95% CI: 6.06–40.0; P < 0.001). Cervical cancer and promoter methylation of RARB and DAPK1 genes were associated with increasing age (OR = 1.12; 95% CI: 1.01-1.26; P = 0.037 and OR = 1.05; 95% CI: 1.00-1.10; P = 0.040). The presence of epigenetic changes at those genes appeared to be independent of HIV status among subjects with cervical cancer. Moreover, we found that cervical cancer stage was influenced by RARB (χ2= 7.32; P = 0.002) and CADM1 (χ2=12.68; P = 0.013) hypermethylation, and HIV status (χ2= 19.93; P = 0.001). Conclusion: This study confirms the association between invasive cervical cancer and promoter gene methylation of tumor suppressing genes at the site of cancer. HIV infection did not show any association to methylation changes in this group of cervical cancer patients from Botswana. Further studies are needed to better understand the role of HIV in methylation of host genes among cancer subjects leading to cervical cancer progression.
Collapse
Affiliation(s)
- Leabaneng Tawe
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Surbhi Grover
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicola Zetola
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Giacomo M Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Mohan Narasimhamurthy
- Department of Pathology, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
5
|
Afshan FU, Masood A, Nissar B, Chowdri NA, Naykoo NA, Majid M, Ganai BA. Promoter hypermethylation regulates vitamin D receptor (VDR) expression in colorectal cancer-A study from Kashmir valley. Cancer Genet 2021; 252-253:96-106. [PMID: 33486463 DOI: 10.1016/j.cancergen.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is a multistep process, involving both genetic and epigenetic modifications of genes involved in diverse pathways ranging from tumor suppression to DNA mismatch repair. PURPOSE This study was undertaken to assess the role of promoter methylation of vitamin D receptor (VDR) gene, a transcription factor with myriad biological functions, in relation to its expression and clinicopathological parameters. METHODS Tissue specimens were taken from a total of 75 colorectal cancer cases paired with their normal surrounding epithelium and analyzed by Real-time RT-PCR for assessing the expression profile and MS-PCR for analyzing the promoter methylation status of the VDR gene. Blood sample from the same patients was drawn for vitamin D estimation. RESULTS The frequency of promoter methylation in cancerous tissue was 37.33% against 9.33% in normal tissues (p<0.001). The hypermethylated status of VDR promoter showed significantly inverse association with its expression (p=0.008). Furthermore, when compared with the clinical parameters, methylation status of VDR promoter was significantly associated with tumor staging (p=0.008), grading (p<0.001), depth of invasion (p=0.002) and lymph node metastases (p<0.001). Univariate and multivariate analysis indicated patients with increased VDR expression (p<0.001) and decreased methylation status (p=0.012) exhibited longer overall survival. Additionally, serum 25(OH)D3 levels were not significantly associated with any of the patient characteristics. CONCLUSION Our study, first of its kind from Kashmir, indicated that VDR shows aberrant methylation pattern in CRC with consequent loss in its expression.
Collapse
Affiliation(s)
- Falaque Ul Afshan
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Bushra Nissar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Nisar Ahmad Chowdri
- Division of Colorectal Surgery, SKIMS, Soura, Srinagar, Jammu and Kashmir 190011, India.
| | - Niyaz Ahmad Naykoo
- Department of Biotechnology, Government College for Women, Srinagar, Jammu and Kashmir 190002, India.
| | - Misbah Majid
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Bashir Ahmad Ganai
- Centre For Research and Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
6
|
Protein Kinase C Alpha (PKCα) overexpression leads to a better response to retinoid acid therapy through Retinoic Acid Receptor Beta (RARβ) activation in mammary cancer cells. J Cancer Res Clin Oncol 2020; 146:3241-3253. [PMID: 32865619 DOI: 10.1007/s00432-020-03368-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Retinoids have proved to be effective for hematologic malignancies treatment but till nowadays, their use as single agent for the solid tumor's management is still controversial. All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, exerts non-genomic interactions with different members of the protein kinase C (PKC) family, recognized modulators of different tumor progression pathways. To determine whether a group of patients could become benefited employing a retinoid therapy, in this study we have evaluated whether PKCα expression (a poor prognosis marker in breast cancer) could sensitizes mammary cells to ATRA treatment. METHODS PKCα overexpression was achieved by stable transfection and confirmed by western blot. Transfected PKC functionality was determined by nuclear translocation-induction and confocal microscopy. In vitro proliferation was evaluated by cell counting and cell cycle distribution was analyzed by flow cytometry. In vivo studies were performed to evaluate orthotopic tumor growth and experimental lung colonization. Retinoic acid response elements (RARE) and AP1 sites-dependent activity was studied by gene reporter assays and retinoic acid receptors (RARs) were measured by RT-qPCR. RESULTS Our findings suggest that high PKCα levels improve the differentiation response to ATRA in a RAR signaling-dependent manner. Moreover, RARβ expression appears to be critical to induce ATRA sensitization, throughout AP1 trans-repression. CONCLUSION Here we propose that retinoids could lead a highly personalized anticancer treatment, bringing benefits to patients with aggressive breast tumors resulting from high PKCα expression but, an adequate expression of the RARβ receptor is required to ensure the effect on this process.
Collapse
|
7
|
Wang X, Liu Y, Sun H, Ge A, Li D, Fu J, Li Y, Pang D, Zhao Y. DNA Methylation in RARβ Gene as a Mediator of the Association Between Healthy Lifestyle and Breast Cancer: A Case-Control Study. Cancer Manag Res 2020; 12:4677-4684. [PMID: 32606959 PMCID: PMC7308131 DOI: 10.2147/cmar.s244606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Lifestyle factors and methylation in the retinoic acid receptor β (RARβ) gene are associated with breast cancer (BC). This study aims to examine the mediation effect of RARβ methylation on the association between healthy lifestyle and BC in Chinese women. Patients and Methods This case–control study consisted of 408 BC patients and 573 controls. A healthy lifestyle score (HLS) was constructed based on diet, alcohol use, physical activity, body mass index and smoking. The mediation effect of RARβ methylation in peripheral blood leukocytes was assessed in a causal mediation model using R package Lavaan. Results A higher HLS was significantly associated with lower risk of BC (P-value<0.001). In mediation analyses, the total effect of HLS on BC measured as a regression coefficient was significant (−0.237). The indirect effects of HLS on RARβ methylation (−0.153) and RARβ methylation on BC (0.220) were both significant. The significant mediation effect of RARβ methylation on the HLS-BC association was estimated at 14.3%. Conclusion The relationship between healthy lifestyle and BC is partly mediated by RARβ methylation, suggesting that epigenetic modifications play a role in the underlying mechanisms in response to lifestyles and contribute to the development of BC.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Anqi Ge
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Dapeng Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Yan Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Da Pang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilong Jiang Province, People's Republic of China
| |
Collapse
|
8
|
Kougioumtsidou N, Vavoulidis E, Nasioutziki M, Symeonidou M, Pratilas GC, Mareti E, Petousis S, Chatzikyriakidou A, Grimbizis G, Theodoridis T, Miliaras D, Dinas K, Zepiridis L. DNA methylation patterns of RAR-β2 and RASSF1A gene promoters in FNAB samples from Greek population with benign or malignant breast lesions. Diagn Cytopathol 2020; 49:153-164. [PMID: 32530576 DOI: 10.1002/dc.24513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Promoter hypermethylation is common in Breast Cancer (BC) with studies mainly in histological specimens showing frequent methylation of tumor suppressor genes (TSGs) compared with normal tissues. The aim of this study was to estimate the frequency of promoter methylation of RAR-β2 and RASSF1A genes in breast FNAB material aiming to evaluate the methylation status of these two genes as biomarker for detecting BC in Greek population. METHODS FNAB material from 104 patients was collected for cytological evaluation and epigenetic analysis. DNA was extracted and subjected to bisulfite conversion. A methylation-specific PCR was carried out and the final products were separated with electrophoresis in 2% agarose gels. RESULTS From 104 samples, RASSF1A hypermethylation was observed in 78 (75%) and RAR-β2 hypermethylation in 64 (61.6%). 84% and 78% of the cases diagnosed with breast malignancy (n = 50) were methylated for RASSF1A and RAR-β2, respectively. Methylated RASSF1A and RAR-β2 were also detected in 88.3% and 76.5% in samples diagnosed as suspicious for malignancy (n = 17) and in 57.2% of samples diagnosed with atypia (n = 14). The Odds Ratio for breast malignancy was 4.545 in patients with RASSF1A hypermethylation and 9.167 in patients with RAR-β2 hypermethylation underlying their promoter's methylation positive correlation with breast malignancy. CONCLUSION To optimize the sensitivity and specificity of this epigenetic setting, more TSGs related to BC should be gradually imported in our evaluated methylation panel and be validated in a larger study sample with the aim that the obtained epigenetic profiles will provide clinicians with valuable tools for management of BC patients in Greece.
Collapse
Affiliation(s)
- Niki Kougioumtsidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Maria Nasioutziki
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Symeonidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Chrysostomos Pratilas
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mareti
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatios Petousis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Faculty of Medicine, Laboratory of Medical Biology-Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gregorios Grimbizis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Theodoridis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Leonidas Zepiridis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
10
|
Przybylska S. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14260] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sylwia Przybylska
- Department Food Science and Technology Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. No. 3 Szczecin 71‐459 Poland
| |
Collapse
|
11
|
Novel Clofarabine-Based Combinations with Polyphenols Epigenetically Reactivate Retinoic Acid Receptor Beta, Inhibit Cell Growth, and Induce Apoptosis of Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19123970. [PMID: 30544666 PMCID: PMC6321577 DOI: 10.3390/ijms19123970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022] Open
Abstract
An epigenetic component, especially aberrant DNA methylation pattern, has been shown to be frequently involved in sporadic breast cancer development. A growing body of literature demonstrates that combination of agents, i.e. nucleoside analogues with dietary phytochemicals, may provide enhanced therapeutic effects in epigenetic reprogramming of cancer cells. Clofarabine (2-chloro-2′-fluoro-2′-deoxyarabinosyladenine, ClF), a second-generation 2′-deoxyadenosine analogue, has numerous anti-cancer effects, including potential capacity to regulate epigenetic processes. Our present study is the first to investigate the combinatorial effects of ClF (used at IC50 concentration) with epigallocatechin-3-gallate (EGCG, tea catechin) or genistein (soy phytoestrogen), at physiological concentrations, on breast cancer cell growth, apoptosis, and epigenetic regulation of retinoic acid receptor beta (RARB) transcriptional activity. In MCF7 and MDA-MB-231 cells, RARB promoter methylation and expression of RARB, modifiers of DNA methylation reaction (DNMT1, CDKN1A, TP53), and potential regulator of RARB transcription, PTEN, were estimated using methylation-sensitive restriction analysis (MSRA) and quantitative real-time polymerase chain reaction (qPCR), respectively. The combinatorial exposures synergistically or additively inhibited the growth and induced apoptosis of breast cancer cells, followed by RARB hypomethylation with concomitant multiple increase in RARB, PTEN, and CDKN1A transcript levels. Taken together, our results demonstrate the ability of ClF-based combinations with polyphenols to promote cancer cell death and reactivate DNA methylation-silenced tumor suppressor genes in breast cancer cells with different invasive potential.
Collapse
|
12
|
Gara SK, Lack J, Zhang L, Harris E, Cam M, Kebebew E. Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors. Nat Commun 2018; 9:4172. [PMID: 30301885 PMCID: PMC6178360 DOI: 10.1038/s41467-018-06366-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. Adrenocortical cancer (ACC) is a rarely diagnosed and aggressive cancer whose metastatic form has been scarcely studied. Here, the authors study primary and metastatic ACC to investigate genomic heterogeneity, discovering higher mutation rates in metastatic lesions and novel recurrent mutations.
Collapse
Affiliation(s)
- Sudheer Kumar Gara
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Justin Lack
- Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Zhang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emerson Harris
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Cam
- Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Mohsenzadeh M, Sadeghi RN, Vahedi M, Kamani F, Hashemi M, Asadzadeh H, Zali MR. Promoter hypermethylation of RAR-β tumor suppressor gene in gastric carcinoma: Association with histological type and clinical outcomes. Cancer Biomark 2018; 20:7-15. [PMID: 28759951 DOI: 10.3233/cbm-160331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND While gastric cancer is a common cancer in the world and Iran, its molecular mechanisms are not fully understood as yet. Epigenetic modifications can lead to alteration of gene expression and development of tumorigenesis mechanisms. METHODS To clarify the difference in DNA methylation pattern of histological types in gastric carcinoma, CpG islands in the promoters of retinoic acid receptor β gene (RAR-β) was studied using methylation-specific PCR. RESULTS In gastric cancer tissues, hypermethylation frequency of RAR-β gene was respectively 61 and 33% for diffuse and intestinal type. In diffuse type, hypermethylation of RAR-β has been significantly associated with invasion (P= 0.007), differentiation (P= 0.033) and location (P= 0.012) of the tumor. However, hypermethylation of RAR-β correlated only with tumor size (P= 0.029) in intestinal type. For adjacent non-tumor samples, hypermethylation of RAR-β was not detected and there was no significant association between age of diagnosis and hypermethylation of RAR-β in both types of gastric cancer. CONCLUSIONS These results support previous findings denoting a distinct profile of promoter hypermethylation status in the development of the intestinal and diffuse type of gastric carcinoma and the process of the tumorigenesis in these subtypes of gastric cancer is different from each other.
Collapse
Affiliation(s)
- Maedeh Mohsenzadeh
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rouhallah Najjar Sadeghi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Vahedi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fereshteh Kamani
- Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Asadzadeh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun 2018; 9:1406. [PMID: 29643385 PMCID: PMC5895803 DOI: 10.1038/s41467-018-03877-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
Developing novel drugs that can abrogate the growth and metastasis of malignant tumors is a major challenge for cancer researchers. Here we describe a novel synthetic retinoid, namely WYC-209, which inhibits proliferation of malignant murine melanoma tumor-repopulating cells (TRCs), known to resist conventional drug treatment, with an IC50 of 0.19 μM in a dose-dependent manner. WYC-209 also inhibits proliferation of TRCs of human melanoma, lung cancer, ovarian cancer, and breast cancer in culture. Interestingly, the treated TRCs fail to resume growth even after the drug washout. Importantly, the molecule abrogates 87.5% of lung metastases of melanoma TRCs in immune-competent wild-type C57BL/6 mice at 0.22 mg kg-1 without showing apparent toxicity. Pretreating the melanoma TRCs with retinoic acid receptor (RAR) antagonists or with RAR siRNAs blocks or reduces the inhibitory effect of the molecule, suggesting that the target of the molecule is RAR. WYC-209 induces TRC apoptosis and pretreating the TRCs with caspase 3 inhibitor or depleting caspase 3 with siRNAs substantially rescues growth of TRCs from WYC-209 inhibition, suggesting that WYC-209 induces TRCs apoptosis primarily via the caspase 3 pathway. Our findings demonstrate the promise of the new retinoid WYC-209 in treating malignant melanoma tumors with high efficacy and little toxicity.
Collapse
|
15
|
Aberrantly Methylated DNA as a Biomarker in Breast Cancer. Int J Biol Markers 2018; 28:141-50. [DOI: 10.5301/jbm.5000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/20/2022]
Abstract
Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.
Collapse
|
16
|
Coleman WB, Anders CK. Discerning Clinical Responses in Breast Cancer Based On Molecular Signatures. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2199-2207. [DOI: 10.1016/j.ajpath.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
|
17
|
Enhanced expression of tumour suppressor RAR-β by DSPC nano-formulated lipo-ATRA in the lung of B16F10 cell-implanted C57BL6 mice and in A549 cells. Life Sci 2017; 184:10-17. [DOI: 10.1016/j.lfs.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/21/2022]
|
18
|
Pronina IV, Klimov EA, Burdennyy AM, Beresneva EV, Fridman MV, Ermilova VD, Kazubskaya TP, Karpukhin AV, Braga EA, Loginov VI. Methylation of the genes for the microRNAs miR-129-2 and miR-9-1, changes in their expression, and activation of their potential target genes in clear cell renal cell carcinoma. Mol Biol 2017. [DOI: 10.1134/s0026893316060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Almeida VR, Vieira IA, Buendia M, Brunetto AT, Gregianin LJ, Brunetto AL, Klamt F, de Farias CB, Abujamra AL, Lopez PLDC, Roesler R. Combined Treatments with a Retinoid Receptor Agonist and Epigenetic Modulators in Human Neuroblastoma Cells. Mol Neurobiol 2016; 54:7610-7619. [PMID: 27832522 DOI: 10.1007/s12035-016-0250-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/23/2016] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid childhood tumor accounting for around 15% of pediatric cancer deaths and most probably originates from a failure in the development of embryonic neural crest cells. Retinoids can inhibit the proliferation and stimulate differentiation of NB cells. In addition, epigenetic events involving changes in chromatin structure and DNA methylation can mediate the effects of retinoids; hence, the scope of this study is to investigate the use of retinoids and epigenetic drugs in NB cell lines. Here, we demonstrate that the combination of retinoid all trans-retinoic acid (ATRA) with inhibitors of either histone deacetylases (HDACs) or DNA methyltransferase is more effective in impairing the proliferation of human SH-SY5Y and SK-N-BE(2) NB cells than any drug given alone. Treatments also induced differential changes on the messenger RNA (mRNA) expression of retinoid receptor subtypes and reduced the protein content of c-Myc, the neuronal markers NeuN and β-3 tubulin, and the oncoprotein Bmi1. These results suggest that the combination of retinoids with epigenetic modulators is more effective in reducing NB growth than treatment with single drugs.
Collapse
Affiliation(s)
- Viviane Rösner Almeida
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Igor Araujo Vieira
- Laboratory of Genomic Medicine, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Marienela Buendia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | | | - Lauro J Gregianin
- Department of Pediatrics, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | | | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90420-140, Brazil
| | - Ana Lucia Abujamra
- Graduate Program in Biotechnology, Univates University Center, Lajeado, RS, 95900-000, Brazil
| | - Patrícia Luciana da Costa Lopez
- Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Graduate Program in Gastroenterology and Hepatology, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
20
|
Marchwicka A, Cunningham A, Marcinkowska E, Brown G. Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review. Expert Opin Ther Pat 2016; 26:957-71. [PMID: 27336223 DOI: 10.1080/13543776.2016.1205586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Differentiation therapy using all-trans retinoic acid (ATRA) revolutionised the treatment of acute promyelocytic leukaemia to such an extent that it is now one of the most curable types of leukaemia, with ATRA and anthracycline-based chemotherapy providing cure rates above 80%. Isotretinoin is used to treat chronic acne. Here, we examine the information described in recent patents and the extent to which new findings are influencing extending retinoid-based differentiation therapy to other cancers, as well as the development of new therapies for other disorders. AREAS COVERED A search has been performed on the literature and worldwide patents filed during 2014 to the present time, focusing on synthetic agonists and antagonists of retinoic acid receptors and novel compositions for the delivery of these agents. EXPERT OPINION New potential therapeutic applications have been described, including lung, breast and head and neck cancers, T cell lymphoma and neurodegenerative, metabolic, ophthalmic, muscle, and inflammatory disorders. Recent patents have described the means to maximise retinoid activity. Two decades of efforts to extend retinoid-based therapies have been disappointing and new synthetic retinoids, target diseases and modes of delivery may well resolve this long standing issue.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Alan Cunningham
- b Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | - Ewa Marcinkowska
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Geoffrey Brown
- c Institute of Clinical Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
21
|
Toren P, Ozgur E, Bayindir M. Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges. LAB ON A CHIP 2016; 16:2572-2595. [PMID: 27306702 DOI: 10.1039/c6lc00521g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review targets diversified oligonucleotide-based biodetection techniques, focusing on the use of microresonators of whispering gallery mode (WGM) type as optical biosensors mostly integrated with lab-on-a-chip systems. On-chip and microfluidics combined devices along with optical microresonators provide rapid, robust, reproducible and multiplexed biodetection abilities in considerably small volumes. We present a detailed overview of the studies conducted so far, including biodetection of various oligonucleotide biomarkers as well as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs) and proteins. We particularly advert to chemical surface modifications for specific and selective biosensing.
Collapse
Affiliation(s)
- Pelin Toren
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Erol Ozgur
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Bayindir
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey and Department of Physics, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
22
|
Masood S, El-Gabry E, Zhang C, Wang Z. The potential of identification of a malignancy-associated biomarker in breast cancer diagnosis and research: hTERT gene DNA methylation. Diagn Cytopathol 2016; 44:670-5. [PMID: 27229911 DOI: 10.1002/dc.23505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/02/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA hypermethylation has been documented to be prominent at a CpG island rich region about 600 bp upstream the transcription start site of the hTERT gene using qualitative methylation specific PCR on DNA isolated from tumor cell lines. In order to assess the potential significance of this biomarker in breast cancer research and diagnosis, we explored if such findings are reproducible on surgically resected fresh breast tumor cells. METHODS Using quantitative pyrosequencing technology, we investigated and present methylation status of four CpG islands of this region in a cohort of 77 invasive breast carcinomas using normal breast tissue as controls. RESULTS Globally, a significant hypermethylation in tumor cells was observed in the four CpG islands as a sum, in comparison to methylation of the normal breast tissue. Individually, certain CpG islands displayed methylation greater than 50% in about 3/4 of the 77 breast cancers, but in none of the normal breast tissue. Our results highlight the value of DNA hypermethylation in the -600 bp region of the hTERT gene as a potential marker for breast cancer diagnosis. CONCLUSIONS We believe that integration of this novel, malignancy-associated molecular testing with morphology is of significant value in the accurate interpretation of small tumor sample size obtained via fine needle aspiration biopsy, ductal lavage, and nipple fluid aspirates both in clinical practice and in breast cancer research. Diagn. Cytopathol. 2016;44:670-675. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shahla Masood
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine at Jacksonville, Jacksonville, Florida
| | - Ehab El-Gabry
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine at Jacksonville, Jacksonville, Florida
| | - Chuhua Zhang
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine at Jacksonville, Jacksonville, Florida
| | - Zhiqianq Wang
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine at Jacksonville, Jacksonville, Florida
| |
Collapse
|
23
|
Sramek M, Neradil J, Sterba J, Veselska R. Non-DHFR-mediated effects of methotrexate in osteosarcoma cell lines: epigenetic alterations and enhanced cell differentiation. Cancer Cell Int 2016; 16:14. [PMID: 26929741 PMCID: PMC4770555 DOI: 10.1186/s12935-016-0289-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/12/2016] [Indexed: 12/24/2022] Open
Abstract
Background Methotrexate is an important chemotherapeutic drug widely known as an inhibitor of dihydrofolate reductase (DHFR) which inhibits the reduction of folic acid. DHFR-mediated effects are apparently responsible for its primary antineoplastic action. However, other non-DHFR-mediated effects of methotrexate have been recently discovered, which might be very useful in the development of new strategies for the treatment of pediatric malignancies. The principal goal of this study was to analyze the possible impact of clinically achievable methotrexate levels on cell proliferation, mechanisms of epigenetic regulation (DNA methylation and histone acetylation), induced differentiation and the expression of differentiation-related genes in six osteosarcoma cell lines. Methods The Saos-2 reference cell line and five other patient-derived osteosarcoma cell lines were chosen for this study. The MTT assay was used to assess cell proliferation, DNA methylation and histone acetylation were detected using ELISA, and western blotting was used for a detailed analysis of histone acetylation. The expression of differentiation-related genes was quantified using RT-qPCR and the course of cell differentiation was evaluated using Alizarin Red S staining, which detects the level of extracellular matrix mineralization. Results Methotrexate significantly decreased the proliferation of Saos-2 cells exclusively, suggesting that this reference cell line was sensitive to the DHFR-mediated effects of methotrexate. In contrast, other results indicated non-DHFR-mediated effects in patient-derived cell lines. Methotrexate-induced DNA demethylation was detected in almost all of them; methotrexate was able to lower the level of 5-methylcytosine in treated cells, and this effect was similar to the effect of 5-aza-2′-deoxycytidine. Furthermore, methotrexate increased the level of acetylated histone H3 in the OSA-06 cell line. Methotrexate also enhanced all-trans retinoic acid-induced cell differentiation in three patient-derived osteosarcoma cell lines, and the modulation of expression of the differentiation-related genes was also shown. Conclusions Overall non-DHFR-mediated effects of methotrexate were detected in the patient-derived osteosarcoma cell lines. Methotrexate acts as an epigenetic modifier and has a potential impact on cell differentiation and the expression of related genes. Furthermore, the combination of methotrexate and all-trans retinoic acid can be effective as a differentiation therapy for osteosarcoma.
Collapse
Affiliation(s)
- Martin Sramek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic ; Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic ; Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic ; Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic
| |
Collapse
|
24
|
Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets 2016; 20:689-703. [PMID: 26667209 DOI: 10.1517/14728222.2016.1132702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling the transcriptional activities of several genes. A growing number of epigenetic changes have been reported in the regulation of key genes involved in cancer and aging. Drugs with epigenetic modulatory activities, mainly histone deacetylase and DNA methyltransferase inhibitors, have received wider attention in aging and cancer research. AREAS COVERED In this review, we summarize the major epigenetic alterations in cancer and aging, with special emphasis on possible therapeutic targets and interventions by dietary as well as bioactive phytochemicals. EXPERT OPINION Some epigenetic-targeting drugs have received FDA approval and many others are undergoing different phases of clinical trials for cancer therapy. In addition to the synthetic compounds, several bioactive phytochemicals and dietary interventions, such as caloric restriction, have been shown to possess epigenetic modulatory activities in multiple cancers. These epigenetic modulators have been shown to delay aging and minimize the risk of cancer both in preclinical as well as clinical models. Therefore, knowledge of bioactive phytochemicals along with dietary interventions can be utilized for cancer prevention and therapy both alone and with existing drugs to achieve optimum efficacy.
Collapse
Affiliation(s)
- Sajid Khan
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Samriddhi Shukla
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sonam Sinha
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Syed Musthapa Meeran
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
25
|
Gao T, He B, Pan Y, Deng Q, Sun H, Liu X, Chen J, Wang S, Xia Y. Association of Clostridium difficile infection in hospital mortality: A systematic review and meta-analysis. Am J Infect Control 2015; 43:1316-20. [PMID: 26654234 DOI: 10.1016/j.ajic.2015.04.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate whether Clostridium difficile infection (CDI) contributed to hospital mortality and whether the correlation between intensive care units (ICUs) and surgical wards in hospital CDI risk still remain controversial. METHODS By meta-analysis, 12 eligible studies involving 8,509 cases and 247,285 controls were identified via PubMed and Embase. RESULTS CDI patients had a higher risk of hospital mortality than non-CDI patients (odds ratio [OR], 1.899; 95% confidence interval [CI], 1.269-2.840), especially in 30-day mortality (OR, 2.521; 95% CI, 1.800-3.531). No correlation was found between hospital CDI and Charlson comorbidity index (OR, 0.830; 95% CI, 0.559-1.231). Patients treated in the ICU have an increased risk of hospital CDI (OR, 1.820; 95% CI, 1.161-2.851). However, the risk of CDI in patients who used to have surgery in surgical wards was not different to patients in the other departments (OR, 1.054; 95% CI, 0.838-1.325). Moreover, CDI patients in studies from the most recent 5 years have a higher risk of hospital mortality (OR, 2.171; 95% CI, 1.426-3.304). CONCLUSION Hospital CDI was associated with an increased risk of hospital mortality, especially in 30-day mortality. In addition, when compared with past years, CDI patients have a higher risk of hospital mortality in the most recent 5 years. Given the rapid dissemination of this organism worldwide, there is a need to aggressively develop and evaluate primary preventive strategies targeting CDI among hospitalized patients, especially in ICUs.
Collapse
|
26
|
Teschendorff AE, Lee SH, Jones A, Fiegl H, Kalwa M, Wagner W, Chindera K, Evans I, Dubeau L, Orjalo A, Horlings HM, Niederreiter L, Kaser A, Yang W, Goode EL, Fridley BL, Jenner RG, Berns EMJJ, Wik E, Salvesen HB, Wisman GBA, van der Zee AGJ, Davidson B, Trope CG, Lambrechts S, Vergote I, Calvert H, Jacobs IJ, Widschwendter M. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med 2015; 7:108. [PMID: 26497652 PMCID: PMC4619324 DOI: 10.1186/s13073-015-0233-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Understanding carboplatin resistance in ovarian cancer is critical for the improvement of patients' lives. Multipotent mesenchymal stem cells or an aggravated epithelial to mesenchymal transition phenotype of a cancer are integrally involved in pathways conferring chemo-resistance. Long non-coding RNA HOTAIR (HOX transcript antisense intergenic RNA) is involved in mesenchymal stem cell fate and cancer biology. METHODS We analyzed HOTAIR expression and associated surrogate DNA methylation (DNAme) in 134 primary ovarian cancer cases (63 received carboplatin, 55 received cisplatin and 16 no chemotherapy). We validated our findings by HOTAIR expression and DNAme analysis in a multicentre setting of five additional sets, encompassing 946 ovarian cancers. Chemo-sensitivity has been assessed in cell culture experiments. RESULTS HOTAIR expression was significantly associated with poor survival in carboplatin-treated patients with adjusted hazard ratios for death of 3.64 (95 % confidence interval [CI] 1.78-7.42; P < 0.001) in the discovery and 1.63 (95 % CI 1.04-2.56; P = 0.032) in the validation set. This effect was not seen in patients who did not receive carboplatin (0.97 [95 % CI 0.52-1.80; P = 0.932]). HOTAIR expression or its surrogate DNAme signature predicted poor outcome in all additional sets of carboplatin-treated ovarian cancer patients while HOTAIR expressors responded preferentially to cisplatin (multivariate interaction P = 0.008). CONCLUSIONS Non-coding RNA HOTAIR or its more stable DNAme surrogate may indicate the presence of a subset of cells which confer resistance to carboplatin and can serve as (1) a marker to personalise treatment and (2) a novel target to overcome carboplatin resistance.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- Statistical Genomics Group, UCL Cancer Institute, University College London, London, UK.
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Shih-Han Lee
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.
- Sloan Kettering Institute, Cancer Biology & Genetics Program, New York, NY, USA.
| | - Allison Jones
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.
| | - Heidi Fiegl
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria.
| | - Marie Kalwa
- Helmholtz-Institute for Biomedical Technology, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Technology, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| | - Kantaraja Chindera
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.
| | - Iona Evans
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | | | - Hugo M Horlings
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Lukas Niederreiter
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Arthur Kaser
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Winnie Yang
- Department of Molecular Oncology, British Columbia Cancer Agency Research Centre, Vancouver, Canada.
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Brooke L Fridley
- Biostatistics and Informatics Shared Resource, The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Richard G Jenner
- UCL Division of Infection and Immunity, University College London, London, UK.
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, The Netherlands.
| | - Elisabeth Wik
- Centre for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Helga B Salvesen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway.
| | - G Bea A Wisman
- Department of Gynaecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Ate G J van der Zee
- Department of Gynaecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Ben Davidson
- Division of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.
| | - Claes G Trope
- Department of Gynaecological Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Hilary Calvert
- Drug Development Group, UCL Cancer Institute, University College London, London, UK.
| | - Ian J Jacobs
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.
- University of Manchester, Manchester, UK.
- University of New South Wales, Sydney, Australia.
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
27
|
Fang C, Jian ZY, Shen XF, Wei XM, Yu GZ, Zeng XT. Promoter Methylation of the Retinoic Acid Receptor Beta2 (RARβ2) Is Associated with Increased Risk of Breast Cancer: A PRISMA Compliant Meta-Analysis. PLoS One 2015; 10:e0140329. [PMID: 26451736 PMCID: PMC4599915 DOI: 10.1371/journal.pone.0140329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/24/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epigenetic studies demonstrate that an association may exist between methylation of the retinoic acid receptor beta2 (RARβ2) gene promoter and breast cancer onset risk, tumor stage, and histological grade, however the results of these studies are not consistent. Hence, we performed this meta-analysis to ascertain a more comprehensive and accurate association. MATERIALS AND METHODS Relevant studies were retrieved from the PubMed, Embase and Chinese National Knowledge Infrastructure databases up to February 28, 2015. After two independent reviewers screened the studies and extracted the necessary data, meta-analysis was performed using Review Manager 5.2 software. RESULTS Nineteen eligible articles, including 20 studies, were included in our analysis. Compared to non-cancerous controls, the frequency of RARβ2 methylation was 7.27 times higher in patients with breast cancer (odds ratio (OR) = 7.27, 95% confidence interval (CI) = 3.01-17.52). Compared to late-stage RARβ2 methylated patients, the pooled OR of early-stage ones was 0.81 (OR = 0.81, 95% CI = 0.55-1.17). The OR of low-grade RARβ2 methylated patients was 0.96 (OR = 0.96, 95% CI = 0.74-1.25) compared to high-grade RARβ2 methylated patients. CONCLUSION RARβ2 methylation is significantly increased in breast cancer samples when compared to non-cancerous controls. RARβ2 could serve as a potential epigenetic marker for breast cancer detection and management.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Evidence-Based Medicine and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Yuan Jian
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xian-Feng Shen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Mei Wei
- Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Guo-Zheng Yu
- Center for Evidence-Based Medicine and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based Medicine and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Dimethyl adipimidate/Thin film Sample processing (DTS); A simple, low-cost, and versatile nucleic acid extraction assay for downstream analysis. Sci Rep 2015; 5:14127. [PMID: 26370251 PMCID: PMC4569962 DOI: 10.1038/srep14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022] Open
Abstract
Sample processing, especially that involving nucleic acid extraction, is a prerequisite step for the isolation of high quantities of relatively pure DNA for downstream analyses in many life science and biomedical engineering studies. However, existing methods still have major problems, including labor-intensive time-consuming methods and high costs, as well as requirements for a centrifuge and the complex fabrication of filters and membranes. Here, we first report a versatile Dimethyl adipimidate/Thin film based Sample processing (DTS) procedure without the limitations of existing methods. This procedure is useful for the extraction of DNA from a variety of sources, including 6 eukaryotic cells, 6 bacteria cells, and 2 body fluids in a single step. Specifically, the DTS procedure does not require a centrifuge and has improved time efficiency (30 min), affordability, and sensitivity in downstream analysis. We validated the DTS procedure for the extraction of DNA from human body fluids, as well as confirmed that the quality and quantity of the extracted DNA were sufficient to allow robust detection of genetic and epigenetic biomarkers in downstream analysis.
Collapse
|
29
|
Pirouzpanah S, Taleban FA, Mehdipour P, Atri M. Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. J Mol Med (Berl) 2015; 93:917-934. [PMID: 25805039 DOI: 10.1007/s00109-015-1268-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 02/08/2023]
Abstract
UNLABELLED Dietary methyl group donors could influence the hypermethylation status of certain putative genes. The present study explored the possible associations of dietary intake of one-carbon metabolism-related nutrients with promoter hypermethylation status and expression of retinoic acid receptor-beta (RARB), breast cancer-1 (BRCA1), and Ras association domain family-1, isoform A (RASSF1A) genes in Iranian women with breast cancer (BC). The hypermethylation status was investigated in 146 dissected BC tissue samples using methylation-specific PCR. The expression level was evaluated by real-time RT-PCR. Dietary nutrients were estimated using a validated 136-item food frequency questionnaire. Expression levels of the genes were associated with the unmethylated status of related promoters (p < 0.05). The crude dietary folate and adjusted cobalamin intakes were inversely associated with methylated RARB and BRCA1. Low intake of residual folate and cobalamin was correlated with the methylated status of RARB for subjects at <48 years of age, and folate alone was linked to BRCA1 at >48 years of age. High dietary intake of riboflavin and pyridoxine was the only determinant of the methylated promoter of RARB at odds ratios (ORs) of 4.15 (95 % confidence interval (CI) 1.28-13.50) and 2.53 (95 % CI 1.14-3.83) in multivariate models, respectively. One-carbon nutrients most often correlated inversely with the methylation-influenced expression of RARB. Although high folate intake increased the chance of unmethylation-dependent overexpression of BRCA1 3-fold, cobalamin and methionine were inversely linked to methylation-mediated expression. Nutritional epigenomics less actively influenced RASSF1A. These findings provide new insights into and a basic understanding of the selective contributions of individual B vitamins on hypermethylation and methylation-related expression of RARB and BRCA1 in BC. KEY MESSAGE Hypermethylation at promoters of RARB, BRCA1, and RASSF1A is associated with reduced transcript levels of the respective gene in primary breast cancer tissue samples. Dietary folate and cobalamin intake is inversely associated with methylated RARB and BRCA1. High dietary intake of riboflavin and pyridoxine is associated with increased methylation in the RARB promoter. There is evidence for the age-dependent effects of nutrient intake on promoter methylation status. Bioavailability to the pool of nutrients might determine selectivity.
Collapse
Affiliation(s)
- Saeed Pirouzpanah
- Department of Biochemistry and Dietetics, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran,
| | | | | | | |
Collapse
|
30
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
31
|
Ribeiro MPC, Santos AE, Custódio JBA. Interplay between estrogen and retinoid signaling in breast cancer--current and future perspectives. Cancer Lett 2014; 353:17-24. [PMID: 25042865 DOI: 10.1016/j.canlet.2014.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/17/2014] [Accepted: 07/08/2014] [Indexed: 01/11/2023]
Abstract
All-trans-retinoic acid (RA) is a promising agent for breast cancer treatment, but it induces several adverse effects and the few clinical trials performed up to now in breast cancer patients have provided disappointing results. The combination of RA and antiestrogenic compounds, such as tamoxifen, synergistically decreases the proliferation of breast cancer cells and an interplay between retinoid and estrogen signaling has begun to be unraveled, turning these combinations into an appealing strategy for breast cancer treatment. This review focus on the current knowledge regarding the interplay between retinoid and estrogen signaling in breast cancer and the combinations of RA with antiestrogens, aiming their future utilization in cancer therapy.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
32
|
Bhagat R, Kumar SS, Vaderhobli S, Premalata CS, Pallavi VR, Ramesh G, Krishnamoorthy L. Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumour Biol 2014; 35:9069-78. [PMID: 24913706 DOI: 10.1007/s13277-014-2136-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022] Open
Abstract
Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.
Collapse
Affiliation(s)
- Rahul Bhagat
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Dr. M.H. Marigowda Road, Bangalore, 560029, India,
| | | | | | | | | | | | | |
Collapse
|
33
|
Alevizos L, Kataki A, Derventzi A, Gomatos I, Loutraris C, Gloustianou G, Manouras A, Konstadoulakis MM, Zografos G. Breast cancer nodal metastasis correlates with tumour and lymph node methylation profiles of Caveolin-1 and CXCR4. Clin Exp Metastasis 2014; 31:511-20. [PMID: 24590865 DOI: 10.1007/s10585-014-9645-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/19/2014] [Indexed: 12/28/2022]
Abstract
DNA methylation is the best characterised epigenetic change so far. However, its role in breast cancer metastasis has not as yet been elucidated. The aim of this study was to investigate the differences between the methylation profiles characterising primary tumours and their corresponding positive or negative for metastasis lymph nodes (LN) and correlate these with tumour metastatic potential. Methylation signatures of Caveolin-1, CXCR4, RAR-β, Cyclin D2 and Twist gene promoters were studied in 30 breast cancer primary lesions and their corresponding metastasis-free and tumour-infiltrated LN with Methylation-Specific PCR. CXCR4 and Caveolin-1 expression was further studied by immunohistochemistry. Tumours were typified by methylation of RAR-β and hypermethylation of Cyclin-D2 and Twist gene promoters. Tumour patterns were highly conserved in tumour-infiltrated LN. CXCR4 and Caveolin-1 promoter methylation patterns differentiated between node-negative and metastatic tumours. Nodal metastasis was associated with tumour and lymph node profiles of extended methylation of Caveolin-1 and lack of CXCR4 hypermethylation. Immunodetection studies verified CXCR4 and Caveolin-1 hypermethylation as gene silencing mechanism. Absence of Caveolin-1 expression in stromal cells associated with tumour aggressiveness while strong Caveolin-1 expression in tumour cells correlated with decreased 7-year disease-free survival. Methylation-mediated activation of CXCR4 and inactivation of Caveolin-1 was linked with nodal metastasis while intratumoral Caveolin-1 expression heterogeneity correlated with disease progression. This evidence contributes to the better understanding and, thereby, therapeutic management of breast cancer metastasis process.
Collapse
Affiliation(s)
- Leonidas Alevizos
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Hippokration Hospital of Athens, Athens Medical School, University of Athens, 114 Queen's Sofia Avenue, 11527, Athens, Greece,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moison C, Assemat F, Daunay A, Tost J, Guieysse-Peugeot AL, Arimondo PB. Synergistic chromatin repression of the tumor suppressor gene RARB in human prostate cancers. Epigenetics 2014; 9:477-82. [PMID: 24492483 PMCID: PMC4121358 DOI: 10.4161/epi.27869] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA methylation and polycomb proteins are well-known mediators of epigenetic silencing in mammalian cells. Usually described as mutually exclusive, this statement is today controversial and recent in vitro studies suggest the co-existence of both repressor systems. We addressed this issue in the study of Retinoic Acid Receptor β (RARβ), a tumor suppressor gene frequently silenced in prostate cancer. We found that the RARβ promoter is hypermethylated in all studied prostate tumors and methylation levels are positively correlated with H3K27me3 enrichments. Thus, by using bisulfite conversion and pyrosequencing of immunoprecipitated H3K27me3 chromatin, we demonstrated that DNA methylation and polycomb repression co-exist in vivo at this locus. We found this repressive association in 6/6 patient tumor samples of different Gleason score, suggesting a strong interplay of DNA methylation and EZH2 to silence RARβ during prostate tumorigenesis.
Collapse
Affiliation(s)
- Céline Moison
- CNRS-Pierre Fabre USR3388; Epigenetic Targeting of Cancer (ETaC); Toulouse, France; MNHN CNRS UMR7196; Paris, France; INSERM U565; Paris, France; Université Pierre et Marie Curie; Paris, France
| | - Fanny Assemat
- CNRS-Pierre Fabre USR3388; Epigenetic Targeting of Cancer (ETaC); Toulouse, France
| | - Antoine Daunay
- Laboratory for Functional Genomics; Fondation Jean Dausset - CEPH; Paris, France
| | - Jörg Tost
- Laboratory for Functional Genomics; Fondation Jean Dausset - CEPH; Paris, France; Laboratory for Epigenetics and Environment; Centre National de Génotypage; CEA-Institut de Génomique; Evry, France
| | | | - Paola B Arimondo
- CNRS-Pierre Fabre USR3388; Epigenetic Targeting of Cancer (ETaC); Toulouse, France
| |
Collapse
|
35
|
Shin Y, Perera AP, Wong CC, Park MK. Solid phase nucleic acid extraction technique in a microfluidic chip using a novel non-chaotropic agent: dimethyl adipimidate. LAB ON A CHIP 2014; 14:359-368. [PMID: 24263404 DOI: 10.1039/c3lc51035b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Here, we present a silicon microfluidic system for the purification and extraction of nucleic acids from human body fluid samples utilizing a dimethyl adipimidate (DMA)-based solid-phase extraction method. We propose DMA, which has been used as an amino-reactive cross-linking agent within cells and proteins, as a non-chaotropic reagent for the capture of nucleic acids to overcome the limitations of existing chaotropic and non-chaotropic techniques such as low binding efficiency, PCR inhibition and so on. DMA contains bi-functional imidoesters that form reversible cross-linking structures with DNA therefore providing a high surface-area to volume ratio for capturing DNA without structurally modifying microfluidic channels. In this work, we have first demonstrated highly efficient capture and purification of genomic DNA (T24 cell line) with DMA using a label-free silicon microring resonator sensor device. In addition, we observed the improvement of the DNA amplification efficiency by using the proposed technique for both the genetic (HRAS) and epigenetic (RARβ) analysis of DNA biomarkers. Particularly, we confirmed that the DMA-based solid-phase extraction technique can be applied for the extraction of genomic DNA with higher purity (p < 0.001) using human body fluids (blood and urine) in silicon microfluidic devices compared to other chaotropic methods. Therefore, the proposed technique would be able to harmonize with a micro-total analysis system platform for the analysis of genetic and epigenetic DNA biomarkers related to human diseases in the field of point-of-care (POC) diagnostic applications.
Collapse
Affiliation(s)
- Yong Shin
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 11 Science Park Road, Singapore Science Park II, Singapore 117685.
| | | | | | | |
Collapse
|
36
|
Clofarabine, a novel adenosine analogue, reactivates DNA methylation-silenced tumour suppressor genes and inhibits cell growth in breast cancer cells. Eur J Pharmacol 2013; 723:276-87. [PMID: 24296317 DOI: 10.1016/j.ejphar.2013.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/07/2013] [Accepted: 11/03/2013] [Indexed: 11/20/2022]
Abstract
Clofarabine (2-chloro-2'-fluoro-2'-deoxyarabinosyladenine, ClF) is a second-generation 2'-deoxyadenosine analogue that is structurally related to cladribine (2-chloro-2'-deoxyadenosine, 2CdA) and fludarabine (9-beta-d-arabinosyl-2-fluoroadenine, F-ara-A). It demonstrates potent antitumour activity at much lower doses than parent compounds with high therapeutic efficacy in paediatric blood cancers. Our previous studies in breast cancer cells indicate that 2CdA and F-ara-A are involved in epigenetic regulation of gene transcription. We therefore investigated whether ClF influences methylation and expression of selected tumour suppressor genes, such as adenomatous polyposis coli (APC), phosphatase and tensin homologue (PTEN), and retinoic acid receptor beta 2 (RARbeta2), as well as expression of p53, p21 and DNA methyltransferase 1 (DNMT1) in MCF-7 and MDA-MB-231 breast cancer cell lines with different invasive potential. Promoter methylation and gene expression were estimated using methylation-sensitive restriction analysis (MSRA) and real-time PCR, respectively. ClF demonstrated potent growth inhibitory activity in MCF-7 and MDA-MB-231 cells after 96h treatment with IC50 determined as equal to 640nM and 50nM, respectively. In both breast cancer cell lines, ClF led to hypomethylation and up-regulation of APC, PTEN and RARbeta2 as well as increase in p21 expression. Only in non-invasive MCF-7 cells, these changes were associated with down-regulation of DNMT1. Our results provide first evidence of ClF implications in epigenetic regulation of transcriptional activity of selected tumour suppressor genes in breast cancer. It seems to be a new important element of ClF anticancer activity and may indicate its potential efficacy in epigenetic therapy of solid tumours, especially at early stages of carcinogenesis.
Collapse
|
37
|
Rivenbark AG, O'Connor SM, Coleman WB. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1113-1124. [PMID: 23993780 DOI: 10.1016/j.ajpath.2013.08.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 01/13/2023]
Abstract
Breast cancer is noted for disparate clinical behaviors and patient outcomes, despite common histopathological features at diagnosis. Molecular pathogenesis studies suggest that breast cancer is a collection of diseases with variable molecular underpinnings that modulate therapeutic responses, disease-free intervals, and long-term survival. Traditional therapeutic strategies for individual patients are guided by the expression status of the estrogen and progesterone receptors (ER and PR) and human epidermal growth factor receptor 2 (HER2). Although such methods for clinical classification have utility in selection of targeted therapies, short-term patient responses and long-term survival remain difficult to predict. Molecular signatures of breast cancer based on complex gene expression patterns have utility in prediction of long-term patient outcomes, but are not yet used for guiding therapy. Examination of the correspondence between these methods for breast cancer classification reveals a lack of agreement affecting a significant percentage of cases. To realize true personalized breast cancer therapy, a more complete analysis and evaluation of the molecular characteristics of the disease in the individual patient is required, together with an understanding of the contributions of specific genetic and epigenetic alterations (and their combinations) to management of the patient. Here, we discuss the molecular and cellular heterogeneity of breast cancer, the impact of this heterogeneity on practical breast cancer classification, and the challenges for personalized breast cancer treatment.
Collapse
Affiliation(s)
- Ashley G Rivenbark
- Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Siobhan M O'Connor
- Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William B Coleman
- Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
38
|
Gao T, He B, Pan Y, Li R, Xu Y, Chen L, Nie Z, Gu L, Wang S. The association of retinoic acid receptor beta2(RARβ2) methylation status and prostate cancer risk: a systematic review and meta-analysis. PLoS One 2013; 8:e62950. [PMID: 23675444 PMCID: PMC3652867 DOI: 10.1371/journal.pone.0062950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/27/2013] [Indexed: 11/24/2022] Open
Abstract
The retinoic acid receptor beta2(RARβ2) is a type of nuclear receptor that is activated by both all-trans retinoic acid and 9-cis retinoic acid, which has been shown to function as a tumor suppressor gene in different types of human tumors. Previous reports demonstrated that the frequency of RARβ2 methylation was significantly higher in prostate cancer patients compared with controls, but the relationship between RARβ2 promoter methylation and pathological stage or Gleason score of prostate cancer remained controversial. Therefore, a meta-analysis of published studies investigating the effects of RARβ2 methylation status in prostate cancer occurrence and association with both pathological stage and Gleason score in prostate cancer was performed in the study. A total of 12 eligible studies involving 777 cases and 404 controls were included in the pooled analyses. Under the random-effects model, the pooled OR of RARβ2 methylation in prostate cancer patients, compared to non-cancer controls, was 17.62 with 95%CI = 6.30-49.28. The pooled OR with the fixed-effects model of pathological stage in RASSF1A methylated patients, compared to unmethylated patients, was 0.67 (95%CI = 0.40-1.09) and the pooled OR of low-GS in RARβ2 methylated patients by the random-effect model, compared to high-GS RARβ2 methylated patients, was 0.54 (95%CI = 0.28-1.04). This study showed that RARβ2 might be a potential biomarker in prostate cancer prevention and diagnosis. The detection of RARβ2 methylation in urine or serum is a potential non-invasive diagnostic tool in prostate cancer. The present findings also require confirmation through adequately designed prospective studies.
Collapse
Affiliation(s)
- Tianyi Gao
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Li
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yeqiong Xu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Chen
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zhenling Nie
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Gu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shukui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Gediya LK, Njar VC. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin Drug Discov 2013; 4:1099-111. [PMID: 23480431 DOI: 10.1517/17460440903341705] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Because cancer is a complex disease, it is unlikely that a single mono functional 'targeted' drug will be effective for treating this most advanced disease. Combined drugs that impact multiple targets simultaneously are better at controlling complex disease systems, are less prone to drug resistance and are the standard of care in cancer treatment. In order to improve the efficiency of using a two-drug cocktail, one approach involves the use of the so-called hybrid drugs, which comprises the incorporation of two drugs in a single molecule with the intention of exerting dual drug action. OBJECTIVE In the present article, we discuss the design, synthesis and various applications of anticancer hybrid agents and the developments in this field during the last few decades. Additionally, we describe different types of linkers and their role in contributing towards biological effects and the in vivo mechanism of drug release. We also depict some challenges from scientific and regulatory perspectives in the hybrid drug development process. CONCLUSION In the era of increasing drug resistance in cancer patients, the discovery of hybrid drugs could provide an effective strategy to create chemical entities likely to be more efficacious and less prone to resistance. However, some technical and regulatory challenges will have to be surmounted before hybrid drugs succeed in the clinical settings and justify the considerable promise of this novel concept.
Collapse
Affiliation(s)
- Lalji K Gediya
- Research Instructor, Thomas Jefferson University, Jefferson School of Pharmacy, Department of Pharmaceutical Sciences, 130 South 9th Street, Edison Building, Suite 1510 F, Philadelphia, PA 19107, USA
| | | |
Collapse
|
40
|
Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol 2013; 26:57-74. [DOI: 10.1016/j.beha.2013.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Moison C, Senamaud-Beaufort C, Fourrière L, Champion C, Ceccaldi A, Lacomme S, Daunay A, Tost J, Arimondo PB, Guieysse-Peugeot AL. DNA methylation associated with polycomb repression in retinoic acid receptor β silencing. FASEB J 2013; 27:1468-78. [PMID: 23299856 DOI: 10.1096/fj.12-210971] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Retinoic acid receptor β 2 (RARβ2) is a tumor suppressor gene whose loss of expression is recurrent in prostate cancers. Here we studied the epigenetic mechanisms leading to its stable silencing. First, we characterized all RARβ isoforms in 6 human tumor cell lines (prostate DU145, LNCaP, PC3, lung A549, breast Hs578T, and colon HCT116) by RT-PCR and Western blot. We excluded loss of heterozygosity (2D-FISH) and loss of RARa expression, an upstream regulator, as origin of RARβ2 silencing. All data concluded to an epigenetic silencing. In agreement, a DNA methylation inhibitor restored its expression. Second RARβ2 loss of expression was found associated with different epigenetic profiles in LNCaP and DU145 cells. According to bisulfite sequencing and ChIP analysis, we observed heavy methylation (97%) of the RARβ2 promoter with repressive histone mark H3K9me3 in LNCaP. While DNA methylation and polycomb repression are described to be mutually exclusive at CpG-rich promoters, we observed that in DU145, moderate DNA methylation (36%) and H3K9me3 mark were present concomitantly with H3K27me3, a signature of polycomb repression. In summary, we provide new insights on how the RARβ2 promoter is silenced, reveal the existence of two distinct repressive chromatin profiles at the same locus, and support a polycomb-mediated epigenetic repression process in prostate cancer.
Collapse
Affiliation(s)
- Céline Moison
- CNRS-Pierre Fabre, Unité de Service et de Recherche 3388, Epigenetic Targeting of Cancer, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Fabianowska-Majewska K. Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer. Biochem Biophys Res Commun 2013; 430:623-8. [DOI: 10.1016/j.bbrc.2012.11.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/25/2012] [Indexed: 01/28/2023]
|
43
|
Field cancerization in mammary carcinogenesis — Implications for prevention and treatment of breast cancer. Exp Mol Pathol 2012; 93:391-8. [DOI: 10.1016/j.yexmp.2012.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 02/07/2023]
|
44
|
Du J, Xu R. RORα, a potential tumor suppressor and therapeutic target of breast cancer. Int J Mol Sci 2012; 13:15755-66. [PMID: 23443091 PMCID: PMC3546659 DOI: 10.3390/ijms131215755] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 12/29/2022] Open
Abstract
The function of the nuclear receptor (NR) in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR) subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jun Du
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; E-Mail:
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; E-Mail:
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-859-323-7889; Fax: +1-859-257-6030
| |
Collapse
|
45
|
Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J, Speeckaert M. DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res 2012; 751:304-325. [PMID: 22698615 DOI: 10.1016/j.mrrev.2012.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Alterations of genetic and epigenetic features can provide important insights into the natural history of breast cancer. Although DNA methylation analysis is a rapidly developing field, a reproducible epigenetic blood-based assay for diagnosis and follow-up of breast cancer has yet to be successfully developed into a routine clinical test. The aim of this study was to review multiple serum DNA methylation assays and to highlight the value of those novel biomarkers in diagnosis, prognosis and prediction of therapeutic outcome. Serum is readily accessible for molecular diagnosis in all individuals from a peripheral blood sample. The list of hypermethylated genes in breast cancer is heterogeneous and no single gene is methylated in all breast cancer types. There is increasing evidence that a panel of epigenetic markers is essential to achieve a higher sensitivity and specificity in breast cancer detection. However, the reported percentages of methylation are highly variable, which can be partly explained by the different sensitivities and the different intra-/inter-assay coefficients of variability of the analysis methods. Moreover, there is a striking lack of receiver operating characteristic (ROC) curves of the proposed biomarkers. Another point of criticism is the fact that 'normal' patterns of DNA methylation of some tumor suppressor and other cancer-related genes are influenced by several factors and are often poorly characterized. A relatively frequent methylation of those genes has been observed in high-risk asymptomatic women. Finally, there is a call for larger prospective cohort studies to determine methylation patterns during treatment and follow-up. Identification of patterns specific for a differential response to therapeutic interventions should be useful. Only in this way, it will be possible to evaluate the predictive and prognostic characteristics of those novel promising biomarkers.
Collapse
Affiliation(s)
- Lien Van De Voorde
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | | | - Dirk Van Gestel
- Department of Radiation Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Bracke
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Wilfried De Neve
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Marijn Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
46
|
Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R. Clinical significance of promoter hypermethylation of ERβ and RARβ2 in tumor and serum DNA in Indian breast cancer patients. Ann Surg Oncol 2012; 19:3107-15. [PMID: 22451234 DOI: 10.1245/s10434-012-2323-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine concordance of promoter hypermethylation of ERβ (estrogen receptor β) and RARβ2 (retinoic acid receptor β2) in tumor and circulating DNA of Indian breast cancer patients and their association with clinicopathologic parameters and disease prognosis. METHODS ERβ and RARβ2 methylation was analyzed by methylation-specific PCR in the tumors and circulating DNA of 100 patients with invasive ductal breast carcinoma. Promoter hypermethylation was associated with the expression of the encoded protein in tumors by immunohistochemistry, and their prognostic utility was explored in a follow-up study. RESULTS Significant correlation was observed between promoter hypermethylation of ERβ (r = + 0.77; p ≤ 0.001) and RARβ2 (r = + 0.85; p ≤ 0.001) in tumors and paired sera. No association was found between ERβ and RARβ2 promoter hypermethylation and loss of protein expression. Kaplan-Meier survival curve showed loss of ERβ expression, and RARβ2 promoter hypermethylation was associated with poor overall survival (OS) (p = 0.03, p = 0.001). Breast cancer patients showing concurrent hypermethylation of ERβ and RARβ2 had a significantly shorter median OS (p = 0.02), underscoring that hypermethylation of these two genes may serve as an adverse prognosticator for breast carcinoma. CONCLUSIONS Methylation status of ERβ and RARβ2 in serum could potentially be used to predict invasive ductal breast carcinoma. Furthermore, concurrent ERβ and RARβ2 methylation as well as loss of ERβ expression may serve as a good prognostic marker.
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
47
|
Sun J, Xu X, Liu J, Liu H, Fu L, Gu L. Epigenetic regulation of retinoic acid receptor β2 gene in the initiation of breast cancer. Med Oncol 2012; 28:1311-8. [PMID: 20865461 DOI: 10.1007/s12032-010-9685-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In order to investigate the methylation status of the retinoic acid receptor beta 2 gene (RAR-β2) in breast carcinoma in relation to gene expression and clinicopathological parameters of patients with breast cancer, expression of RAR-β2 gene and methylation status were analyzed in invasive carcinoma, atypical ductal hyperplasia, fibroadenoma specimens, and normal tissues. Our findings showed that RAR-β2 expression was lower in the breast cancer compared to normal tissue and fibroadenoma. The methylation rate of RAR-β2 in breast cancer and precancerous lesions of breast cancer were higher than that of normal tissues. Hypermethylation may be an initial step in breast carcinogenesis.
Collapse
Affiliation(s)
- Jingyan Sun
- Department of Breast Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, Cibula D, Sargent A, Salvesen HB, Jacobs IJ, Kitchener HC, Teschendorff AE, Widschwendter M. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet 2012; 8:e1002517. [PMID: 22346766 PMCID: PMC3276553 DOI: 10.1371/journal.pgen.1002517] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022] Open
Abstract
Aberrant DNA methylation is an important cancer hallmark, yet the dynamics of DNA methylation changes in human carcinogenesis remain largely unexplored. Moreover, the role of DNA methylation for prediction of clinical outcome is still uncertain and confined to specific cancers. Here we perform the most comprehensive study of DNA methylation changes throughout human carcinogenesis, analysing 27,578 CpGs in each of 1,475 samples, ranging from normal cells in advance of non-invasive neoplastic transformation to non-invasive and invasive cancers and metastatic tissue. We demonstrate that hypermethylation at stem cell PolyComb Group Target genes (PCGTs) occurs in cytologically normal cells three years in advance of the first morphological neoplastic changes, while hypomethylation occurs preferentially at CpGs which are heavily Methylated in Embryonic Stem Cells (MESCs) and increases significantly with cancer invasion in both the epithelial and stromal tumour compartments. In contrast to PCGT hypermethylation, MESC hypomethylation progresses significantly from primary to metastatic cancer and defines a poor prognostic signature in four different gynaecological cancers. Finally, we associate expression of TET enzymes, which are involved in active DNA demethylation, to MESC hypomethylation in cancer. These findings have major implications for cancer and embryonic stem cell biology and establish the importance of systemic DNA hypomethylation for predicting prognosis in a wide range of different cancers.
Collapse
Affiliation(s)
- Joanna Zhuang
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
- Statistical Genomics Group, University College London Cancer Institute, London, United Kingdom
| | - Allison Jones
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
| | - Shih-Han Lee
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
| | - Esther Ng
- Statistical Genomics Group, University College London Cancer Institute, London, United Kingdom
| | - Heidi Fiegl
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Michal Zikan
- Oncogynecologic Center, Department of Obstetrics and Gynaecology, Charles University Prague–First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - David Cibula
- Oncogynecologic Center, Department of Obstetrics and Gynaecology, Charles University Prague–First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Alexandra Sargent
- School of Cancer and Imaging Science, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Helga B. Salvesen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ian J. Jacobs
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
- School of Cancer and Imaging Science, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Henry C. Kitchener
- School of Cancer and Imaging Science, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew E. Teschendorff
- Statistical Genomics Group, University College London Cancer Institute, London, United Kingdom
- * E-mail: (MW); (AET)
| | - Martin Widschwendter
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
- * E-mail: (MW); (AET)
| |
Collapse
|
49
|
Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, Shi YG, Xu Y, Patel DJ, Shi Y. PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell 2012; 43:275-284. [PMID: 21777816 DOI: 10.1016/j.molcel.2011.07.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 01/20/2023]
Abstract
Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD(UHRF1)), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD(UHRF1) bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD(UHRF1) binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Zhentian Wang
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Honghui Ma
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lulu Hu
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Chen
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Lin
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rui Guo
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haitao Li
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Lan
- Constellation Pharmaceuticals, Cambridge, MA 02140, USA
| | - Yujiang Geno Shi
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Xu
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Yang Shi
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Biochemistry, Fudan University Medical School, Shanghai 200032, China.,Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Abstract
Cervical carcinoma is one of the major causes of death in women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. Cervical cancer is a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSGs). In the last decade, in addition to genetic alterations, epigenetic inactivation of TSGs by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In cervical cancer, epigenetic alterations can affect the expression of papillomavirus as well as host genes in relation to stages representing the multistep process of carcinogenesis. Here we discuss these epigenetic alterations in cervical cancer focusing on DNA methylation.
Collapse
|