1
|
Catalano T, Selvaggi F, Cotellese R, Aceto GM. The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches. Cancers (Basel) 2025; 17:752. [PMID: 40075600 PMCID: PMC11899472 DOI: 10.3390/cancers17050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Altered levels of reactive oxygen species (ROS) are recognized as one of the key factors in mediating tumor cell survival in the tissue microenvironment, where they play a role in the initiation, progression and recurrence/relapse of colorectal cancer (CRC). Tumor cells can adapt to oxidative stress (OS) using genetic or metabolic reprogramming in the long or short term. In addition, tumor cells defend themselves through positive regulation of antioxidant molecules, enhancing ROS-driven proliferation. Balanced oxidative eustress levels can influence chemotherapy resistance, allowing tumor cells to survive treatment. Secondary effects of chemotherapy include increased ROS production and redox stress, which can kill cancer cells and eliminate drug resistance. Anticancer treatments based on manipulating ROS levels could represent the gold standard in CRC therapy. Therefore, exploring the modulation of the response to OS in deregulated signaling pathways may lead to the development of new personalized CRC treatments to overcome therapy resistance. In this review, we explore the role of ROS in the initiation and progression of CRC and their diagnostic implications as biomarkers of disease. Furthermore, we focused on the involvement of ROS in different CRC therapeutic options, such as surgery, radiotherapy, theranostic imaging, chemotherapy and immunotherapy and other precision medicine approaches.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
- Department of Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Shanmugam R, Majee P, Shi W, Ozturk MB, Vaiyapuri TS, Idzham K, Raju A, Shin SH, Fidan K, Low JL, Chua JY, Kong YC, Qi OY, Tan E, Chok AY, Seow-En I, Wee I, Macalinao DC, Chong DQ, Chang HY, Lee F, Leow WQ, Murata-Hori M, Xiaoqian Z, Shumei C, Tan CS, Dasgupta R, Tan IB, Tergaonkar V. Iron-(Fe3+)-Dependent Reactivation of Telomerase Drives Colorectal Cancers. Cancer Discov 2024; 14:1940-1963. [PMID: 38885349 PMCID: PMC11450372 DOI: 10.1158/2159-8290.cd-23-1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with an increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by reactivating the dormant human telomerase reverse transcriptase (hTERT) subunit of the telomerase holoenzyme in an iron-(Fe3+)-dependent manner and thereby drives colorectal cancers. Chemical genetic screens combined with isothermal dose-response fingerprinting and mass spectrometry identified a small molecule SP2509 that specifically inhibits Pirin-mediated hTERT reactivation in colorectal cancers by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat and increased incidence of colorectal cancers. Small molecules like SP2509 represent a novel modality to target telomerase that acts as a driver of 90% of human cancers and is yet to be targeted in clinic. Significance: We show how iron-(Fe3+) in collusion with genetic factors reactivates telomerase, providing a molecular mechanism for the association between iron overload and increased incidence of colorectal cancers. Although no enzymatic inhibitors of telomerase have entered the clinic, we identify SP2509, a small molecule that targets telomerase reactivation and function in colorectal cancers.
Collapse
Affiliation(s)
- Raghuvaran Shanmugam
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Prativa Majee
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Wei Shi
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Mert B. Ozturk
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Thamil S. Vaiyapuri
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Khaireen Idzham
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Seung H. Shin
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Kerem Fidan
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Joo-Leng Low
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Joelle Y.H. Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Yap C. Kong
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Ong Y. Qi
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Aik Y. Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Ian Wee
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Dominique C. Macalinao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Dawn Q. Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Hong Y. Chang
- Experimental Drug Development Center, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Fiona Lee
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Wei Q. Leow
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Maki Murata-Hori
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Zhang Xiaoqian
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chia Shumei
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chris S.H. Tan
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.
| | - Ramanuj Dasgupta
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Iain B. Tan
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
- Cancer and Stem Cell Biology, Duke-National University of Singapore, Singapore, Republic of Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Pecorelli A, Franceschi P, Braccischi L, Izzo F, Renzulli M, Golfieri R. MRI Appearance of Focal Lesions in Liver Iron Overload. Diagnostics (Basel) 2022; 12:diagnostics12040891. [PMID: 35453939 PMCID: PMC9029711 DOI: 10.3390/diagnostics12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Liver iron overload is defined as an accumulation of the chemical element Fe in the hepatic parenchyma that exceeds the normal storage. When iron accumulates, it can be toxic for the liver by producing inflammation and cell damage. This can potentially lead to cirrhosis and hepatocellular carcinoma, as well as to other liver lesions depending on the underlying condition associated to liver iron overload. The correct assessment of liver iron storage is pivotal to drive the best treatment and prevent complication. Nowadays, magnetic resonance imaging (MRI) is the best non-invasive modality to detect and quantify liver iron overload. However, due to its superparamagnetic properties, iron provides a natural source of contrast enhancement that can make challenging the differential diagnosis between different focal liver lesions (FLLs). To date, a fully comprehensive description of MRI features of liver lesions commonly found in iron-overloaded liver is lacking in the literature. Through an extensive review of the published literature, we aim to summarize the MRI signal intensity and enhancement pattern of the most common FLLs that can occur in liver iron overload.
Collapse
|
4
|
Sninsky JA, Shore BM, Lupu GV, Crockett SD. Risk Factors for Colorectal Polyps and Cancer. Gastrointest Endosc Clin N Am 2022; 32:195-213. [PMID: 35361331 DOI: 10.1016/j.giec.2021.12.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy in the U.S. and worldwide. Most CRC cases arise from precancerous adenomatous and serrated polyps. Established risk factors for conventional adenomas and CRC include age, male sex, family history, obesity and physical inactivity, and red meat intake. White race and tobacco and alcohol use are important risk factors for serrated polyps, which have a distinct risk factor profile compared to conventional adenomas. A history of abdominopelvic radiation, acromegaly, hereditary hemochromatosis, or prior ureterosigmoidostomy also increases CRC risk. Understanding these risk factors allows for targeted screening of high-risk groups to reduce CRC incidence.
Collapse
Affiliation(s)
- Jared A Sninsky
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, CB 7080, 130 Mason Farm Road, Chapel Hill, NC 27599-7555, USA
| | - Brandon M Shore
- Department of Medicine, University of North Carolina School of Medicine, CB 7080, 130 Mason Farm Road, Chapel Hill, NC 27599-7555, USA
| | - Gabriel V Lupu
- Department of Medicine, University of North Carolina School of Medicine, CB 7080, 130 Mason Farm Road, Chapel Hill, NC 27599-7555, USA
| | - Seth D Crockett
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, CB 7080, 130 Mason Farm Road, Chapel Hill, NC 27599-7555, USA.
| |
Collapse
|
5
|
HFE variants in colorectal cancer and their clinicopathological correlations. Hum Pathol 2021; 117:9-30. [PMID: 34371060 DOI: 10.1016/j.humpath.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/29/2023]
Abstract
The study aimed to screen mutation of human homeostatic iron regulator (HFE) in colorectal carcinoma (CRC) and detect their associations with clinicopathological parameters. Expression of HFE was determined by quantitative polymerase chain reaction in matched CRC and non neoplastic colorectal mucosal tissue of 76 patients. Genomic DNA extracted were subjected to high high-resolution melt curve analysis and Sanger sequencing to detect mutations in HFE. The associations of the identified mutations with a variety of clinical features were determined. Approximately 60% of CRC showed low HFE expression. Of the ten 10 mutations identified in exons 2 and 4, c.187C>G (H63D), c845G>A (C282Y), c.193A>T (S65C), g.3828T>C, g.5795T>C, and g.5728G>A were known mutations. Four novel mutations were discovered; : c.184G>A, c.220T>G, c.322A>C, and c.324T>C. Heterozygous H63D and C282Y mutations were seen in 71% and 49% of cancer tissue, respectively. Tumour site (p = 0.048) and gender (p = 0.039) were significantly associated with H63D and C282Y mutation status, respectively. Local spread of cancer was significantly associated with C282Y mutations in CRC cancer and adjacent non-neoplastic tissue (p = 0.029 & and p = 0.004, respectively). There was a statistically significant association between H63D and C282Y negativity in matched non-neoplastic colorectal mucosa tissue and pathological staging of cancer (p = 0.047 & and p = 0.001, respectively). Patients with H63D and C282Y mutations in cancer tissue tend to have higher survival rates. Hence HFE mutations are common in CRC and are associated with clinicopathological parameters, implying the potential clinical significance of HFE mutations in colorectal carcinogenesis.
Collapse
|
6
|
Hagström H, Ndegwa N, Jalmeus M, Ekstedt M, Posserud I, Rorsman F, Nyhlin N, Klintman D, Werner M, Marschall HU, Askling J, Stål P. Morbidity, risk of cancer and mortality in 3645 HFE mutations carriers. Liver Int 2021; 41:545-553. [PMID: 33450138 DOI: 10.1111/liv.14792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Mutations in the HFE gene can lead to hereditary haemochromatosis (HH) and have been suggested to increase the risk of extra-hepatic diseases, especially breast and colorectal cancer. Here we investigated long-term outcomes of Swedish patients with HFE mutations. METHODS We identified 3645 patients with a homozygous p.C282Y (62%) or a compound heterozygous p.C282Y/p.H63D (38%) mutation from eight centres in Sweden between 1997 and 2017. These were matched 1:10 by age, sex and county of residence to reference individuals from the general population. We ascertained incident outcomes until the end of 2017 by linkage to national registers. Studied outcomes were HH, cirrhosis, hepatocellular carcinoma (HCC), breast cancer (in women), colorectal cancer, type 1 and 2 diabetes, hypothyroidism, Parkinson's disease and mortality. Cox proportional hazards regression was used to estimate hazard ratios for these outcomes. RESULTS Median age at diagnosis was 52 years, 44% were females. During a mean follow-up of 7.9 years, we found an increased risk for HCC, HH, cirrhosis, type 2 diabetes, osteoarthritis and death. Excess mortality was only seen in men. No increased risk was seen for colorectal or breast cancer. Liver-related outcomes were rare, with a cumulative incidence of <1%. CONCLUSIONS Individuals found to be HFE mutation carriers in a university hospital setting had an increased risk for mortality in men, along with increased risks of cirrhosis, HCC, diabetes type 2, and osteoarthritis. In general, the absolute risk for adverse outcomes was low and no increased risk for colon or breast cancer was observed.
Collapse
Affiliation(s)
- Hannes Hagström
- Division of Hepatology, Department of Upper GI diseases, Karolinska University Hospital, Stockholm, Sweden.,Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nelson Ndegwa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Division of Surgery, Department of Clinical Science Intervention and Technology, Karolinska Institutet, and Oesophageal and Gastric Cancer Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Molly Jalmeus
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Iris Posserud
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Rorsman
- Department of Gastroenterology and Hepatology, Uppsala University Hospital, Uppsala, Sweden
| | - Nils Nyhlin
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Klintman
- Department of Gastroenterology and Hepatology, Skåne University Hospital,, Malmö, Sweden
| | - Mårten Werner
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Askling
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Per Stål
- Division of Hepatology, Department of Upper GI diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
7
|
Hereditary hemochromatosis promotes colitis and colon cancer and causes bacterial dysbiosis in mice. Biochem J 2021; 477:3867-3883. [PMID: 32955078 PMCID: PMC7557149 DOI: 10.1042/bcj20200392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Hereditary hemochromatosis (HH), an iron-overload disease, is a prevalent genetic disorder. As excess iron causes a multitude of metabolic disturbances, we postulated that iron overload in HH disrupts colonic homeostasis and colon–microbiome interaction and exacerbates the development and progression of colonic inflammation and colon cancer. To test this hypothesis, we examined the progression and severity of colitis and colon cancer in a mouse model of HH (Hfe−/−), and evaluated the potential contributing factors. We found that experimentally induced colitis and colon cancer progressed more robustly in Hfe−/− mice than in wild-type mice. The underlying causes were multifactorial. Hfe−/− colons were leakier with lower proliferation capacity of crypt cells, which impaired wound healing and amplified inflammation-driven tissue injury. The host/microflora axis was also disrupted. Sequencing of fecal 16S RNA revealed profound changes in the colonic microbiome in Hfe−/− mice in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7. There was an increased number of bacteria adhered onto the mucosal surface of the colonic epithelium in Hfe−/− mice than in wild-type mice. Furthermore, the expression of innate antimicrobial peptides, the first-line of defense against bacteria, was lower in Hfe−/− mouse colon than in wild-type mouse colon; the release of pro-inflammatory cytokines upon inflammatory stimuli was also greater in Hfe−/− mouse colon than in wild-type mouse colon. These data provide evidence that excess iron accumulation in colonic tissue as happens in HH promotes colitis and colon cancer, accompanied with bacterial dysbiosis and loss of function of the intestinal/colonic barrier.
Collapse
|
8
|
Jarvik GP, Wang X, Fontanillas P, Kim E, Chanprasert S, Gordon AS, Bastarache L, Kowdley KV, Harrison T, Rosenthal EA, Stanaway IB, Bézieau S, Weinstein SJ, Newcomb PA, Casey G, Platz EA, Visvanathan K, Le Marchand L, Ulrich CM, Hardikar S, Li CI, van Duijnhoven FJ, Gsur A, Campbell PT, Moreno V, Vodička P, Brenner H, Chang-Claude J, Hoffmeister M, Slattery ML, Gunter MJ, Aglago EK, Castellví-Bel S, Kweon SS, Chan AT, Li L, Zheng W, Bishop DT, Giles GG, Rennert G, Offit K, Keku TO, Woods MO, Hampe J, Van Guelpen B, Gallinger SJ, de la Chapelle A, Hampel H, Berndt SI, Tangen CM, Lindblom A, Wolk A, Burnett-Hartman A, Wu AH, White E, 23andMe Research Team, Gruber SB, Jenkins MA, Mountain J, Peters U, Crosslin DR. Hemochromatosis risk genotype is not associated with colorectal cancer or age at its diagnosis. HGG ADVANCES 2020; 1:100010. [PMID: 35047832 PMCID: PMC8756515 DOI: 10.1016/j.xhgg.2020.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Homozygotes for the higher penetrance hemochromatosis risk allele, HFE c.845G>A (p.Cys282Tyr, or C282Y), have been reported to be at a 2- to 3-fold increased risk for colorectal cancer (CRC). These results have been reported for small sample size studies with no information about age at diagnosis for CRC. An association with age at diagnosis might alter CRC screening recommendations. We analyzed two large European ancestry datasets to assess the association of HFE genotype with CRC risk and age at CRC diagnosis. The first dataset included 59,733 CRC or advanced adenoma cases and 72,351 controls from a CRC epidemiological study consortium. The second dataset included 13,564 self-reported CRC cases and 2,880,218 controls from the personal genetics company, 23andMe. No association of the common hereditary hemochromatosis (HH) risk genotype and CRC was found in either dataset. The odds ratios (ORs) for the association of CRC and HFE C282Y homozygosity were 1.08 (95% confidence interval [CI], 0.91-1.29; p = 0.4) and 1.01 (95% CI, 0.78-1.31, p = 0.9) in the two cohorts, respectively. Age at CRC diagnosis also did not differ by HFE C282Y/C282Y genotype in either dataset. These results indicate no increased CRC risk in individuals with HH genotypes and suggest that persons with HH risk genotypes can follow population screening recommendations for CRC.
Collapse
Affiliation(s)
- Gail P. Jarvik
- University of Washington Medical Center, Seattle, WA, USA
| | - Xiaoliang Wang
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Polly A. Newcomb
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA
| | - Graham Casey
- University of Virginia, Charlottesville, VA, USA
| | | | - Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP) and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona (UB), L’Hospitalet, 08908, Barcelona, Spain
| | - Pavel Vodička
- Institute of Experimental Medicine, Czech Academy of Sciences, Biomedical Center, Medical Faculty Pilsen and 1st Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Elom K. Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sun-Seog Kweon
- Chonnam National University Medical School, Gwangju, Korea
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Li
- University of Virginia, Charlottesville, VA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Graham G. Giles
- Cancer Council Victoria, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Gad Rennert
- Lady Davis Carmel Medical Center, Haifa, Israel
| | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jochen Hampe
- Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Bethan Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University and Wallenberg Centre for Molecular Medicine, Umeå University, Sweden
| | | | | | | | - Sonja I. Berndt
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Alicja Wolk
- Karolinska Institutet, Stockholm, Sweden
- Uppsala University, Uppsala, Sweden
| | | | - Anna H. Wu
- University of Southern California, Los Angeles, CA, USA
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, VIC, Australia
| | | | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
9
|
Zhang Y, Feng X, Zhang J, Chen M, Huang E, Chen X. Iron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis. Oncogene 2019; 38:6256-6269. [PMID: 31332290 DOI: 10.1038/s41388-019-0876-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
p53 is known to play a role in iron homeostasis and is required for FDXR-mediated iron metabolism via iron regulatory protein 2 (IRP2). Interestingly, p53 is frequently mutated in tumors wherein iron is often accumulated, suggesting that mutant p53 may exert its gain of function by altering iron metabolism. In this study, we found that FDXR deficiency decreased mutant p53 expression along with altered iron metabolism in p53R270H/- MEFs and cancer cells carrying mutant p53. Consistently, we found that decreased expression of mutant p53 by FDXR deficiency inhibited mutant p53-R270H to induce carcinoma and high grade pleomorphic sarcoma in FDXR+/-; p53R270H/- mice as compared with p53R270H/- mice. Moreover, we found that like its effect on wild-type p53, loss of IRP2 increased mutant p53 expression. However, unlike its effect to suppress cell growth in cells carrying wild-type p53, loss of IRP2 promoted cell growth in cancer cells expressing mutant p53. Finally, we found that ectopic expression of IRP2 suppressed cell growth in a mutant p53-dependent manner. Together, our data indicate that mutant p53 gain-of-function can be suppressed by IRP2 and FDXR deficiency, both of which may be explored to target tumors carrying mutant p53.
Collapse
Affiliation(s)
- Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Xiuli Feng
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Minyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eric Huang
- Department of Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Oh CK, Moon Y. Dietary and Sentinel Factors Leading to Hemochromatosis. Nutrients 2019; 11:nu11051047. [PMID: 31083351 PMCID: PMC6566178 DOI: 10.3390/nu11051047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Although hereditary hemochromatosis is associated with the mutation of genes involved in iron transport and metabolism, secondary hemochromatosis is due to external factors, such as intended or unintended iron overload, hemolysis-linked iron exposure or other stress-impaired iron metabolism. The present review addresses diet-linked etiologies of hemochromatosis and their pathogenesis in the network of genes and nutrients. Although the mechanistic association to diet-linked etiologies can be complicated, the stress sentinels are pivotally involved in the pathological processes of secondary hemochromatosis in response to iron excess and other external stresses. Moreover, the mutations in these sentineling pathway-linked genes increase susceptibility to secondary hemochromatosis. Thus, the crosstalk between nutrients and genes would verify the complex procedures in the clinical outcomes of secondary hemochromatosis and chronic complications, such as malignancy. All of this evidence provides crucial insights into comprehensive clinical or nutritional interventions for hemochromatosis.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea.
- BioMedical Research Institute, Pusan National University, Yangsan 50612, Korea.
- Program of Food Health Sciences, Busan 46241, Korea.
| |
Collapse
|
11
|
Konstorum A, Lynch ML, Torti SV, Torti FM, Laubenbacher RC. A Systems Biology Approach to Understanding the Pathophysiology of High-Grade Serous Ovarian Cancer: Focus on Iron and Fatty Acid Metabolism. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:502-513. [PMID: 30004845 PMCID: PMC6059353 DOI: 10.1089/omi.2018.0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OVC) is the most lethal of the gynecological malignancies, with diagnosis often occurring during advanced stages of the disease. Moreover, a majority of cases become refractory to chemotherapeutic approaches. Therefore, it is important to improve our understanding of the molecular dependencies underlying the disease to identify novel diagnostic and precision therapeutics for OVC. Cancer cells are known to sequester iron, which can potentiate cancer progression through mechanisms that have not yet been completely elucidated. We developed an algorithm to identify novel links between iron and pathways implicated in high-grade serous ovarian cancer (HGSOC), the most common and deadliest subtype of OVC, using microarray gene expression data from both clinical sources and an experimental model. Using our approach, we identified several links between fatty acid (FA) and iron metabolism, and subsequently developed a network for iron involvement in FA metabolism in HGSOC. FA import and synthesis pathways are upregulated in HGSOC and other cancers, but a link between these processes and iron-related genes has not yet been identified. We used the network to derive hypotheses of specific mechanisms by which iron and iron-related genes impact and interact with FA metabolic pathways to promote tumorigenesis. These results suggest a novel mechanism by which iron sequestration by cancer cells can potentiate cancer progression, and may provide novel targets for use in diagnosis and/or treatment of HGSOC.
Collapse
Affiliation(s)
- Anna Konstorum
- 1 Center for Quantitative Medicine, UConn Health , Farmington, Connecticut
| | - Miranda L Lynch
- 2 Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center , Buffalo, New York
| | - Suzy V Torti
- 3 Department of Molecular Biology and Biophysics, UConn Health , Farmington, Connecticut
| | - Frank M Torti
- 3 Department of Molecular Biology and Biophysics, UConn Health , Farmington, Connecticut
| | - Reinhard C Laubenbacher
- 1 Center for Quantitative Medicine, UConn Health , Farmington, Connecticut.,4 Jackson Laboratory for Genomic Medicine , Farmington, Connecticut
| |
Collapse
|
12
|
Adris N, Chua ACG, Knuiman MW, Divitini ML, Trinder D, Olynyk JK. A prospective cohort examination of haematological parameters in relation to cancer death and incidence: the Busselton Health Study. BMC Cancer 2018; 18:863. [PMID: 30176879 PMCID: PMC6122556 DOI: 10.1186/s12885-018-4775-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer risk is associated with serum iron levels. The aim of this study was to evaluate whether haematological parameters reflect serum iron levels and may also be associated with cancer risk. METHODS We studied 1564 men and 1769 women who were enrolled in the Busselton Health Study, Western Australia. Haematological parameters evaluated included haemoglobin (Hb), mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) and red cell distribution width (RCDW). Statistical analyses included t-tests for quantitative variables, chi-square tests for categorical variables and Cox proportional hazards regression modelling for cancer incidence and death. RESULTS There was marginal evidence of an association between MCV (as a continuous variable) and non-skin cancer incidence in women (HR 1.15, 95% CI 1.013, 1.302; p = 0.030) but the hazard ratio was attenuated to non-significance after adjustment for serum ferritin (SF), iron and transferrin saturation (TS) (HR 1.11, 95% CI 0.972, 1.264; p = 0.126). There was strong evidence of an association between MCHC and prostate cancer incidence in men; the estimated hazard ratio for an increase of one SD (0.5) in MCHC was 1.27 (95% CI 1.064, 1.507; p = 0.008). These results remained significant after further adjustment for SF and iron; the estimated hazard ratio for an increase of one SD (0.5) in MCHC was 1.25 (p = 0.014, 95% CI 1.05 to 1.48). CONCLUSIONS The MCHC and MCV were associated with cancer incidence in a Western Australian population, although only MCHC remained associated with prostate cancer after adjusting with serum iron and TS (circulating iron) and SF (storage iron). Haematological parameters are thus of limited utility in population profiling for future cancer risk.
Collapse
Affiliation(s)
- Niwansa Adris
- Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospital Group, Murdoch, WA 6150 Australia
| | - Anita Chai Geik Chua
- Medical School, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA 6150 Australia
- Harry Perkins Institute of Medical Research, Murdoch, WA 6150 Australia
| | - Matthew William Knuiman
- School of Population and Global Health, The University of Western Australia, Crawley, WA 6009 Australia
| | - Mark Laurence Divitini
- School of Population and Global Health, The University of Western Australia, Crawley, WA 6009 Australia
| | - Debbie Trinder
- Medical School, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA 6150 Australia
- Harry Perkins Institute of Medical Research, Murdoch, WA 6150 Australia
| | - John Kevin Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospital Group, Murdoch, WA 6150 Australia
- School of Health and Medical Sciences, Edith Cowan University, Joondalup, 6027 Western Australia
| |
Collapse
|
13
|
Zhang Y, Qian Y, Zhang J, Yan W, Jung YS, Chen M, Huang E, Lloyd K, Duan Y, Wang J, Liu G, Chen X. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 2017; 31:1243-1256. [PMID: 28747430 PMCID: PMC5558926 DOI: 10.1101/gad.299388.117] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
Abstract
In this study, Chen and colleagues investigated the biological function of ferredoxin reductase (FDXR), a target of p53. They generated a Fdxr-deficient mouse model and found that the signal from FDXR to iron homeostasis and the p53 pathway was transduced by ferredoxin 2, a substrate of FDXR, and that p53 played a role in iron homeostasis and was required for FDXR-mediated iron metabolism, suggesting that the FDXR–p53 loop is critical for tumor suppression via iron homeostasis. Ferredoxin reductase (FDXR), a target of p53, modulates p53-dependent apoptosis and is necessary for steroidogenesis and biogenesis of iron–sulfur clusters. To determine the biological function of FDXR, we generated a Fdxr-deficient mouse model and found that loss of Fdxr led to embryonic lethality potentially due to iron overload in developing embryos. Interestingly, mice heterozygous in Fdxr had a short life span and were prone to spontaneous tumors and liver abnormalities, including steatosis, hepatitis, and hepatocellular carcinoma. We also found that FDXR was necessary for mitochondrial iron homeostasis and proper expression of several master regulators of iron metabolism, including iron regulatory protein 2 (IRP2). Surprisingly, we found that p53 mRNA translation was suppressed by FDXR deficiency via IRP2. Moreover, we found that the signal from FDXR to iron homeostasis and the p53 pathway was transduced by ferredoxin 2, a substrate of FDXR. Finally, we found that p53 played a role in iron homeostasis and was required for FDXR-mediated iron metabolism. Together, we conclude that FDXR and p53 are mutually regulated and that the FDXR–p53 loop is critical for tumor suppression via iron homeostasis.
Collapse
Affiliation(s)
- Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| | - Yingjuan Qian
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| | - Yong-Sam Jung
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric Huang
- Department of Pathology, School of Medicine, University of California at Davis Health, Sacramento, California 95817, USA
| | - Kent Lloyd
- Department of Surgery, School of Medicine, University of California at Davis Health, Sacramento, California 95817, USA
| | - Yuyou Duan
- Department of Dermatology and Internal Medicine, University of California at Davis Health, Sacramento, California 95616, USA
| | - Jian Wang
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201 USA
| | - Gang Liu
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
14
|
Hollerer I, Bachmann A, Muckenthaler MU. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica 2017; 102:809-817. [PMID: 28280078 PMCID: PMC5477599 DOI: 10.3324/haematol.2016.160432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in the HFE (hemochromatosis) gene cause hereditary hemochromatosis, an iron overload disorder that is hallmarked by excessive accumulation of iron in parenchymal organs. The HFE mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent research findings about hereditary hemochromatosis, and outline the pathological consequences of the associated gene defects. In addition, we discuss potential advantages of HFE mutations in asymptomatic carriers.
Collapse
Affiliation(s)
- Ina Hollerer
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| |
Collapse
|
15
|
Reuben A, Chung JW, Lapointe R, Santos MM. The hemochromatosis protein HFE 20 years later: An emerging role in antigen presentation and in the immune system. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:218-232. [PMID: 28474781 PMCID: PMC5569368 DOI: 10.1002/iid3.158] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/30/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Introduction Since its discovery, the hemochromatosis protein HFE has been primarily defined by its role in iron metabolism and homeostasis, and its involvement in the genetic disease termed hereditary hemochromatosis (HH). While HH patients are typically afflicted by dysregulated iron levels, many are also affected by several immune defects and increased incidence of autoimmune diseases that have thereby implicated HFE in the immune response. Growing evidence has supported an immunological role for HFE with recent studies describing HFE specifically as it relates to MHC I antigen presentation. Methods/Results Here, we present a comprehensive overview of the relationship between iron metabolism, HFE, and the immune system to better understand the origin and cause of immune defects in HH patients. We further describe the role of HFE in MHC I antigen presentation and its potential to impair autoimmune responses in homeostatic conditions, a mechanism which may be exploited by tumors to evade immune surveillance. Conclusion Overall, this increased understanding of the role of HFE in the immune response sets the stage for better treatment and management of HH and other iron‐related diseases, as well as of the immune defects related to this condition.
Collapse
Affiliation(s)
- Alexandre Reuben
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médicine, Université de Montréal, Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Jacqueline W Chung
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Réjean Lapointe
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médicine, Université de Montréal, Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Manuela M Santos
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médicine, Université de Montréal, Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J, Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017; 8:6376-6398. [PMID: 28031527 PMCID: PMC5351639 DOI: 10.18632/oncotarget.14093] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Iron/metabolism
- Iron Chelating Agents/pharmacology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- MCF-7 Cells
- Male
- Mice, Transgenic
- Mitochondria/enzymology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phenotype
- Principal Component Analysis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Spheroids, Cellular
- Tamoxifen/pharmacology
- Transcriptome
Collapse
Affiliation(s)
- Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Vlasta Korenkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Langerova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ekaterina Simonova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- School of Medical Science, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Ashmore JH, Rogers CJ, Kelleher SL, Lesko SM, Hartman TJ. Dietary Iron and Colorectal Cancer Risk: A Review of Human Population Studies. Crit Rev Food Sci Nutr 2017; 56:1012-20. [PMID: 25574701 DOI: 10.1080/10408398.2012.749208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iron is an essential micronutrient that is involved in many redox processes and serves as an integral component in various physiological functions. However, excess iron can cause tissue damage through its pro-oxidative effects, potentiating the development of many diseases such as cancer through the generation of reactive oxidative species. The two major forms of iron in the diet are heme and nonheme iron, both of which are found in several different foods. In addition to natural food sources, intake of nonheme iron may also come from fortified foods or in supplement form. This review summarizes the results of human population studies that have examined the role of dietary iron (heme and nonheme), heme iron alone, and iron from supplements in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Joseph H Ashmore
- a Department of Pharmaceutical Sciences , Washington State University , Spokane , Washington , USA
| | - Connie J Rogers
- b Department of Nutritional Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Shannon L Kelleher
- b Department of Nutritional Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Samuel M Lesko
- c Northeast Regional Cancer Institute , Scranton , Pennsylvania , USA.,d The Commonwealth Medical College , Scranton , Pennsylvania , USA
| | - Terryl J Hartman
- e Department of Epidemiology , Rollins School of Public Health and Winship Cancer Institute, Emory University , Atlanta , Georgia , USA
| |
Collapse
|
18
|
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med 2016; 51:16-30. [PMID: 27421909 DOI: 10.1016/j.mam.2016.07.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
One of the most consistent epidemiological associations between diet and human disease risk is the impact of red meat consumption (beef, pork, and lamb, particularly in processed forms). While risk estimates vary, associations are reported with all-cause mortality, colorectal and other carcinomas, atherosclerotic cardiovascular disease, type II diabetes, and possibly other inflammatory processes. There are many proposed explanations for these associations, some long discussed in the literature. Attempts to explain the effects of red meat consumption have invoked various red meat-associated agents, including saturated fat, high salt intake, Trimethylamine-N-oxide (TMAO) generation by microbiota, and environmental pollutants contaminating red meat, none of which are specific for red meat. Even the frequently mentioned polycyclic aromatic carcinogens arising from high temperature cooking methods are not red meat specific, as these are also generated by grilling poultry or fish, as well as by other forms of cooking. The traditional explanations that appear to be more red meat specific invoke the impact of N-nitroso compounds, heme iron, and the potential of heme to catalyze endogenous nitrosation. However, heme can be denatured by cooking, high levels of plasma hemopexin will block its tissue delivery, and much higher amounts of heme likely originate from red blood cell breakdown in vivo. Therefore, red meat-derived heme could only contribute to colorectal carcinoma risk, via direct local effects. Also, none of these mechanisms explain the apparent human propensity i.e., other carnivores have not been reported at high risk for all these diseases. A more recently proposed hypothesis involves infectious agents in beef from specific dairy cattle as agents of colorectal cancer. We have also described another mechanistic explanation for the human propensity for risk of red-meat associated diseases that is consistent with most observations: metabolic incorporation of a non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) into the tissues of red meat consumers and the subsequent interaction with inflammation-provoking antibodies against this "xenoautoantigen". Overall, we conclude that while multiple mechanisms are likely operative, many proposed theories to date are not specific for red meat, and that the viral and xenoautoantigen theories deserve further consideration. Importantly, there are potential non-toxic dietary antidotes, if the xenoautoantigen theory is indeed correct.
Collapse
Affiliation(s)
- Frederico Alisson-Silva
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, UC San Diego, La Jolla, CA 92093-0687, USA
| | - Kunio Kawanishi
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, UC San Diego, La Jolla, CA 92093-0687, USA
| | - Ajit Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, UC San Diego, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
19
|
Lagergren K, Wahlin K, Mattsson F, Alderson D, Lagergren J. Haemochromatosis and gastrointestinal cancer. Int J Cancer 2016; 139:1740-3. [PMID: 27300578 DOI: 10.1002/ijc.30229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/20/2023]
Abstract
Iron overload in patients with haemochromatosis is a strong risk factor for liver cancer, but its influence on other gastrointestinal cancer risk is unclear. The aim was to assess the relative risk of luminal gastrointestinal cancer among patients diagnosed with haemochromatosis. This population-based, nationwide Swedish cohort study included patients with haemochromatosis in Sweden in 1965-2013. The incidence of gastrointestinal cancers was assessed through the Swedish Cancer Registry. The measure of relative risk was the standardised incidence ratio (SIR) with 95% confidence interval (CI), that is, the ratio of the observed number of gastrointestinal cancers in the haemochromatosis cohort divided by the expected number of such cancers, calculated from the entire corresponding background population of Sweden. Among 6,849 patients in the haemochromatosis cohort with up to 48 years of follow-up, the SIRs were 3-fold increased for oesophageal squamous cell carcinoma (SIR = 3.2, 95% CI 1.3-6.6; n = 7) and 40% increased for colon adenocarcinoma (SIR = 1.4, 95% CI 1.1-1.9; n = 54). No associations were found between haemochromatosis and the risk of adenocarcinoma of the oesophagus (SIR = 0.5, 95% CI 0.0-2.5; n = 1), stomach (SIR = 0.7, 95% CI 0.3-1.4; n = 8), small bowel (SIR = 1.2, 95% CI 0.0-6.7; n = 1) or rectum (SIR = 1.0, 95% CI 0.6-1.6; n = 21). These findings indicate that haemochromatosis increases the risk of oesophageal squamous cell carcinoma and colon adenocarcinoma, but might not influence the risk of other types of luminal gastrointestinal cancer. These findings should encourage further research examining the role of iron overload in cancer aetiology.
Collapse
Affiliation(s)
- Katarina Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karl Wahlin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Mattsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Derek Alderson
- Academic Department of Surgery, University of Birmingham, United Kingdom
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Division of Cancer Studies, Kinǵs College London, Guy's and St Thomas NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
20
|
Zhang M, Xiong H, Fang L, Lu W, Wu X, Wang YQ, Cai ZM, Wu S. Meta-Analysis of the Association between H63D and C282Y Polymorphisms in HFE and Cancer Risk. Asian Pac J Cancer Prev 2016; 16:4633-9. [PMID: 26107216 DOI: 10.7314/apjcp.2015.16.11.4633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies suggested that the H63D and C282Y polymorphisms in the HFE genes were susceptible to many cancer types, nevertheless, the present results were inconclusive. Thus, the present study was aimed to evaluate the association between the HFE polymorphisms (H63D and C282Y) and cancer risk via meta-analysis. MATERIALS AND METHODS We retrieved PubMed, Google Scholar, Embase and Web of Science databases for all eligible studies up to April 1, 2015. All the statistical analysis was conducted by STATA 12.0. RESULTS Finally, a total of 20 publications including 24 case-control studies, comprising 6,524 cases and 31,080 controls for HFE-C282Y polymorphism and 19 publications including 21 case control studies, comprising 5,648 cases and 14,257 controls for HFE-H63D polymorphism were enrolled in our analysis. An increased risk for overall cancer risk was identified in HFE-H63D polymorphism under allele contrast (D vs H: OR=1.153; 95%CI=1.031- 1.289, Pheterogeneity=0.002), homozygotes vs wide type (DD vs HH: OR=1.449; 95%CI=1.182-1.777, Pheterogeneity=0.391), dominant model (DD+HD vs HH: OR=1.145; 95%CI=1.007-1.301, Pheterogeneity=0.002) and recessive model (DD vs HD+HH: OR=1.416 ; 95%CI=1.156-1.735, Pheterogeneity=0.549), as well as HFE- C282Y under homozygotes vs wide type (YY vs CC: OR=1.428, 95%CI=1.017-2.006, Pheterogeneity=0.220). In addition, in the stratified analysis by cancer type, an increased risk was identified in hepatocellular carcinoma and breast cancer in C282Y polymorphism, as well as pancreatic cancer in H63D polymorphism, whereas a decreased risk of colorectal cancer was identified in C282Y polymorphism. CONCLUSIONS Present study suggested that H63D and C282Y polymorphisms associated with an increased risk of overall cancer. Nevertheless, well- designed study with large sample size will be continued on this issue of interest.
Collapse
Affiliation(s)
- Meng Zhang
- Shenzhen Second People's Hospital, clinical medicine college of Anhui Medical University, Shenzhen Guangdong, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lv YF, Chang X, Hua RX, Yan GN, Meng G, Liao XY, Zhang X, Guo QN. The risk of new-onset cancer associated with HFE C282Y and H63D mutations: evidence from 87,028 participants. J Cell Mol Med 2016; 20:1219-33. [PMID: 26893171 PMCID: PMC4929296 DOI: 10.1111/jcmm.12764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
Abstract
To investigate the association between mutation of HFE (the principal pathogenic gene in hereditary haemochromatosis) and risk of cancer, we conducted a meta‐analysis of all available case–control or cohort studies relating to two missense mutations, C282Y and H63D mutations. Eligible studies were identified by searching databases including PubMed, Embase and the ISI Web of Knowledge. Overall and subgroup analyses were performed and odds ratios (ORs) combined with 95% confidence intervals (CIs) were applied to evaluate the association between C282Y mutation, H63D mutation and cancer risk. Sensitivity and cumulative analyses were used to evaluate the stability of the results. A total of 36 eligible studies were included, comprising 13,680 cases and 73,348 controls. C282Y was significantly associated with elevated cancer risk in a recessive genetic model (OR: 1.991, 95% CI: 1.448–2.737). On subgroup analysis stratified by cancer type, statistically significantly increased cancer risks were found for breast cancer, colorectal cancer and hepatocellular carcinoma in a recessive model. When stratified by territory, a significantly increased risk of cancer was found in Oceanic populations in a recessive model and in Asian populations in an allele model and dominant model. H63D mutation did not significantly increase overall cancer risk in any genetic model. However, when, stratified by territory, an increased cancer risk was found in the Asian population in an allele and dominant. C282Y but not H63D mutation was related to elevated cancer risk. Further large‐scale studies considering gene–environment interactions and functional research should be conducted to further investigate this association.
Collapse
Affiliation(s)
- Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guang-Ning Yan
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xiao-Yu Liao
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
Association Studies of HFE C282Y and H63D Variants with Oral Cancer Risk and Iron Homeostasis Among Whites and Blacks. Cancers (Basel) 2015; 7:2386-96. [PMID: 26690219 PMCID: PMC4695898 DOI: 10.3390/cancers7040898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/25/2015] [Accepted: 12/02/2015] [Indexed: 01/29/2023] Open
Abstract
Background: Polymorphisms in the hemochromatosis (HFE) gene are associated with excessive iron absorption from the diet, and pro-oxidant effects of iron accumulation are thought to be a risk factor for several types of cancer. Methods: The C282Y (rs1800562) and H63D (rs1799945) polymorphisms were genotyped in 301 oral cancer cases and 437 controls and analyzed in relation to oral cancer risk, and serum iron biomarker levels from a subset of 130 subjects. Results: Individuals with the C282Y allele had lower total iron binding capacity (TIBC) (321.2 ± 37.2 µg/dL vs. 397.7 ± 89.0 µg/dL, p = 0.007) and higher percent transferrin saturation (22.0 ± 8.7 vs. 35.6 ± 22.9, p = 0.023) than wild type individuals. Iron and ferritin levels approached significantly higher levels for the C282Y allele (p = 0.0632 and p = 0.0588, respectively). Conclusions: Iron biomarker levels were elevated by the C282Y allele, but neither (rs1800562) nor (rs1799945) was associated with oral cancer risk in blacks and whites.
Collapse
|
23
|
Castiella A, Múgica F, Zapata E, Zubiaurre L, Iribarren A, de Juan MD, Alzate L, Gil I, Urdapilleta G, Otazua P, Emparanza JI. Gender and plasma iron biomarkers, but not HFE gene mutations, increase the risk of colorectal cancer and polyps. Tumour Biol 2015; 36:6959-6963. [PMID: 25854174 DOI: 10.1007/s13277-015-3406-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/29/2015] [Indexed: 02/08/2023] Open
Abstract
A cohort study of patients included in the Basque Country colorectal cancer (CRC) screening programme was carried out to assess the risk of adenomatous polyps and CRC (P-CRC) associated with HFE gene mutations, with gender and with iron biomarkers (serum ferritin (SF), iron (Fe) and transferrin saturation index (TSI)). Among 432 included patients (mean age 59.8 years), 263 were men (60.9 %) and 169 women (39.1 %). P-CRC were identified in 221 patients (51.2 %) and no polyps (NP) in 211 patients (48.8 %). HFE mutations were identified in 43.8 % of the patients. C282Y/wt genotypic frequency was 6.8 % in the P-CRC group and 1.4 % in the NP group (p < 0.05). The allelic frequency was 3.8 versus 1.2 % (p < 0.05). For laboratory, all three iron biomarkers showed a statistically significant difference: mean Fe, 91.29 ± 34 for P-CRC and 80.81 ± 30.59 for NP group. Mean TSI for P-CRC was 24.95 ± 8.90 and 22.74 ± 8.79 for NP group. Mean SF 308.09 ± 536.32 for P-CRC and 177.55 ± 159.95 for NP group. In a multivariate logistic regression analysis, only male gender (odds ratio (OR) = 2.04, 1.29-3.22), SF (OR = 1.001, 1.0004-1.003) and Fe (OR = 1.01, 1.004-1.02) were related with the presence of CRC and adenoma. Men gender and raised serum iron biomarkers increase the risk of P-CRC.
Collapse
Affiliation(s)
| | | | - Eva Zapata
- Mendaro Hospital, 20850, Mendaro, Basque Country, Spain
| | | | | | | | - Luis Alzate
- Donostia University Hospital, Donostia, Spain
| | - Ines Gil
- Donostia University Hospital, Donostia, Spain
| | | | | | - José Ignacio Emparanza
- Clinical Epidemiology Unit, Donostia University Hospital, CASPe, CIBER-ESP, Biodonostia, Donostia, Spain
| |
Collapse
|
24
|
Weston C, Connor J. Evidence for the Influence of the Iron Regulatory MHC Class I Molecule HFE on Tumor Progression in Experimental Models and Clinical Populations. TRANSLATIONAL ONCOGENOMICS 2014; 6:1-12. [PMID: 25520556 PMCID: PMC4259395 DOI: 10.4137/tog.s19064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
Proteins involved in iron regulation are modifiers of cancer risk and progression. Of these, the HFE protein (high iron gene and its protein product) is of particular interest because of its interaction with both iron handling and immune function and the high rate of genetic polymorphisms resulting in a mutant protein. Clinical studies suggest that HFE polymorphisms increase the risk of certain cancers, but the inconsistent outcomes suggest a more nuanced effect, possibly interacting with other genetic or environmental factors. Some basic science research has been conducted to begin to understand the implications of variant HFE genotype on cancer, but the story is far from complete. In particular, putative mechanisms exist for HFE to affect tumor progression through its role in iron handling and its major histocompatibility complex class I structural features. In this review, the current understanding of the role of HFE in cancer is described and models for future directions are identified.
Collapse
Affiliation(s)
- Cody Weston
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
25
|
Examination of HFE associations with childhood leukemia risk and extension to other iron regulatory genes. Leuk Res 2014; 38:1055-60. [PMID: 25085015 DOI: 10.1016/j.leukres.2014.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/31/2014] [Accepted: 06/28/2014] [Indexed: 01/10/2023]
Abstract
Hereditary hemochromatosis (HFE) variants correlating with body iron levels have shown associations with cancer risk, including childhood acute lymphoblastic leukemia (ALL). Using a multi-ethnic sample of cases and controls from Houston, TX, we examined two HFE variants (rs1800562 and rs1799945), one transferrin receptor gene (TFRC) variant (rs3817672) and three additional iron regulatory gene (IRG) variants (SLC11A2 rs422982; TMPRSS6 rs855791 and rs733655) for their associations with childhood ALL. Being positive for either of the HFE variants yielded a modestly elevated odds ratio (OR) for childhood ALL risk in males (1.40, 95% CI=0.83-2.35), which increased to 2.96 (95% CI=1.29-6.80) in the presence of a particular TFRC genotype for rs3817672 (P interaction=0.04). The TFRC genotype also showed an ethnicity-specific association, with increased risk observed in non-Hispanic Whites (OR=2.54, 95% CI=1.05-6.12; P interaction with ethnicity=0.02). The three additional IRG SNPs all showed individual risk associations with childhood ALL in males (OR=1.52-2.60). A polygenic model based on the number of variant alleles in five IRG SNPs revealed a linear increase in risk among males with the increasing number of variants possessed (OR=2.0 per incremental change, 95% CI=1.29-3.12; P=0.002). Our results replicated previous HFE risk associations with childhood ALL in a US population and demonstrated novel associations for IRG SNPs, thereby strengthening the hypothesis that iron excess mediated by genetic variants contributes to childhood ALL risk.
Collapse
|
26
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
27
|
Hamara K, Bielecka-Kowalska A, Przybylowska-Sygut K, Sygut A, Dziki A, Szemraj J. Alterations in expression profile of iron-related genes in colorectal cancer. Mol Biol Rep 2014; 40:5573-85. [PMID: 24078156 PMCID: PMC3824343 DOI: 10.1007/s11033-013-2659-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/27/2013] [Indexed: 02/08/2023]
Abstract
Iron can play a role in colorectal cancer (CRC) development. The expression of genes involved in iron metabolism and its regulation in CRC has not been investigated well. Also the correlation between the level of iron-related genes expression and cancer progression is not known. In this study we collected paired samples of primary adenocarcinoma and adjacent normal mucosa from 73 patients. We assessed the mRNA or miRNA levels of 21 genes and verify their association with clinicopathological characteristics of CRC patients. Our experiments revealed, that the level of divalent metal transporter 1 transcript is well correlated with mRNA levels of iron regulatory proteins (IRPs) in tumor specimens. We have shown, that IRP2 can also be engaged in the mRNA stabilization of other iron transporter–transferrin receptor 1 (TfR1) in early stage of disease, however, in more advanced stages of CRC, mRNA level of TfR1 is related to miR-31 level. For the first time we have shown, that ferroportin concentration is significantly associated with miR-194 level, causing the reduction of this transporter amount in tumor tissues of patients with more advanced stages of CRC. We have also shown the alterations in expressing profile of miR-31, miR-133a, miR-141, miR-145, miR-149, miR-182 and miR-194, which were observed even in the early stage of disease, and identified a set of genes, which take place in correct assigning of patients in dependence of CRC stage. These iron-related genes could become potential diagnostic or prognostic indicators for patients with CRC.
Collapse
|
28
|
Parra Salinas I, Montes Limon A, Recasens Flores V, Fernandez-Mosteirin N, Garcia-Erce JA. [Predictive factors of response to erytrhocytapheresis in patients with biochemical iron overload with or without hereditary hemochromatosis type 1]. Med Clin (Barc) 2014; 142:187-91. [PMID: 24041941 DOI: 10.1016/j.medcli.2013.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Progressive increase of iron stores leads to the development of varied diseases, some of them irreversible. Until now, phlebotomy has been the cornerstone in the treatment of iron overload. Nevertheless, each erytrhocytapheresis procedure removes more than twice the volume of red cells and iron than phlebotomy, allowing to achieve iron depletion in shorter time. Our aim was to describe clinical features and analytical tests parameters of patients with iron overload, to analyze global and subsets results, to suggest predictive factors of response and to evaluate security of the procedure. PATIENTS AND METHOD Descriptive, longitudinal and prospective study of 663 procedures corresponding to 35 patients (December 2002 to October 2011). Response was defined as a serum ferritine value lower than 50 ng/mL during two months. Statistical analysis was done with SPSS(®) v 17.0 and the minimum level of statistical significance was defined as p-value < 0,05. RESULTS Seventy-seven percent of patients reached response with 11 (interquartile range 1-42) erytrhocytapheresis procedures and at 11 (1-108) months. Eighty-seven point five percent of patients who did not achieve response had their ferritine values reduced in more than 50%. The decrease of all iron metabolism parameters was statistically significant. Statistically significant predictive factors of response to erytrhocytapheresis were: patients younger than 60 years-old, hereditary hemochromatosis cases, and patients who had received treatment with phlebotomies prior to erytrhocytapheresis. CONCLUSIONS Erytrhocytapheresis is a secure and effective procedure for iron depletion in patients with iron overload, especially in high risk hereditary hemochromatosis cases that do not respond to phlebotomies.
Collapse
Affiliation(s)
- Ingrid Parra Salinas
- Servicio de Transfusión, Hospital Universitario Cruces, Baracaldo, Vizcaya, España.
| | - Anel Montes Limon
- Servicio de Transfusión, Hospital Universitario Miguel Servet, Zaragoza, España
| | | | | | | |
Collapse
|
29
|
Ruder EH, Berndt SI, Gilsing AMJ, Graubard BI, Burdett L, Hayes RB, Weissfeld JL, Ferrucci LM, Sinha R, Cross AJ. Dietary iron, iron homeostatic gene polymorphisms and the risk of advanced colorectal adenoma and cancer. Carcinogenesis 2014; 35:1276-83. [PMID: 24536049 DOI: 10.1093/carcin/bgu028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dietary iron intake and variation in iron homeostasis genes may affect colorectal neoplasia risk. We conducted two nested case-control studies within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial: one of advanced colorectal adenoma (1205 cases; 1387 controls) and one of colorectal cancer (370 cases; 401 controls). Iron intake was estimated with a food frequency questionnaire and genotyping was performed for 21 genes. Unconditional logistic regression was used to estimate odds ratio (OR) and 95% confidence intervals (95% CIs) for colorectal neoplasia risk within quartiles of intake. Several single nucleotide polymorphisms (SNPs) modified the association between iron intake and the risk of adenoma or cancer. Dietary iron was positively associated with colorectal adenoma among three SNPs of HEPHL1, including carriers of the AA genotype at rs7946162 (ORQ4-Q1 = 2.22, 95% CI 1.15-4.27, Ptrend = 0.03; Pinteraction = 0.10), the TT genotype at rs2460063 (ORQ4-Q1 = 2.39, 95% CI 1.26-4.54, Ptrend = 0.02; Pinteraction = 0.04) and the GG genotype at rs7127348 (ORQ4-Q1 = 2.40, 95% CI 1.23-4.67, Ptrend = 0.02; Pinteraction = 0.09). Heme iron was positively associated with colorectal cancer among those with GG genotypes for ACO1 rs10970985 (ORQ4-Q 1 = 2.45, 95% CI 3.40-8.06, Ptrend = 0.004; Pinteraction = 0.05). However, none of the associations were statistically significant after adjustment for multiple comparisons. Future studies should target the specific genes and SNPs for which the association was significant prior to multiple comparison correction.
Collapse
Affiliation(s)
- Elizabeth H Ruder
- School of Health and Rehabilitation Sciences, University of Pittsburgh, 4051 Forbes Tower, Pittsburgh, PA 15260, USA,
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Anne M J Gilsing
- Department of Epidemiology, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Laurie Burdett
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc., Gaithersburg, MD 20892, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Joel L Weissfeld
- University of Pittsburgh Medical Center Cancer Pavilion, Pittsburgh, PA 15232, USA and
| | | | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Amanda J Cross
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Ali-Rahmani F, Huang MA, Schengrund CL, Connor JR, Lee SY. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells. PLoS One 2014; 9:e88724. [PMID: 24533143 PMCID: PMC3922969 DOI: 10.1371/journal.pone.0088724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/10/2014] [Indexed: 11/26/2022] Open
Abstract
Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Michael A Huang
- Division of Pediatric Hematology/Oncology, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - C-L Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Sang Y Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
31
|
Pericleous M, Mandair D, Caplin ME. Diet and supplements and their impact on colorectal cancer. J Gastrointest Oncol 2013; 4:409-23. [PMID: 24294513 DOI: 10.3978/j.issn.2078-6891.2013.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Colorectal cancer is the third commonest cancer and the third leading cause of cancer death among men and women. It has been proposed that dietary factors are responsible for 70-90% of colorectal cancer and diet optimization may prevent most cases. AIM To evaluate the role of dietary components and supplements in colorectal cancer. METHODS Bibliographical searches were performed in Pubmed for the terms "diet and colorectal cancer", "diet and colon cancer", "diet and rectal cancer", "nutrition and colorectal cancer", "probiotics and colorectal cancer", "prebiotics and colorectal cancer", "alcohol and cancer" and "colorectal cancer epidemiology". RESULTS Consumption of processed or red meat, especially when cooked at high temperatures may be associated with increased risk of colorectal cancer. The evidence for dietary fibre is unclear but foods that contain high amounts of fibre are usually rich in polyphenols which have been shown to alter molecular processes that can encourage colorectal carcinogenesis. Meta-analyses provide evidence on the benefits of circulating, diet-derived and supplemented, vitamin D and Calcium. We also found that diets rich in Folate may prevent colorectal carcinoma. The evidence on dietary micronutrients such as Zinc and Selenium in association with colorectal cancer is not conclusive. It has been suggested that there may be a direct association between alcohol intake and colorectal cancer. In vitro and in vivo studies have highlighted a possible protective role of prebiotics and probiotics. CONCLUSIONS The lack of randomized trials and the presence of confounding factors including smoking, physical activity, obesity and diabetes may often yield inconclusive results. Carefully designed randomized trials are recommended.
Collapse
|
32
|
Beguin Y, Aapro M, Ludwig H, Mizzen L, Osterborg A. Epidemiological and nonclinical studies investigating effects of iron in carcinogenesis--a critical review. Crit Rev Oncol Hematol 2013; 89:1-15. [PMID: 24275533 DOI: 10.1016/j.critrevonc.2013.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/17/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
The efficacy and tolerability of intravenous (i.v.) iron in managing cancer-related anemia and iron deficiency has been clinically evaluated and reviewed recently. However, long-term data in cancer patients are not available; yet, long-term i.v. iron treatment in hemodialysis patients is not associated with increased cancer risk. This review summarizes epidemiological and nonclinical data on the role of iron in carcinogenesis. In humans, epidemiological data suggest correlations between certain cancers and increased iron exposure or iron overload. Nonclinical models that investigated whether iron can enhance carcinogenesis provide only limited evidence relevant for cancer patients since they were typically based on high iron doses as well as injection routes and iron formulations which are not used in the clinical setting. Nevertheless, in the absence of long-term outcome data from prospectively defined trials in i.v. iron-treated cancer patients, iron supplementation should be limited to periods of concomitant anti-tumor treatment.
Collapse
Affiliation(s)
| | | | - Heinz Ludwig
- Center for Oncology and Haematology, Wilhelminenspital, Vienna, Austria
| | | | - Anders Osterborg
- Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Intestinal iron homeostasis and colon tumorigenesis. Nutrients 2013; 5:2333-51. [PMID: 23812305 PMCID: PMC3738976 DOI: 10.3390/nu5072333] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.
Collapse
|
34
|
Bedford MR, Ford SJ, Horniblow RD, Iqbal TH, Tselepis C. Iron chelation in the treatment of cancer: a new role for deferasirox? J Clin Pharmacol 2013; 53:885-91. [PMID: 23740857 DOI: 10.1002/jcph.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023]
Abstract
Iron plays a crucial role in a number of metabolic pathways including oxygen transport, DNA synthesis, and ATP generation. Although insufficient systemic iron can result in physical impairment, excess iron has also been implicated in a number of diseases including ischemic heart disease, diabetes, and cancer. Iron chelators are agents which bind iron and facilitate its excretion. Experimental iron chelators have demonstrated potent anti-neoplastic properties in a number of cancers in vitro. These agents have yet to be translated into clinical practice, however, largely due to the significant side effects encountered in pre-clinical models. A number of licensed chelators, however, are currently in clinical use for the treatment of iron overload associated with certain non-neoplastic diseases. Deferasirox is one such agent and the drug has shown significant anti-tumor effects in a number of in vitro and in vivo studies. Deferasirox is orally administered and has demonstrated a good side effect profile in clinical practice to date. It represents an attractive agent to take forward into clinical trials of iron chelators as anti-cancer agents.
Collapse
Affiliation(s)
- Matthew R Bedford
- School of Cancer Studies, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Chen W, Zhao H, Li T, Yao H. HFE gene C282Y variant is associated with colorectal cancer in Caucasians: a meta-analysis. Tumour Biol 2013; 34:2255-9. [PMID: 23553028 DOI: 10.1007/s13277-013-0766-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/22/2013] [Indexed: 01/21/2023] Open
Abstract
The HFE gene has been suggested to play an important role in the pathogenesis of colorectal cancer. However, the results have been conflicting. In this study, we performed a meta-analysis to clarify the association of HFE gene C282Y variant with colorectal cancer. PubMed and Embase were retrieved to identify the potential literature. Pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated using fixed- or random-effects model. A total of eight papers including nine studies (7,588 colorectal cancer cases and 81,571 controls) for HFE gene C282Y variant were included in the meta-analysis. The result indicated that HFE gene C282Y variant was significantly associated with colorectal cancer under recessive model (OR = 2.00, 95 % CI = 1.32-3.04), with no evidence of between-study heterogeneity (I (2) = 0.2 %, p = 0.432). Further subgroup analysis by number of cases suggested the effect was significant in studies with more than 500 cases (OR = 2.51, 95 % CI = 1.58-3.98, I (2) = 0.0 %, p = 0.921), but not in studies with less than 500 cases (OR = 0.75, 95 % CI = 0.28-1.97, I (2) = 0.0 %, p = 0.622). The current meta-analysis supported the positive association of HFE gene C282Y variant with colorectal cancer. Further large-scale studies with the consideration for gene-gene/gene-environment interactions should be conducted to investigate the association.
Collapse
Affiliation(s)
- Weidong Chen
- Department of General Surgery, The Second Xiang-Ya Hospital, Central South University, ChangSha, Hunan, 410011, China.
| | | | | | | |
Collapse
|
36
|
Agudo A, Bonet C, Sala N, Muñoz X, Aranda N, Fonseca-Nunes A, Clavel-Chapelon F, Boutron-Ruault MC, Vineis P, Panico S, Palli D, Tumino R, Grioni S, Quirós JR, Molina E, Navarro C, Barricarte A, Chamosa S, Allen NE, Khaw KT, Bueno-de-Mesquita HB, Siersema PD, Numans ME, Trichopoulou A, Lagiou P, Trichopoulos D, Kaaks R, Canzian F, Boeing H, Meidtner K, Johansson M, Sund M, Manjer J, Overvad K, Tjonneland A, Lund E, Weiderpass E, Jenab M, Fedirko V, Offerhaus GJA, Riboli E, González CA, Jakszyn P. Hemochromatosis (HFE) gene mutations and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Carcinogenesis 2013; 34:1244-50. [PMID: 23389292 DOI: 10.1093/carcin/bgt045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hereditary hemochromatosis (HH) is a strong risk factor for hepatocellular cancer, and mutations in the HFE gene associated with HH and iron overload may be related to other tumors, but no studies have been reported for gastric cancer (GC). A nested case-control study was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC), including 365 incident gastric adenocarcinoma and 1284 controls matched by center, sex, age and date of blood collection. Genotype analysis was performed for two functional polymorphisms (C282Y/rs1800562 and H63D/rs1799945) and seven tagSNPs of the HFE genomic region. Association with all gastric adenocarcinoma, and according to anatomical localization and histological subtype, was assessed by means of the odds ratio (OR) and 95% confidence interval (CI) estimated by unconditional logistic regression adjusted for the matching variables. We observed a significant association for H63D with OR (per rare allele) of 1.32 (CI = 1.03-1.69). In subgroup analyses, the association was stronger for non-cardia anatomical subsite (OR = 1.60, CI = 1.16-2.21) and intestinal histological subtype (OR = 1.82, CI = 1.27-2.62). Among intestinal cases, two tagSNPs (rs1572982 and rs6918586) also showed a significant association that disappeared after adjustment for H63D. No association with tumors located in the cardia or with diffuse subtype was found for any of the nine SNPs analyzed. Our results suggest that H63D variant in HFE gene seems to be associated with GC risk of the non-cardia region and intestinal type, possibly due to its association with iron overload although a role for other mechanisms cannot be entirely ruled out.
Collapse
Affiliation(s)
- Antonio Agudo
- Unit of Nutrition, Environment and Cancer, Catalan Institute of Oncology-ICO, IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Radulescu S, Brookes MJ, Salgueiro P, Ridgway RA, McGhee E, Anderson K, Ford SJ, Stones DH, Iqbal TH, Tselepis C, Sansom OJ. Luminal iron levels govern intestinal tumorigenesis after Apc loss in vivo. Cell Rep 2012; 2:270-82. [PMID: 22884366 DOI: 10.1016/j.celrep.2012.07.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 01/22/2023] Open
Abstract
It is clear from epidemiological studies that excess iron is associated with increased risk of colorectal cancer; however, questions regarding the mechanism of how iron increases cancer risk, the source of the excess iron (circulating or luminal), and whether iron reduction represents a potential therapeutic option remain unanswered. In this study, we show that after Apc deletion, the cellular iron acquisition proteins TfR1 and DMT1 are rapidly induced. Conversely, restoration of APC reduces cellular iron due to repression of these proteins. To test the functional importance of these findings, we performed in vivo investigations of the impact of iron levels on intestinal tumorigenesis. Strikingly, depletion of luminal (but not systemic) iron strongly suppressed murine intestinal tumorigenesis, whereas increased luminal iron strongly promoted tumorigenesis. Taken together, our data definitively delineate iron as a potent modifier of intestinal tumorigenesis and have important implications for dietary iron supplementation in patients at high risk of colorectal cancer.
Collapse
|
38
|
Zhang X, Ma J, Wu K, Chan AT, Fuchs CS, Giovannucci EL. Blood donation and colorectal cancer incidence and mortality in men. PLoS One 2012; 7:e39319. [PMID: 22761761 PMCID: PMC3382220 DOI: 10.1371/journal.pone.0039319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/23/2012] [Indexed: 12/12/2022] Open
Abstract
Background Although blood donations may reduce body iron stores, to date, prospective data on frequent blood donation and colorectal cancer risk are limited. Methodology/Principal Findings We tested whether frequent blood donation is associated with a lower risk of colorectal cancer in the Health Professionals Follow-up Study. We prospectively followed 35,121men who provide the information on lifetime number of blood donations in 1992 through 2008. Serum ferritin levels were measured in a random sample of 305 men. Cox proportional hazard regression models were used to calculate the multivariable relative risks (RRs, 95%CIs) after adjusting for age and other established colorectal cancer risk factors. We documented 684 incident colorectal cancer cases and 224 deaths from colorectal cancer. The mean serum ferritin levels varied from 178 µg/L for men who did not donate blood to 98 µg/L for men who had at least 30 donations. Age-adjusted results for both incidence and mortality were essentially the same as the multivariable-adjusted results. Comparing with non-donors, the multivariable RRs (95%CIs) for colorectal cancer incidence were 0.92 (0.77, 1.11) for 1–5 donation, 0.85 (0.64, 1.11) for 6–9 donations, 0.96 (0.73, 1.26) for 10–19 donations, 0.91 (0.63, 1.32) for 20–29 donations, and 0.97 (0.68, 1.38) for at least 30 donations (Ptrend = 0.92). The multivariable RRs for colorectal cancer mortality were 0.99 (0.72, 1.36) for 1–5 donation, 0.93 (0.57, 1.51) for 6–9 donations, 0.85 (0.50, 1.42) for 10–19 donations, and 1.14 (0.72, 1.83) for at least 20 donations (Ptrend = 0.82). The results did not vary by cancer sub-sites, intake levels of total iron, heme iron, or family history of colorectal cancer. Conclusions/Significance Frequent blood donations were not associated with colorectal cancer incidence and mortality in men. Our results do not support an important role of body iron stores in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xuehong Zhang
- Channing Laboratory, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
39
|
Cross AJ, Sinha R, Wood RJ, Xue X, Huang WY, Yeager M, Hayes RB, Gunter MJ. Iron homeostasis and distal colorectal adenoma risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Prev Res (Phila) 2011; 4:1465-75. [PMID: 21685236 PMCID: PMC3168068 DOI: 10.1158/1940-6207.capr-11-0103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Red meat consumption has been positively associated with colorectal cancer; however, the biological mechanism underlying this relationship is not understood. Red meat is a major source of iron, which may play a role in colorectal carcinogenesis via increased crypt cell proliferation, cytotoxicity, and endogenous N-nitrosation. In a nested case-control study within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we prospectively evaluated multiple iron exposure parameters, including dietary intake and serum measures of iron, ferritin, transferrin, total iron binding capacity (TIBC), and unsaturated iron binding capacity (UIBC) in relation to incident colorectal adenoma in 356 cases and 396 matched polyp-free controls. We also investigated variation in eight key genes involved in iron homeostasis in relation to colorectal adenoma in an additional series totaling 1,126 cases and 1,173 matched controls. We observed a positive association between red meat intake and colorectal adenoma [OR comparing extreme quartiles (OR(q4-q1)) = 1.59, 95% CI = 1.02-2.49, P(trend) = 0.03]. Serum TIBC and UIBC were inversely associated with colorectal adenoma (OR(q4-q1) = 0.57, 95% CI = 0.37-0.88, P(trend) = 0.03; and OR(q4-q1) = 0.62, 95% CI = 0.40-0.95, P(trend) = 0.04, respectively). Colorectal adenoma was not associated with serum ferritin, iron, or transferrin saturation or with polymorphisms in genes involved in iron homeostasis. Serum TIBC and UIBC, parameters that have a reciprocal relationship with overall iron load, were inversely related to colorectal adenoma, suggesting that individuals with lower iron status have a reduced risk of developing colorectal adenoma.
Collapse
Affiliation(s)
- Amanda J Cross
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kovac S, Anderson GJ, Baldwin GS. Gastrins, iron homeostasis and colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:889-95. [PMID: 21320535 PMCID: PMC3078979 DOI: 10.1016/j.bbamcr.2011.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 02/08/2023]
Abstract
The peptide hormone gastrin has been identified as a major regulator of acid secretion and a potent mitogen for normal and malignant gastrointestinal cells. The importance of gastric acid in the absorption of dietary iron first became evident 50 years ago when iron deficiency anemia was recognized as a long-term consequence of partial gastrectomy. This review summarizes the connections between circulating gastrins, iron status and colorectal cancer. Gastrins bind two ferric ions with micromolar affinity and, in the case of non-amidated forms of the hormone, iron binding is essential for biological activity in vitro and in vivo. The demonstration of an interaction between gastrin and transferrin by biochemical techniques led to the proposal that gastrins catalyze the loading of transferrin with iron. Several lines of evidence, including the facts that the concentrations of circulating gastrins are increased in mice and humans with the iron overload disease hemochromatosis and that transferrin saturation positively correlates with circulating gastrin concentration, suggest the potential involvement of gastrins in iron homeostasis. Conversely, recognition that ferric ions play an unexpected role in the biological activity of gastrins may assist in the development of useful therapies for colorectal carcinoma and other disorders of mucosal proliferation in the gastrointestinal tract. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Suzana Kovac
- The University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria
| | | | - Graham S. Baldwin
- The University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria
| |
Collapse
|
41
|
Bramante G, Patel O, Shulkes A, Baldwin GS. Ferric ions inhibit proteolytic processing of progastrin. Biochem Biophys Res Commun 2011; 404:1083-7. [PMID: 21195058 PMCID: PMC3046803 DOI: 10.1016/j.bbrc.2010.12.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 11/15/2022]
Abstract
The gastrointestinal hormone gastrin is generated from an 80 amino acid precursor (progastrin) by cleavage after dibasic residues by prohormone convertase 1. Phosphorylation of Ser(75) has previously been suggested, on the basis of indirect evidence, to inhibit cleavage of progastrin after Arg(73)Arg(74). Gastrins bind two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated gastrins in vitro and in vivo. This study directly investigated the effect of iron binding and of serine phosphorylation on the cleavage of synthetic progastrin-derived peptides. The affinity of synthetic progastrin(55-80) for ferric ions, and the rate of cleavage by prohormone convertase 1, were not affected by phosphorylation of Ser(75). In contrast, in the presence of ferric ions the rate of cleavage of both progastrin(55-80) and phosphoSer(75)progastrin(55-80) by prohormone convertase 1 was significantly reduced. Hence iron binding to progastrin may regulate processing and secretion in vivo, and regulation may be particularly important in diseases with altered iron homeostasis.
Collapse
Affiliation(s)
- Gianni Bramante
- The University of Melbourne Department of Surgery, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Oneel Patel
- The University of Melbourne Department of Surgery, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Arthur Shulkes
- The University of Melbourne Department of Surgery, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Graham S. Baldwin
- The University of Melbourne Department of Surgery, Austin Health, Heidelberg 3084, Victoria, Australia
| |
Collapse
|
42
|
Ferrand A, Lachal S, Bramante G, Kovac S, Shulkes A, Baldwin GS. Stimulation of proliferation in the colorectal mucosa by gastrin precursors is blocked by desferrioxamine. Am J Physiol Gastrointest Liver Physiol 2010; 299:G220-7. [PMID: 20395538 PMCID: PMC2904120 DOI: 10.1152/ajpgi.00046.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Precursors of the peptide hormone gastrin stimulate proliferation in the colorectal mucosa and promote the development of colorectal carcinoma. Gastrins bind two ferric ions selectively and with high affinity, and the biological activity of glycine-extended gastrin (Ggly) in vitro is dependent on the presence of ferric ions. The aim of the present study was to determine whether or not iron is required for biological activity of progastrin and Ggly in vivo. Rats that had undergone a colostomy were infused with Ggly, and proliferation was measured in the defunctioned rectal mucosa. Proliferation was also measured in the colonic mucosa of hGAS and MTI-Ggly mice, which, by definition, overexpress progastrin and Ggly, respectively. The requirement for iron was assessed by thrice-weekly injection of the chelating agent desferrioxamine (DFO). The proliferation index in the defunctioned rectal mucosa was significantly increased in the Ggly-infused rats, and the increase was significantly reduced after treatment with DFO. Treatment with DFO significantly reduced the crypt height and proliferation index in the colonic mucosa of hGAS and MTI-Ggly mice but had no effect on the same variables in wild-type mice. These observations are consistent with the hypothesis that the biological activity of progastrin and Ggly in vivo is dependent on the presence of ferric ions and further suggest that chelating agents may block the stimulatory effects of gastrin precursors in the development of colorectal carcinoma.
Collapse
Affiliation(s)
- Audrey Ferrand
- University of Melbourne Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| | - Shamilah Lachal
- University of Melbourne Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| | - Gianni Bramante
- University of Melbourne Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| | - Suzana Kovac
- University of Melbourne Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| | - Arthur Shulkes
- University of Melbourne Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| | - Graham S. Baldwin
- University of Melbourne Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology 2010; 138:2029-2043.e10. [PMID: 20420944 PMCID: PMC2947820 DOI: 10.1053/j.gastro.2010.01.057] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 02/07/2023]
Abstract
Colorectal cancer has been strongly associated with a Western lifestyle. In the past several decades, much has been learned about the dietary, lifestyle, and medication risk factors for this malignancy. Although there is controversy about the role of specific nutritional factors, consideration of dietary pattern as a whole appears useful for formulating recommendations. For example, several studies have shown that high intake of red and processed meats, highly refined grains and starches, and sugars is related to increased risk of colorectal cancer. Replacing these factors with poultry, fish, and plant sources as the primary source of protein; unsaturated fats as the primary source of fat; and unrefined grains, legumes and fruits as the primary source of carbohydrates is likely to lower risk of colorectal cancer. Although a role for supplements, including vitamin D, folate, and vitamin B6, remains uncertain, calcium supplementation is likely to be at least modestly beneficial. With respect to lifestyle, compelling evidence indicates that avoidance of smoking and heavy alcohol use, prevention of weight gain, and maintenance of a reasonable level of physical activity are associated with markedly lower risks of colorectal cancer. Medications such as aspirin and nonsteroidal anti-inflammatory drugs and postmenopausal hormones for women are associated with substantial reductions in colorectal cancer risk, though their utility is affected by associated risks. Taken together, modifications in diet and lifestyle should substantially reduce the risk of colorectal cancer and could complement screening in reducing colorectal cancer incidence.
Collapse
Affiliation(s)
- Andrew T Chan
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. <>
| | | |
Collapse
|
44
|
Osborne NJ, Gurrin LC, Allen KJ, Constantine CC, Delatycki MB, McLaren CE, Gertig DM, Anderson GJ, Southey MC, Olynyk JK, Powell LW, Hopper JL, Giles GG, English DR. HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 2010; 51:1311-8. [PMID: 20099304 PMCID: PMC3815603 DOI: 10.1002/hep.23448] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED The evidence that mutations in the HFE gene for hemochromatosis are associated with increased cancer risk is inconsistent. The Melbourne Collaborative Cohort Study is a prospective cohort study that commenced recruitment in 1990. Participants born in Australia, New Zealand, the United Kingdom, or Ireland (n = 28,509) were genotyped for the HFE C282Y (substitution of tyrosine for cysteine at amino acid 282) variant. Incident cancers were ascertained from Australian cancer registries during an average of 14 years follow-up. Hazard ratios (HRs), confidence intervals (CIs), and P values were obtained from separate Cox regression analyses for colorectal, breast, and prostate cancers, all other solid cancers, and all cancers. Compared to those with no C282Y variant, C282Y homozygotes were at increased risk of colorectal cancer (HR = 2.28; 95% CI = 1.22, 4.25; P = 0.01) and female C282Y homozygotes were at increased risk of developing breast cancer (HR = 2.39; 95% CI = 1.24, 4.61; P = 0.01), but male C282Y homozygotes were not at increased risk for prostate cancer (HR = 0.96; 95% CI = 0.43, 2.15; P = 0.92). C282Y/H63D compound heterozygotes were not at increased risk for colorectal cancer (HR = 1.27; 95% CI = 0.80, 2.01), breast cancer (HR = 1.16; 95% CI = 0.74, 1.84), or prostate cancer (HR = 1.08; 95% CI = 0.68, 1.70). CONCLUSION HFE C282Y homozygotes have twice the risk of colorectal and breast cancer compared with those individuals without the C282Y variant.
Collapse
Affiliation(s)
- Nicholas J. Osborne
- Gut and Liver, Murdoch Childrens Research Institute, Melbourne, VIC Australia,Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia,Department of Paediatrics, the University of Melbourne, Melbourne, VIC, Australia
| | - Lyle C Gurrin
- Gut and Liver, Murdoch Childrens Research Institute, Melbourne, VIC Australia,Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia
| | - Katrina J. Allen
- Gut and Liver, Murdoch Childrens Research Institute, Melbourne, VIC Australia,Department of Paediatrics, the University of Melbourne, Melbourne, VIC, Australia,Department of Gastroenterology, The Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Clare C Constantine
- Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia
| | - Martin B. Delatycki
- Department of Paediatrics, the University of Melbourne, Melbourne, VIC, Australia,Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, VIC, Australia
| | | | - Dorota M Gertig
- Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia,Victorian Cervical Cytology Registry, Melbourne, VIC, Australia
| | | | - Melissa C Southey
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - John K Olynyk
- Department of Gastroenterology, Fremantle Hospital, Fremantle, WA, Australia,School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia,Western Australian Institute of Medical Research, Perth
| | - Lawrie W. Powell
- Queensland Institute of Medical Research, Brisbane QLD, Australia,University of Queensland, Brisbane QLD, Australia
| | - John L Hopper
- Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia
| | - Graham G Giles
- Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia,Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC Australia
| | - Dallas R English
- Centre for MEGA Epidemiology, University of Melbourne, Melbourne, VIC, Australia,Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC Australia
| |
Collapse
|
45
|
Chua ACG, Klopcic B, Lawrance IC, Olynyk JK, Trinder D. Iron: An emerging factor in colorectal carcinogenesis. World J Gastroenterol 2010; 16:663-72. [PMID: 20135713 PMCID: PMC2817053 DOI: 10.3748/wjg.v16.i6.663] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carcinogenic potential of iron in colorectal cancer (CRC) is not fully understood. Iron is able to undergo reduction and oxidation, making it important in many physiological processes. This inherent redox property of iron, however, also renders it toxic when it is present in excess. Iron-mediated generation of reactive oxygen species via the Fenton reaction, if uncontrolled, may lead to cell damage as a result of lipid peroxidation and oxidative DNA and protein damage. This may promote carcinogenesis through increased genomic instability, chromosomal rearrangements as well as mutations of proto-oncogenes and tumour suppressor genes. Carcinogenesis is also affected by inflammation which is exacerbated by iron. Population studies indicate an association between high dietary iron intake and CRC risk. In this editorial, we examine the link between iron-induced oxidative stress and inflammation on the pathogenesis of CRC.
Collapse
|
46
|
Queiroz-Andrade M, Blasbalg R, Ortega CD, Rodstein MAM, Baroni RH, Rocha MS, Cerri GG. MR Imaging Findings of Iron Overload. Radiographics 2009; 29:1575-89. [DOI: 10.1148/rg.296095511] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Calzolari A, Deaglio S, Maldi E, Cassoni P, Malavasi F, Testa U. TfR2 expression in human colon carcinomas. Blood Cells Mol Dis 2009; 43:243-9. [PMID: 19729324 DOI: 10.1016/j.bcmd.2009.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 02/09/2023]
Abstract
Different proteins regulate iron metabolism at the level of various tissues. Among these is a second transferrin receptor (TfR2) that seems to play a key role in the regulation of iron homeostasis. Although TfR2 expression in normal tissues is restricted at the level of the liver, we observed that TfR2 is frequently expressed in cancer cell lines. Taking advantage of this observation we investigated TfR2 expression in primary colon cancers, and showed that this receptor is expressed in about 26% of cases. TfR2 expression in colon cancer is not related to histological grade, but is preferentially associated with mucinous tumors. In colon cancer cell lines, TfR2 is localized in membrane lipid rafts, induces ERK1/ERK2 phosphorylation, when activated by its ligand transferring, and is preferentially expressed during S-M phases of the cell cycle. The presence of TfR2 on the membrane of colon cancer cells may contribute the growth advantage to these cells.
Collapse
Affiliation(s)
- Alessia Calzolari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Gundacker C, Wittmann KJ, Kukuckova M, Komarnicki G, Hikkel I, Gencik M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. ENVIRONMENTAL RESEARCH 2009; 109:786-796. [PMID: 19515364 DOI: 10.1016/j.envres.2009.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND Information on the impact of genetic predisposition on metal toxicokinetics in the human body is limited. There is increasing evidence that certain genetic polymorphisms modify lead and mercury toxicokinetics. This called for analysis of further candidate genes. OBJECTIVES Medical students (N=324) were examined in order to detect potential associations between lead exposure and polymorphisms in HFE, VDR, ALAD, and MT genes, as well as between mercury exposure and GSTT1, GSTM1, GSTA1, GSTP1, GCLC, and MT polymorphisms. METHODS The levels of lead and mercury exposure of students were determined by blood, urine, and hair analyses (ICP-MS, CV-AAS). Genotyping of common polymorphisms was examined by MALDI-TOF MS and the TaqMan methodology. Associations between lead and mercury exposures and genetic background were examined by bivariate analysis, and by categorical regression analysis (CATREG) controlled by metal- and matrix-specific variables. RESULTS Lead and mercury levels in urine, blood, and hair indicated low exposures. VDR polymorphism and joint presence of VDR/ALAD polymorphisms were significantly and independently associated with urine lead concentrations (CATREG P<0.05). Polymorphisms in GSTP1-114 and MT4 genes as well as dual gene combinations including GSTP1, GCLC, GSTT1, and GSTM1 polymorphisms were independent variables related to mercury body burdens (CATREG P<0.05). GSTP1-114/GSTT1 and GSTP1-105/GCLC combinations showed synergistic effects on hair mercury levels compared to single-gene variants. CONCLUSIONS We found evidence that certain genetic backgrounds were associated with lead and mercury metabolism, suggesting gene-environment and gene-gene-environment interactions. The modes of interaction remain to be evaluated.
Collapse
Affiliation(s)
- Claudia Gundacker
- Medical University of Vienna, Center for Public Health, Lab Ecotoxicology, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
49
|
Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 2009; 682:39-53. [PMID: 19383551 DOI: 10.1016/j.mrrev.2009.04.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/08/2009] [Accepted: 04/14/2009] [Indexed: 05/27/2023]
Abstract
Dietary fibres are indigestible food ingredients that reach the colon and are then fermented by colonic bacteria, resulting mainly in the formation of short-chain fatty acids (SCFA) such as acetate, propionate, and butyrate. Those SCFA, especially butyrate, are recognised for their potential to act on secondary chemoprevention by slowing growth and activating apoptosis in colon cancer cells. Additionally, SCFA can also act on primary prevention by activation of different drug metabolising enzymes. This can reduce the burden of carcinogens and, therefore, decrease the number of mutations, reducing cancer risk. Activation of GSTs by butyrate has been studied on mRNA, protein, and enzyme activity level by real-time RT-PCR, cDNA microarrays, Western blotting, or photometrical approaches, respectively. Butyrate had differential effects in colon cells of different stages of cancer development. In HT29 tumour cells, e.g., mRNA GSTA4, GSTP1, GSTM2, and GSTT2 were induced. In LT97 adenoma cells, GSTM3, GSTT2, and MGST3 were induced, whereas GSTA2, GSTT2, and catalase (CAT) were elevated in primary colon cells. Colon cells of different stages of carcinogenesis differed in post-transcriptional regulatory mechanisms because butyrate increased protein levels of different GST isoforms and total GST enzyme activity in HT29 cells, whereas in LT97 cells, GST protein levels and activity were slightly reduced. Because butyrate increased histone acetylation and phosphorylation of ERK in HT29 cells, inhibition of histone deacetylases and the influence on MAPK signalling are possible mechanisms of GST activation by butyrate. Functional consequences of this activation include a reduction of DNA damage caused by carcinogens like hydrogen peroxide or 4-hydroxynonenal (HNE) in butyrate-treated colon cells. Treatment of colon cells with the supernatant from an in vitro fermentation of inulin increased GST activity and decreased HNE-induced DNA damage in HT29 cells. Additional animal and human studies are needed to define the exact role of dietary fibre and butyrate in inducing GST activity and reducing the risk of colon cancer.
Collapse
Affiliation(s)
- Daniel Scharlau
- Institute for Nutrition, Friedrich Schiller University Jena, Dornburger Strasse 24, 07743 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shi Z, Johnstone D, Talseth-Palmer BA, Evans TJ, Spigelman AD, Groombridge C, Milward EA, Olynyk JK, Suchy J, Kurzawski G, Lubinski J, Scott RJ. Haemochromatosis HFE gene polymorphisms as potential modifiers of hereditary nonpolyposis colorectal cancer risk and onset age. Int J Cancer 2009; 125:78-83. [PMID: 19291797 DOI: 10.1002/ijc.24304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is characterized by germline mutations in DNA mismatch repair genes; however, variation in disease expression suggests that there are potential modifying factors. Polymorphisms of the HFE gene, which cause the iron overload disorder hereditary haemochromatosis, have been proposed as potential risk factors for the development of colorectal cancer (CRC). To understand the relationship between HNPCC disease phenotype and polymorphisms of the HFE gene, a total of 362 individuals from Australia and Poland with confirmed causative MMR gene mutations were genotyped for the HFE C282Y and H63D polymorphisms. A significantly increased risk of developing CRC was observed for H63D homozygotes when compared with combined wild-type homozygotes and heterozygotes (hazard ratio = 2.93, p = 0.007). Evidence for earlier CRC onset was also observed in H63D homozygotes with a median age of onset 6 years earlier than wild type or heterozygous participants (44 vs. 50 years of age). This effect was significant by all tests used (log-rank test p = 0.026, Wilcoxon p = 0.044, Tarone-Ware p = 0.035). No association was identified for heterozygosity of either polymorphism and limitations on power-prevented investigation of C282Y homozygosity or compound C282Y/H63D heterozygosity. In the Australian sample only, women had a significantly reduced risk of developing CRC when compared with men (hazard ratio = 0.58, p = 0.012) independent of HFE genotype for either single nucleotide polymorphisms. In conclusion, homozygosity for the HFE H63D polymorphism seems to be a genetic modifier of disease expression in HNPCC. Understanding the mechanisms by which HFE interrelates with colorectal malignancies could lead to reduction of disease risk in HNPCC.
Collapse
Affiliation(s)
- Zumin Shi
- Research Centre for Gender, Health and Ageing, University of Newcastle, Callaghan, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|