1
|
Giram P, Md Mahabubur Rahman K, Aqel O, You Y. In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment. ACS Biomater Sci Eng 2025. [PMID: 40223683 DOI: 10.1021/acsbiomaterials.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanomedicines have significantly improved life expectancy and survival rates for cancer patients in current standard care. However, recurrence of cancer due to metastasis remains a significant challenge. Vaccines can provide long-term protection and are ideal for preventing bacterial and viral infections. Cancer vaccines, however, have shown limited therapeutic efficacy and raised safety concerns despite extensive research. Cancer vaccines target and stimulate responses against tumor-specific antigens and have demonstrated great potential for cancer treatment in preclinical studies. However, tumor-associated immunosuppression and immune tolerance driven by immunoediting pose significant challenges for vaccine design. In situ vaccination represents an alternative approach to traditional cancer vaccines. This strategy involves the intratumoral administration of immunostimulants to modulate the growth and differentiation of innate immune cells, such as dendritic cells, macrophages, and neutrophils, and restore T-cell activity. Currently approved in situ vaccines, such as T-VEC, have demonstrated clinical promise, while ongoing clinical trials continue to explore novel strategies for broader efficacy. Despite these advancements, failures in vaccine research highlight the need to address tumor-associated immune suppression and immune escape mechanisms. In situ vaccination strategies combine innate and adaptive immune stimulation, leveraging tumor-associated antigens to activate dendritic cells and cross-prime CD8+ T cells. Various vaccine modalities, such as nucleotide-based vaccines (e.g., RNA and DNA vaccines), peptide-based vaccines, and cell-based vaccines (including dendritic, T-cell, and B-cell approaches), show significant potential. Plant-based viral approaches, including cowpea mosaic virus and Newcastle disease virus, further expand the toolkit for in situ vaccination. Therapeutic modalities such as chemotherapy, radiation, photodynamic therapy, photothermal therapy, and Checkpoint blockade inhibitors contribute to enhanced antigen presentation and immune activation. Adjuvants like CpG-ODN and PRR agonists further enhance immune modulation and vaccine efficacy. The advantages of in situ vaccination include patient specificity, personalization, minimized antigen immune escape, and reduced logistical costs. However, significant barriers such as tumor heterogeneity, immune evasion, and logistical challenges remain. This review explores strategies for developing potent cancer vaccines, examines ongoing clinical trials, evaluates immune stimulation methods, and discusses prospects for advancing in situ cancer vaccination.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Osama Aqel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Zhang Y, Yan L, Sun H, Zhang Z, Shen F, Sun L. Targeted Delivery of Personalized Cancer Vaccines Based on Antibody-Antigen Complexes. Vaccines (Basel) 2025; 13:324. [PMID: 40266219 DOI: 10.3390/vaccines13030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Personalized cancer vaccines based on tumor neoantigens show great potential in cancer immunotherapy due to their high safety and specificity. However, it is inherently difficult to realize the efficiently targeted delivery of personalized cancer vaccines to antigen-presenting cells (APCs). METHODS This study aimed to address these challenges by developing and evaluating a personalized cancer vaccine based on antibody-antigen complexes, which was designed to enhance antitumor effects by increasing the utilization of tumor neoantigens by APCs. Mice were immunized with a carrier protein, keyhole limpet hemocyanin (KLH), to induce the production of antibodies against KLH. Subsequently, mice were immunized with KLH loaded with tumor neoantigens and the immunoadjuvant CpG ODN and underwent immunological analysis to evaluate the immune and antitumor effects. RESULTS The results showed that preimmunization with KLH could promote the uptake of the personalized KLH-based tumor vaccine, which was enhanced by dendritic cells (DCs) and macrophages (Mφs), by strengthening the T-cell immune responses to tumors. CONCLUSIONS Collectively, this work provides a new idea for the targeted delivery of personalized cancer vaccines.
Collapse
Affiliation(s)
- Yaling Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lingling Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - He Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Furukawa J, Kakei Y, Murakami S, Kita H, Ueki H, Hara T, Teishima J, Hinata N, Miyake H, Fujisawa M, Shirakawa T. Safety and efficacy of oral cancer vaccine B440 in patients with PD-1/PD-L1 inhibitor-resistant advanced urothelial cancer: a study protocol for a phase 1 multicenter, open-label, single-arm clinical trial. BMC Cancer 2025; 25:195. [PMID: 39905323 PMCID: PMC11792616 DOI: 10.1186/s12885-025-13514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND This is a multicenter, open-label, single-arm clinical trial to evaluate the safety and efficacy of oral cancer vaccine B440 in patients with PD-1/PD-L1 inhibitor-resistant advanced urothelial cancer. METHODS The trial will be performed at three university hospitals in Japan. The target number of patients will be 12. The patients will be treated orally with B440 once daily for 5 days followed by 2 days for four consecutive courses (4 weeks, 20 treatments). The low-dose group will receive 800 mg (4 capsules) per dose and the high-dose group will receive 1,600 mg (8 capsules) per dose. The primary outcome will be the number and incidence of DLT cases the start of treatment and Day 28. Secondary outcomes are the presence or absence of a response, the best overall response and PFS. DISCUSSION If this trial shows B440 to be safe and effective, it may lead to a late phase randomized controlled trial in advanced urothelial cancer. Ultimately, we hope to provide a new treatment option for such patients. TRIAL REGISTRATION Japan Registry of Clinical Trials (jRCT) identifier: jRCT2051220143. Registered on December 27, 2022.
Collapse
Affiliation(s)
- Junya Furukawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasumasa Kakei
- Department of Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan.
| | - Sae Murakami
- Department of Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan
| | - Hiroshi Kita
- Department of Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan
| | - Hideto Ueki
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takuto Hara
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Teishima
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideaki Miyake
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shirakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
- Immunorock Co., Lt, Kobe, Japan
| |
Collapse
|
4
|
Zhang J, Liu K, Zhu Z, Shang S, Wei D, Zheng Y, Zhang L, Liang Y, Ju D, Yuan J. Innovative strategies in genitourinary cancer: the role of oncolytic viruses. Front Oncol 2024; 14:1461324. [PMID: 39464707 PMCID: PMC11502293 DOI: 10.3389/fonc.2024.1461324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Urinary tumors pose a significant health threat because of their high prevalence and recurrence rates. Despite the availability of various treatment options, many patients poorly respond to traditional therapies, highlighting the urgent need for alternative approaches. Oncolytic viruses are promising therapeutic agents. These viruses exploit the unique characteristics of cancer cells to specifically target and destroy them, thereby triggering potent antitumor immune responses. This review delves into recent advancements and future prospects of oncolytic viruses, focusing on their application in renal, bladder, and prostate cancers. By discussing practical implications and the potential of different viruses, including the cowpox virus, adenovirus, measles virus, coxsackievirus, and reovirus, we pave the way for further exploration and refinement of this exciting field.
Collapse
Affiliation(s)
- Jie Zhang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Al-Ruwishan A, Amer B, Salem A, Abdi A, Chimpandu N, Esa A, Melemenis A, Saleem MZ, Mathew R, Gamallat Y. Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview. Curr Issues Mol Biol 2024; 46:8340-8367. [PMID: 39194709 DOI: 10.3390/cimb46080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.
Collapse
Affiliation(s)
- Aiman Al-Ruwishan
- Space for Research Initiative, Research Horizons, London NW10 2PU, UK
| | - Bushra Amer
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed Salem
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Ahmed Abdi
- Independent Researcher, Uxbridge UB9 6JH, UK
| | | | | | | | - Muhammad Zubair Saleem
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Roselit Mathew
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yaser Gamallat
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, Al-malky HS, Kumarasamy V, Subramaniyan V, Abdel-Daim MM, Uti DE. Revolutionizing Cancer Treatment: Unleashing the Power of Viral Vaccines, Monoclonal Antibodies, and Proteolysis-Targeting Chimeras in the New Era of Immunotherapy. ACS OMEGA 2024; 9:7277-7295. [PMID: 38405458 PMCID: PMC10882662 DOI: 10.1021/acsomega.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
Collapse
Affiliation(s)
- Popat Mohite
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Vaishnavi Yadav
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Ramdas Pandhare
- MESs
College of Pharmacy, Sonai Tal-Newasa, Maharashtra 414105, India
| | - Swastika Maitra
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
- Department
of Microbiology, Adamas University, Kolkata 700 126, West Bengal, India
| | - Fayez M. Saleh
- Department
of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department
of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65431, Saudi Arabia
| | - Hamdan S. Al-malky
- Regional
Drug Information Center, Ministry of Health, Jeddah 11176, Saudi Arabia
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Savetha
Dental College, Savetha Institute of Medical and Technical Sciences, Savetha University, Chennai, Tamil Nadu 600077, India
| | - Mohamed M. Abdel-Daim
- Department
of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box
6231, Jeddah 21442, Saudi Arabia
- Pharmacology
Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel E. Uti
- Department
of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State 970001, Nigeria
| |
Collapse
|
7
|
Namdari H, Rezaei F, Heidarnejad F, Yaghoubzad-Maleki M, Karamigolbaghi M. Immunoinformatics Approach to Design a Chimeric CD70-Peptide Vaccine against Renal Cell Carcinoma. J Immunol Res 2024; 2024:2875635. [PMID: 38314087 PMCID: PMC10838208 DOI: 10.1155/2024/2875635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Rezaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidarnejad
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
9
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
10
|
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals (Basel) 2023; 16:1054. [PMID: 37513965 PMCID: PMC10383774 DOI: 10.3390/ph16071054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Breast and gynecologic cancers are significant global threats to women's health and those living with the disease require lifelong physical, financial, and social support from their families, healthcare providers, and society as a whole. Cancer vaccines offer a promising means of inducing long-lasting immune response against the disease. Among various types of cancer vaccines available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses. Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are established to be involved in the pathogenesis of female-specific cancers and hence were exploited for the development of peptide vaccines against these diseases, most of which are in the latter stages of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and prophylactic approaches for various types of female-specific cancers such as breast cancer and gynecologic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.
Collapse
Affiliation(s)
- Manju Lekshmy
- Department of Botany and Biotechnology, St. Xavier’s College, Thumba, Thiruvananthapuram 695586, Kerala, India;
| | | | | | | | | | | | - Leelamma Anila
- Department of Biochemistry, NSS College, Nilamel, Kollam 691535, Kerala, India;
| | - Vishnu Sasidharan Lathakumari
- Department of Biochemistry and Industrial Microbiology, Sree Narayana College for Women, Kollam 691001, Kerala, India;
| | - Adhira M. Nayar
- Department of Zoology, Mahatma Gandhi College, Thiruvananthapuram 695004, Kerala, India;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
11
|
Liu G, Zhang Z, Wu Y, Feng J, Lan Y, Dong D, Liu Y, Yuan H, Tai G, Li S, Ni W. Anti-PD-L1 antibody reverses the immune tolerance induced by multiple MUC1-MBP vaccine immunizations by increasing the CD80/PD-L1 ratio, resulting in DC maturation, and decreasing Treg activity in B16-MUC1 melanoma-bearing mice. Int Immunopharmacol 2023; 121:110487. [PMID: 37364328 DOI: 10.1016/j.intimp.2023.110487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
In this study, we explored the possible mechanism of tumor tolerance induced by multiple repeated immunizations with a tumor vaccine (MUC1-MBP fusion protein plus CpG2006). We first analyzed the mechanism of tolerance by immunizing tumor-bearing mice 2, 5, or 8 times and found that compared with five immunizations with the M-M vaccine, eight immunizations increased tumor volume and weight and Treg levels, while the proportions of Th1 and Tc1 cells in the spleen and lymph nodes were decreased. In particular, the M-M vaccine induced PD-L1 expression in CD11c + DCs and decreased their CD80/PD-L1 ratio. Therefore, the mechanism of tolerance induction by multiple immunizations with the M-M vaccine was investigated by focusing on the CD80/PD-L1 ratio, and an anti-PD-L1 antibody (αPD-L1) and the M-M vaccine were used in combination to treat melanoma. The results showed that αPD-L1 increased the CD80/PD-L1 ratio and enhanced the maturation of cDC1s by blocking PD-L1 on DCs, which potentially increased the activity of Th1 and Tc1 cells. Furthermore, the combination of the M-M vaccine with αPD-L1 decreased the activity and proportion of Tregs, which reversed the immune tolerance induced by eight immunizations with the vaccine. This study reveals the mechanism of the combination of M-M and αPD-L1 and provides a new combination strategy for improving the therapeutic effect of the M-M vaccine, laying a theoretical basis for the clinical application of the vaccine.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zenan Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yixuan Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingyue Feng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yue Lan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dai Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yu Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Korzhenevsky AA, Korzhenevskaya NP. Immunotherapy at the modern stage: types and tactics of application. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-4-404-421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sum of the effects of all negative factors on the human body is manifested, including in the form of an imbalance in the work of the immune system, which leads to a violation of the recognition and elimination of foreign substances of the most diverse origin. This is manifested in an increase in the frequency of development of inflammatory processes, the risk of their chronicity and the development of complications, the identification of opportunistic or conditionally pathogenic flora as a pathogen, including those with atypical biological properties and antibiotic resistance. The use of etiotropic chemotherapy alone in the treatment does not allow achieving sufficient control over many infectious diseases. The purpose of this review was to investigate additional, alternative approaches to influencing anti-infective immunity. An analysis of the strategy based on the use of modulation of the immune response in the treatment of patients was carried out and its advantages over traditional antimicrobial treatment were determined. The concept of «immunotherapy» is discussed, which implies a variety of effects on the immune system in order to stop the pathological process. The review highlights the main types of immunotherapy - local, general, combined and monoimmunotherapy, as well as active and passive, specific and nonspecific. The review provides convincing data on the need for immunomodulators to meet a number of requirements, analyzes various ways of classifying them and their areas of application. The necessity of using immunotropic drugs on the basis of a comprehensive examination is emphasized, taking into account the correspondence between the nature of clinical manifestations and the severity of changes in immunological parameters. The analyzed data allow us to conclude that immunomodulatory therapy can be used to restore the function of the immune system to the physiological norm after a severe inflammatory process at the stage of immunorehabilitation.
Collapse
|
14
|
Dai H, Fan Q, Wang C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210157. [PMID: 37324799 PMCID: PMC10191059 DOI: 10.1002/exp.20210157] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy is used to regulate systemic hyperactivation or hypoactivation to treat various diseases. Biomaterial-based immunotherapy systems can improve therapeutic effects through targeted drug delivery, immunoengineering, etc. However, the immunomodulatory effects of biomaterials themselves cannot be neglected. In this review, we outline biomaterials with immunomodulatory functions discovered in recent years and their applications in disease treatment. These biomaterials can treat inflammation, tumors, or autoimmune diseases by regulating immune cell function, exerting enzyme-like activity, neutralizing cytokines, etc. The prospects and challenges of biomaterial-based modulation of immunotherapy are also discussed.
Collapse
Affiliation(s)
- Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| | - Qin Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM) and School of Materials Science and EngineeringNanjing University of Posts & TelecommunicationsNanjingChina
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| |
Collapse
|
15
|
Pan J, Zeng W, Jia J, Shi Y, Wang D, Dong J, Fang Z, He J, Yang X, Zhang R, He M, Huang M, Fu B, Zhong B, Liu H. A Novel Therapeutic Tumor Vaccine Targeting MUC1 in Combination with PD-L1 Elicits Specific Anti-Tumor Immunity in Mice. Vaccines (Basel) 2022; 10:vaccines10071092. [PMID: 35891256 PMCID: PMC9325010 DOI: 10.3390/vaccines10071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Dendritic cells (DCs), as professional antigen-presenting cells (APCs), play a key role in the initiation and regulation of humoral and cellular immunity. DC vaccines loaded with different tumor-associated antigens (TAAs) have been widely used to study their therapeutic effects on cancer. A number of clinical trials have shown that DCs are safe as an antitumor vaccine and can activate certain anti-tumor immune responses; however, the overall clinical efficacy of DC vaccine is not satisfactory, so its efficacy needs to be enhanced. MUC1 is a TAA with great potential, and the immune checkpoint PD-L1 also has great potential for tumor treatment. Both of them are highly expressed on the surface of various tumors. In this study, we generated a novel therapeutic MUC1-Vax tumor vaccine based on the method of PD-L1-Vax vaccine we recently developed; this novel PD-L1-containing MUC1-Vax vaccine demonstrated an elevated persistent anti-PD-L1 antibody production and elicited a much stronger protective cytotoxic T lymphocyte (CTL) response in immunized mice. Furthermore, the MUC1-Vax vaccine exhibited a significant therapeutic anti-tumor effect, which significantly inhibited tumor growth by expressing a high MUC1+ and PD-L1+ level of LLC and Panc02 tumor cells, and prolonged the survival of cancer-bearing animals. Taken together, our study provides a new immunotherapy strategy for improving the cross-presentation ability of therapeutic vaccine, which may be applicable to pancreatic cancer, lung cancer and for targeting other types of solid tumors that highly express MUC1 and PD-L1.
Collapse
Affiliation(s)
- Jiayi Pan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- Clinical Laboratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China
| | - Wuyi Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jiangtao Jia
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Yi Shi
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Danni Wang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jun Dong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Zixuan Fang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jiashan He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Xinyu Yang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Rong Zhang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Menghua He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Maoping Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Bishi Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou 510260, China
| | - Bei Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- Correspondence: (B.Z.); (H.L.); Tel./Fax: +86-020-8320-5013 (H.L.)
| | - Hui Liu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou 510260, China
- Correspondence: (B.Z.); (H.L.); Tel./Fax: +86-020-8320-5013 (H.L.)
| |
Collapse
|
16
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
17
|
Watanabe A, Yamashita K, Fujita M, Arimoto A, Nishi M, Takamura S, Saito M, Yamada K, Agawa K, Mukoyama T, Ando M, Kanaji S, Matsuda T, Oshikiri T, Kakeji Y. Vaccine Based on Dendritic Cells Electroporated with an Exogenous Ovalbumin Protein and Pulsed with Invariant Natural Killer T Cell Ligands Effectively Induces Antigen-Specific Antitumor Immunity. Cancers (Basel) 2021; 14:cancers14010171. [PMID: 35008335 PMCID: PMC8750915 DOI: 10.3390/cancers14010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This study shows the potential of a novel dendritic cell vaccine therapy in antitumor immunity, in which bone marrow-derived dendritic cells are electroporated with an exogenous ovalbumin protein and simultaneously pulsed with α-galactosylceramide. This strategy enhances the induction of cytotoxic CD8+ T cells specific for tumor-associated antigens through the activation of invariant natural killer T cells, natural killer cells, and intrinsic dendritic cells. Moreover, this strategy sustains antigen-specific antitumor T cell responses over time. Abstract (1) Background: Cancer vaccines are administered to induce cytotoxic CD8+ T cells (CTLs) specific for tumor antigens. Invariant natural killer T (iNKT) cells, the specific T cells activated by α-galactosylceramide (α-GalCer), play important roles in this process as they are involved in both innate and adaptive immunity. We developed a new cancer vaccine strategy in which dendritic cells (DCs) were loaded with an exogenous ovalbumin (OVA) protein by electroporation (EP) and pulsed with α-GalCer. (2) Methods: We generated bone marrow-derived DCs from C57BL/6 mice, loaded full-length ovalbumin proteins to the DCs by EP, and pulsed them with α-GalCer (OVA-EP-galDCs). The OVA-EP-galDCs were intravenously administered to C57BL/6 mice as a vaccine. We then investigated subsequent immune responses, such as the induction of iNKT cells, NK cells, intrinsic DCs, and OVA-specific CD8+ T cells, including tissue-resident memory T (TRM) cells. (3) Results: The OVA-EP-galDC vaccine efficiently rejected subcutaneous tumors in a manner primarily dependent on CD8+ T cells. In addition to the OVA-specific CD8+ T cells both in early and late phases, we observed the induction of antigen-specific TRM cells in the skin. (4) Conclusions: The OVA-EP-galDC vaccine efficiently induced antigen-specific antitumor immunity, which was sustained over time, as shown by the TRM cells.
Collapse
Affiliation(s)
- Akihiro Watanabe
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
- Correspondence:
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka 589-0014, Japan;
| | - Akira Arimoto
- Division of Gastrointestinal Surgery, Saiseikai Suita Hospital, Kawazono-cho, Suita 564-0013, Japan;
| | - Masayasu Nishi
- Division of Gastrointestinal Surgery, Konan Medical Center, Kamokogahara, Higashinada, Kobe 658-0064, Japan;
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ono-higashi, Osakasayama 589-0014, Japan;
| | - Masafumi Saito
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Kota Yamada
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Kyosuke Agawa
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Tomosuke Mukoyama
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Masayuki Ando
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Shingo Kanaji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Takeru Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Taro Oshikiri
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| |
Collapse
|
18
|
Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther 2021; 28:19. [PMID: 34903958 PMCID: PMC8653808 DOI: 10.1007/s10989-021-10334-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the epithelial lining of the oral cavity, hypopharynx, oropharynx, and larynx. There are several potential risk factors that cause the generation of HNSCC, including cigarette smoking, alcohol consumption, betel quid chewing, inadequate nutrition, poor oral hygiene, HPV and Epstein–Barr virus, and Candida albicans infections. HNSCC has causative links to both environmental factors and genetic mutations, with the latter playing a more critical role in cancer progression. These molecular changes to epithelial cells include the inactivation of cancer suppressor genes and proto-oncogenes overexpression, resulting in tumour cell proliferation and distant metastasis. HNSCC patients have impaired dendritic cell (DC) and natural killer (NK) cell functions, increased production of higher immune-suppressive molecules, loss of regulatory T cells and co-stimulatory molecules and major histocompatibility complex (MHC) class Ι molecules, lower number of lymphocyte subsets, and a poor response to antigen-presenting cells. At present, the standard treatment modalities for HNSCC patients include surgery, chemotherapy and radiotherapy, and combinatorial therapy. Despite advances in the development of novel treatment modalities over the last few decades, survival rates of HNSCC patients have not increased. To establish effective immunotherapies, a greater understanding of interactions between the immune system and HNSCC is required, and there is a particular need to develop novel therapeutic options. A therapeutic cancer vaccine has been proposed as a promising method to improve outcome by inducing a powerful adaptive immune response that leads to cancer cell elimination. Compared with other vaccines, peptide cancer vaccines are more robust and specific. In the past few years, there have been remarkable achievements in peptide-based vaccines for HNSCC patients. Here, we summarize the latest molecular alterations in HNSCC, explore the immune response to HNSCC, and discuss the latest developments in peptide-based cancer vaccine strategies. This review highlights areas for valuable future research focusing on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong 250000 China
| | - Zhanwei Chen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Juan Du
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Yihua Wu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| |
Collapse
|
19
|
Nava S, Lisini D, Frigerio S, Bersano A. Dendritic Cells and Cancer Immunotherapy: The Adjuvant Effect. Int J Mol Sci 2021; 22:ijms222212339. [PMID: 34830221 PMCID: PMC8620771 DOI: 10.3390/ijms222212339] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine’s ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.
Collapse
|
20
|
Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Indexed: 02/06/2023]
Abstract
The delicate structure and fantastic functions of biological membranes are the successful evolutionary results of a long-term natural selection process. Their excellent biocompatibility and biofunctionality are widely utilized to construct multifunctional biomedical materials mainly by directly camouflaging materials with single or mixed biological membranes, decorating or incorporating materials with membrane-derived vesicles (e.g., exosomes), and designing multifunctional materials with the structure/functions of biological membranes. Here, the structure-function relationship of some important biological membranes and biomimetic membranes are discussed, such as various cell membranes, extracellular vesicles, and membranes from bacteria and organelles. Selected literature examples of multifunctional biomaterials derived from biological membranes for biomedical applications, such as drug- and gene-delivery systems, tissue-repair scaffolds, bioimaging, biosensors, and biological detection, are also highlighted. These designed materials show excellent properties, such as long circulation time, disease-targeted therapy, excellent biocompatibility, and selective recognition. Finally, perspectives and challenges associated with the clinical applications of biological-membrane-derived materials are discussed.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xingyu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- College of Medicine Southwest Jiaotong University Chengdu 610003 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
21
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
22
|
Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit Rev Oncol Hematol 2021; 164:103417. [PMID: 34242772 DOI: 10.1016/j.critrevonc.2021.103417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/05/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is of major concern for society as it is associated with high mortality and is one of the most commonly occurring of all cancers. Due to the number of mutational variants and general heterogeneity of this type of cancer, treatment using conventional modalities has been challenging. Therefore, it is important to have improved therapeutic treatments like immunotherapy, that can specifically treat the disease while causing minimal damage to healthy tissue and additionally provide systemic immunity. Cancer vaccines are an important element of cancer immunotherapy and have been approved for treatment of a limited number of cancers, including NSCLC. This article highlights scientific evidence for several therapeutic treatment strategies for NSCLC, alone or in combination, which offers new hope for those suffering. Although cancer vaccines have had some success as a monotherapy, their potential in a combination therapy needs to be critically analyzed for future applications.
Collapse
|
23
|
Mai J, Li Z, Xia X, Zhang J, Li J, Liu H, Shen J, Ramirez M, Li F, Li Z, Yokoi K, Liu X, Mittendorf EA, Ferrari M, Shen H. Synergistic Activation of Antitumor Immunity by a Particulate Therapeutic Vaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100166. [PMID: 34194942 PMCID: PMC8224417 DOI: 10.1002/advs.202100166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Success in anticancer immune therapy relies on stimulation of tumor antigen-specific T lymphocytes and effective infiltration of the T cells into tumor tissue. Here, a therapeutic vaccine that promotes proliferation and tumor infiltration of antigen-specific T cells in both inflamed and noninflamed tumor types is described. The vaccine consists of STING agonist 2'3'-cGAMP, TLR9 ligand CpG, and tumor antigen peptides that are loaded into nanoporous microparticles (μGCVax). μGCVax is effective in inhibiting lung metastatic melanoma, primary breast cancer, and subcutaneous colorectal cancer in their respective murine models, including functional cure of HER2-positive breast cancer. Mechanistically, μGCVax potently stimulates type I interferon expression in dendritic cells, and promotes CD8+ and CD103+ dendritic cell maturation and migration to lymph nodes and other lymphatic tissues. Antitumor responses are dependent on TLR9 and interferon α/β receptor signaling, and to a less extent on STING signaling. These results demonstrate a high potential for μGCVax in mediating antitumor immunity in personalized cancer therapy.
Collapse
Affiliation(s)
- Junhua Mai
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Zhaoqi Li
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Xiaojun Xia
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Department of Experimental Medicine Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Guangzhou 510060 China
| | - Jingxin Zhang
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jun Li
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Haoran Liu
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Jianliang Shen
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- School of Ophthalmology & Optometry School of Biomedical Engineering Wenzhou Medical University Wenzhou 325035 China
| | - Maricela Ramirez
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Feng Li
- Center for Bioenergetics Houston Methodist Academic Institute Houston TX 77030 USA
| | - Zheng Li
- Center for Bioenergetics Houston Methodist Academic Institute Houston TX 77030 USA
| | - Kenji Yokoi
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Xuewu Liu
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Elizabeth A Mittendorf
- Department of Surgery Brigham and Women's Hospital Boston MA 02115 USA
- Breast Oncology Program Dana-Farber/Brigham and Women's Cancer Center Boston MA 02115 USA
| | - Mauro Ferrari
- Department of Pharmaceutics School of Pharmacy University of Washington Seattle WA 98195 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Houston Methodist Cancer Center Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
24
|
Zhang Y, Han X, Shao Y. The ROC of Cox proportional hazards cure models with application in cancer studies. LIFETIME DATA ANALYSIS 2021; 27:195-215. [PMID: 33507457 DOI: 10.1007/s10985-021-09516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
With recent advancement in cancer screening and treatment, many patients with cancers are identified at early stage and clinically cured. Importantly, uncured patients should be treated timely before the cancer progresses to advanced stages for which therapeutic options are rather limited. It is also crucial to identify uncured subjects among patients with early-stage cancers for clinical trials to develop effective adjuvant therapies. Thus, it is of interest to develop statistical predictive models with as high accuracy as possible in predicting the latent cure status. The receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC) are among the most widely used statistical metrics for assessing predictive accuracy or discriminatory power for a dichotomous outcome (cured/uncured). Yet the conventional AUC cannot be directly used due to incompletely observed cure status. In this article, we proposed new estimates of the ROC curve and its AUC for predicting latent cure status in Cox proportional hazards (PH) cure models and transformation cure models. We developed explicit formulas to estimate sensitivity, specificity, the ROC and its AUC without requiring to know the patient cure status. We also developed EM type estimates to approximate sensitivity, specificity, ROC and AUC conditional on observed data. Numerical studies were used to assess their finite-sample performance of the proposed methods. Both methods are consistent and have similar efficiency as shown in our numerical studies. A melanoma dataset was used to demonstrate the utility of the proposed estimates of the ROC curve for the latent cure status. We also have developed an [Formula: see text] package called [Formula: see text] to efficiently compute the proposed estimates.
Collapse
Affiliation(s)
- Yilong Zhang
- Department of Biostatistics and Research Decision Sciences, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Xiaoxia Han
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Yongzhao Shao
- Departments of Population Health & Environmental Medicine, NYU Grossman School of Medicine, 180 Madison Ave, 4th Floor, Suite 455, New York, NY, 10016, USA.
| |
Collapse
|
25
|
Abstract
Peptide and dendritic cell vaccines activate the immune system against tumor antigens to combat brain tumors. Vaccines stimulate a systemic immune response by inducing both antitumor T cells as well as humoral immunity through antibody production to cross the blood-brain barrier and combat brain tumors. Recent trials investigating vaccines against peptides (ie, epithelial growth factor receptor variant III, survivin, heat shock proteins, or personalized tumor antigens) and dendritic cells pulsed with known peptides, messenger RNA or unknown tumor lysate targets demonstrate the potential for therapeutic cancer vaccines to become an important therapy for brain tumor treatment.
Collapse
Affiliation(s)
- Justin Lee
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA
| | - Benjamin R Uy
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA
| | - Linda M Liau
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Degregorio M, Degregorio M, Wurz GT, Wurz GT, Gutierrez A, Gutierrez A, Wolf M. L-BLP25 vaccine plus letrozole for breast cancer: Is translation possible? Oncoimmunology 2021; 1:1422-1424. [PMID: 23243615 PMCID: PMC3518524 DOI: 10.4161/onci.21129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently reported immunomodulatory effects for tamoxifen and letrozole on the L-BLP25 (Stimuvax(®))-induced immune response in a MUC1-expressing breast cancer mouse model. While neither tamoxifen nor letrozole appeared to interfere with the Th1-polarized cytokine response induced by L-BLP25, only letrozole increased the survival advantage of L-BLP25.
Collapse
Affiliation(s)
- Michael Degregorio
- Department of Internal Medicine; Division of Hematology and Oncology; University of California, Davis; Sacramento, CA USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Emmerich J, Mumm JB, Oft M. Autochthonous T cells to the rescue: IL-10 directly activates tumor-resident CD8(+) T cells. Oncoimmunology 2021; 1:1637-1639. [PMID: 23264920 PMCID: PMC3525629 DOI: 10.4161/onci.21683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Successful cancer immunotherapy is thought to require de novo priming of tumor specific CD8+ T cells in lymphatic organs. Contrasting these beliefs, cancer therapy based on interleukin-10 (IL-10) results in tumor rejection without a requirement for T-cell trafficking from lymphatic organs. Rather, IL-10 directly activates autochthonous, tumor-resident CD8+ T cells.
Collapse
|
28
|
Bondhopadhyay B, Sisodiya S, Chikara A, Khan A, Tanwar P, Afroze D, Singh N, Agrawal U, Mehrotra R, Hussain S. Cancer immunotherapy: a promising dawn in cancer research. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:375-385. [PMID: 33489447 PMCID: PMC7811907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Cancer is a highly proliferative disease, which is caused due to the loss of regulation of cell cycle and apoptosis, DNA damage, faulty repair system etc. The cancer microenvironment plays a pivotal role in disease progression as they contain different types of innate and adaptive immune cells. The most important molecules that establish a correlation between inflammation, innate immunity, adaptive immunity, and cancer are the molecules released by inflammatory cells in cancer microenvironment. These molecules secreted by the immune cells, which might activate a pro-tumorigenic and anti-tumorigenic response in cancer. In inflammatory microenvironment, the equilibrium state of immunosuppressive and immunostimulatory signals are important in tumor suppression. The immunotherapeutic approaches could be more effective in cancer treatment. However, advancement in immunobiology and cancer are improving the prospects of immunotherapy alone and/or in combination with the conventional therapies. Thus, the review attempts to highlight a promising and futuristic immunotherapeutic approach in combination with conventional treatment modalities.
Collapse
Affiliation(s)
- Banashree Bondhopadhyay
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Sandeep Sisodiya
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Atul Chikara
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Asiya Khan
- All India Institute of Medical Science (AIIMS)New Delhi, India
| | - Pranay Tanwar
- All India Institute of Medical Science (AIIMS)New Delhi, India
| | - Dil Afroze
- Sher-i-Kashmir Institute of Medical Sciences Soura (SKIMS)Srinagar, Jammu and Kashmir, India
| | - Neha Singh
- Department of Surgical and Perioperative Sciences, Umea UniversitySweden
| | | | - Ravi Mehrotra
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| |
Collapse
|
29
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
30
|
Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020; 254:117580. [DOI: 10.1016/j.lfs.2020.117580] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
|
31
|
Mu W, Chu Q, Liu Y, Zhang N. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. NANO-MICRO LETTERS 2020; 12:142. [PMID: 34138136 PMCID: PMC7770879 DOI: 10.1007/s40820-020-00482-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/11/2020] [Indexed: 05/11/2023]
Abstract
Although notable progress has been made on novel cancer treatments, the overall survival rate and therapeutic effects are still unsatisfactory for cancer patients. Chemoimmunotherapy, combining chemotherapeutics and immunotherapeutic drugs, has emerged as a promising approach for cancer treatment, with the advantages of cooperating two kinds of treatment mechanism, reducing the dosage of the drug and enhancing therapeutic effect. Moreover, nano-based drug delivery system (NDDS) was applied to encapsulate chemotherapeutic agents and exhibited outstanding properties such as targeted delivery, tumor microenvironment response and site-specific release. Several nanocarriers have been approved in clinical cancer chemotherapy and showed significant improvement in therapeutic efficiency compared with traditional formulations, such as liposomes (Doxil®, Lipusu®), nanoparticles (Abraxane®) and micelles (Genexol-PM®). The applications of NDDS to chemoimmunotherapy would be a powerful strategy for future cancer treatment, which could greatly enhance the therapeutic efficacy, reduce the side effects and optimize the clinical outcomes of cancer patients. Herein, the current approaches of cancer immunotherapy and chemoimmunotherapy were discussed, and recent advances of NDDS applied for chemoimmunotherapy were further reviewed.
Collapse
Affiliation(s)
- Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Qihui Chu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
32
|
Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohydr Polym 2020; 240:116270. [DOI: 10.1016/j.carbpol.2020.116270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/26/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
|
33
|
Bauer TV, Tregubchak TV, Maksyutov AZ, Kolosova IV, Maksyutov RA, Gavrilova EV. [Development of the drug oncolytic immunotherapy based on vaccinia viruses (Vaccinia virus, Orthopoxvirus, Chordopoxvirinae, Poxviridae) against breast cancer.]. Vopr Virusol 2020; 65:49-56. [PMID: 32496721 DOI: 10.36233/0507-4088-2020-65-1-49-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/28/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Currently, new directions in cancer therapy are actively developing, one of which is oncolytic immunotherapy. This approach would be to use of viruses as cancer specific cytolytic agents capable of stimulating both the tumor-specific and non-specific immune response. The objective paper was obtain a recombinant vaccinia virus containing genes encoding immunostimulating molecules and study oncolytic and immunostimulating properties of recombinant virus. MATERIAL AND METHODS MTT test, ELISA, methods of transient dominant selection. RESULTS The recombinant vaccinia virus (L-IVP_oncoB) were obtained with deletion of the gene encoding thymidine kinase and had an integrated gene encoding GM-CSF. Also the virus have deletion of the gene encoding viral growth factor and integrated genes encoding synthetic tumor-specific polyepitopic immunogens. It was shown that the modifications made to the viral genome did not affect the growth characteristics of the virus when cultured on CV-1 and 4647 cell cultures, and the cytopathogenic efficacy of the virus was determined in relation to cancer cultures of cells of various genesis. In in vivo experiment, it was revealed that the polyepitopic construct in the genome L-IVP_oncoB is able to initiate a change in the profile of cytokines. DISCUSSION The obtained data characterized L-IVP_oncoB as a promising cytopathogenic and immunostimulating agent and showed the need for further study of its properties as means of oncolytic immunotherapy. CONCLUSION The basic experiments on the evaluation of the biological properties of the obtained L-IVP_oncoB, which are necessary for the characterization of the oncolytic virus, have been carried out.
Collapse
Affiliation(s)
- T V Bauer
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk Region, 630559, Russia
| | - T V Tregubchak
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk Region, 630559, Russia
| | - A Z Maksyutov
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk Region, 630559, Russia
| | - I V Kolosova
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk Region, 630559, Russia
| | - R A Maksyutov
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk Region, 630559, Russia
| | - E V Gavrilova
- State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk Region, 630559, Russia
| |
Collapse
|
34
|
Madan RA, Antonarakis ES, Drake CG, Fong L, Yu EY, McNeel DG, Lin DW, Chang NN, Sheikh NA, Gulley JL. Putting the Pieces Together: Completing the Mechanism of Action Jigsaw for Sipuleucel-T. J Natl Cancer Inst 2020; 112:562-573. [PMID: 32145020 PMCID: PMC7301097 DOI: 10.1093/jnci/djaa021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Sipuleucel-T is an autologous cellular immunotherapy that induces an immune response targeted against prostatic acid phosphatase (PAP) to treat asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. In the phase III IMPACT study, sipuleucel-T was associated with a statistically significantly increased overall survival (OS) (median = 4.1 months) vs placebo. Patients with baseline prostate-specific antigen levels in the lowest quartile (≤22.1 ng/mL) exhibited a 13-month improvement in OS with sipuleucel-T. Together, this led sipuleucel-T to be approved and recommended as first-line therapy in various guidelines for treatment of metastatic castration-resistant prostate cancer. This review discusses the varied findings about the mechanisms of action of sipuleucel-T, bringing them together to form a more coherent picture. These pieces include inducing a statistically significant increase in antigen-presenting cell activation; inducing a peripheral immune response specific to the target (PAP) and/or immunizing (PA2024) antigens; stimulating systemic cytotoxic T-lymphocyte activity; and mediating antigen spread (ie, increased antibody responses to secondary proteins in addition to PAP and PA2024). Each of these pieces individually correlates with OS. Sipuleucel-T also traffics T cells to the prostate and is associated with long-term immune memory such that a second course of treatment induces an anamnestic immune response. Prostate cancer does not have a strongly inflamed microenvironment, thus its response to immune checkpoint inhibitors is limited. Because sipuleucel-T is able to traffic T cells to the tumor, it may be an ideal combination partner with immunotherapies including immune checkpoint inhibitors or with radiation therapy.
Collapse
Affiliation(s)
- Ravi A Madan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Charles G Drake
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Evan Y Yu
- University of Washington and Seattle Cancer Care Alliance, Seattle, WA, USA
| | | | - Daniel W Lin
- University of Washington and Seattle Cancer Care Alliance, Seattle, WA, USA
| | | | | | - James L Gulley
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Li Z, Zheng Z, Li C, Li Z, Wu J, Zhang B. Therapeutic drugs and drug delivery systems targeting stromal cells for cancer therapy: a review. J Drug Target 2020; 28:714-726. [DOI: 10.1080/1061186x.2020.1744157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhaohuan Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zengjuan Zheng
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
36
|
Xu CH, Ye PJ, Zhou YC, He DX, Wei H, Yu CY. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater 2020; 105:1-14. [PMID: 32001369 DOI: 10.1016/j.actbio.2020.01.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
The translocation of natural cell membranes to the surface of synthetic nanoparticles, which allows man-made vectors to share merits and functionalities created by nature, has been a hot subject of research in the past decade. The resulting biomimetic nanoparticles not only retain the physicochemical properties of nanomaterials, but also inherit the advantageous functions of source cells. Combined with the preponderances of both synthetic and natural platforms, the optimized biomimetic systems can maximize the drug delivery efficiency. In this review, we first summarize the preparation strategies of the biomimetic systems from the perspective of the correlation between the properties of nanoparticles and cell membranes. Six types of cell membrane-camouflaged nanoparticles are further introduced with an emphasis on their properties and performance. Finally, a concluding remark regarding the primary challenges and opportunities associated with these nanoparticles is presented. STATEMENT OF SIGNIFICANCE: Translocation of natural cell membranes to the surface of synthetic nanoparticles has been repeatedly highlighted in the past decade to endow man-made vectors with merits and functionalities created by nature; therefore, the resulting biomimetic systems not only retain the physicochemical properties of nanomaterials but also inherit the biological functions of source cells for efficient drug delivery. To provide a timely review on this hot and rapidly developing subject of research, this paper summarized recent progress on the cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy, and focused primarily on six different types of cell membrane-coated nanoparticles with an emphasis on the preparation strategies from the perspective of the correlation between the properties of nanoparticles and cell membrane.
Collapse
Affiliation(s)
- Cheng-Hui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Peng-Ju Ye
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yang-Chun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
37
|
Chamani R, Soleimanjahi H, Asghari SM, Karimi H, Kianmehr Z, Ardestani SK. Re-engineering of the Immunosuppressive Tumor Microenvironment by Antiangiogenic Therapy. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09860-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Trempolec N, Doix B, Degavre C, Brusa D, Bouzin C, Riant O, Feron O. Photodynamic Therapy-Based Dendritic Cell Vaccination Suited to Treat Peritoneal Mesothelioma. Cancers (Basel) 2020; 12:cancers12030545. [PMID: 32120810 PMCID: PMC7139796 DOI: 10.3390/cancers12030545] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The potential of dendritic cell (DC)-based immunotherapy to treat cancer is, nowadays, well documented. Still, the clinical success of immune checkpoint inhibitors has dampened the interest in anticancer DC vaccination. For highly life-threatening tumors that are regarded as nonimmunogenic, such as mesothelioma, however, T helper 1 immunity-biased DC-based immunotherapy could still represent an attractive strategy. In this study, we took advantage of photodynamic therapy (PDT) to induce immunogenic cell death to generate mesothelioma cell lysates for DC priming and evaluated such a vaccine to treat peritoneal mesothelioma. We found that the white light in vitro activation of the photosensitizer OR141 led to mesothelioma cell death, together with the release of bona fide danger signals that promote DC maturation. The administration of a PDT-based DC vaccine to mice bearing peritoneal mesothelioma led to highly significant survival when compared with sham or control animals treated with anti-CTLA4 antibodies. This was further supported by a strong CD8+ and CD4+ T cell response, characterized by an increased proliferation, cytotoxic activities and the expression of activation markers, including interferon gamma (IFNγ). Moreover, the PDT-based DC vaccine led to a significant increase in IFNγ+ T cells infiltered within mesothelioma, as determined by flow cytometry and immunohistochemistry. Finally, in vivo tracking of intraperitoneally administered DCs led us to document rapid chemotaxis towards tumor-occupied lymphatics (vs. lipopolysaccharide (LPS)-treated DC). DCs pulsed with PDT-killed mesothelioma cells also exhibited a significant increase in CCR7 receptors, together with an intrinsic capacity to migrate towards the lymph nodes. Altogether, these results indicate that PDT-based DC vaccination is particularly suited to induce a potent immune response against peritoneal mesothelioma.
Collapse
Affiliation(s)
- Natalia Trempolec
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium; (N.T.); (B.D.); (C.D.)
| | - Bastien Doix
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium; (N.T.); (B.D.); (C.D.)
| | - Charline Degavre
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium; (N.T.); (B.D.); (C.D.)
| | - Davide Brusa
- Institut de Recherche Expérimentale et Clinique (IREC) Flow Cytometry Platform, UCLouvain, 1200 Brussels, Belgium;
| | - Caroline Bouzin
- Institut de Recherche Expérimentale et Clinique (IREC) 2IP, UCLouvain, 1200 Brussels, Belgium;
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium; (N.T.); (B.D.); (C.D.)
- Correspondence: ; Tel.: +32-2-7645264; Fax: +32-2-7645269
| |
Collapse
|
39
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|
40
|
Zhao J, Chen Y, Ding ZY, Liu JY. Safety and Efficacy of Therapeutic Cancer Vaccines Alone or in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Pharmacol 2019; 10:1184. [PMID: 31680963 PMCID: PMC6798079 DOI: 10.3389/fphar.2019.01184] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
Therapeutic cancer vaccines have proven to seldom induce dramatic clinical response when used alone, and therefore, they are being studied in combination with additional treatment modalities to achieve optimal treatment activities. Growing preclinical data show that combining vaccines and immune checkpoint inhibitors (ICIs) can prime intensified immunogenicity and modulate immunosuppressive tumor microenvironment. Herein, we focus on the safety and efficacy of approved and promising cancer vaccines alone or combined with ICIs in the treatment of several malignancies. Generally, the majority of clinical trials support the concept of synergy that combination therapy of vaccines and ICIs holds maximized potential to improve clinical outcomes. Importantly, the combination has acceptable safety and minimal additional toxicity compared with single-agent vaccines or ICIs. Additionally, the potential strategies of combining personalized tumor vaccines with ICIs will become priority option and future direction of vaccine development and application and the urgent need to develop effective biomarkers to screen appropriate patient populations and predict response to combination therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen-Yu Ding
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Martinez VG, Park D, Acton SE. Immunotherapy: breaching the barriers for cancer treatment. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180214. [PMID: 31431180 PMCID: PMC6627023 DOI: 10.1098/rstb.2018.0214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The great ambition to treat cancer through harnessing a patient's own immune responses has started to become reality. Clinical trials have shown impressive results and some patients reaching the end of existing treatment options have achieved full remission. Yet the response rate even within the most promising trials remain at just 30-40% of patients. To date, the focus of immunotherapy research has been to identify tumour antigens, and to enhance activation of effector lymphocytes. Yet this is only the first step to effective immunotherapy for a broader range of patients. Activated cytotoxic T cells can only act on their tumour cell targets if they have free and easy access to all tumour regions. Solid tumours are complex, heterogeneous environments which vary greatly in their physical properties. We must now focus our efforts on understanding how factors such as the composition, density and geometry of tumour extracellular matrix acts to impede or promote immune cell infiltration and activation, and work to design novel pharmacological interventions which restore and enhance leucocyte trafficking within solid tumours. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Victor G. Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Danielle Park
- Tumour Cell Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
42
|
Busato D, Mossenta M, Baboci L, Di Cintio F, Toffoli G, Dal Bo M. Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Rev Clin Pharmacol 2019; 12:453-470. [PMID: 30907177 DOI: 10.1080/17512433.2019.1598859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The introduction of immune checkpoint inhibitors has been lately proposed for the treatment of hepatocellular carcinoma (HCC) with respect to other cancer types. Several immunotherapeutic approaches are now under evaluation for HCC treatment including: i) antibodies acting as immune checkpoint inhibitors; ii) antibodies targeting specific tumor-associated antigens; iii) chimeric antigen receptor redirected T (CAR-T) cells targeting specific tumor-associated antigens; iv) vaccination strategies with tumor-specific epitopes. Areas covered: The review provides a wide description of the clinical trials investigating the efficacy of the main immunotherapeutic approaches proposed for the treatment of patients affected by HCC. Expert opinion: The balancing between immunostimulative and immunosuppressive factors in the context of HCC tumor microenvironment results in heterogeneous response rates to immunotherapeutic approaches such as checkpoint inhibitors, among HCC patients. In this context, it becomes crucial the identification of predictive factors determining the treatment response. A multiple approach using different biomarkers could be useful to identify the subgroup of HCC patients responsive to the treatment with a checkpoint inhibitor (as an example, nivolumab) as single agent, and to identify those patients in which other treatment regimens, such as the combination with sorafenib, or with locoregional therapies, could be more effective.
Collapse
Affiliation(s)
- Davide Busato
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Monica Mossenta
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Lorena Baboci
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Federica Di Cintio
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Michele Dal Bo
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| |
Collapse
|
43
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|
44
|
Sönmez MG, Sönmez LÖ. New treatment modalities with vaccine therapy in renal cell carcinoma. Urol Ann 2019; 11:119-125. [PMID: 31040593 PMCID: PMC6476201 DOI: 10.4103/ua.ua_166_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of implementing vaccine therapy is to activate immune response against malignant cells by overcoming the tolerance triggered by the tumor. These treatments are effective using the immune response against cancer. Not every type of cancer is suitable for vaccine therapies. For a vaccine therapy to be implemented, cancer should be immunogenic and contain tissue-specific proteins, should have a slow progression, and treatments should be feasible. For that reason, studies regarding urological cancers are mostly focused on the kidneys and the prostate. Vaccine therapies used in renal cell carcinoma (RCC) can be categorized under the following titles: autologous tumor cells, dendritic cells, genetically modified tumor cells, and protein/peptide. Although there are old studies on the implementation of vaccine therapies in RCC, researches have only been intensified recently. In addition to their effective potential for lengthening general survival, decreasing tumor burden and cancer development in long term, vaccine treatments are especially effective in metastatic RCC patients. We think that vaccine treatments would be applied more in near future since RCC are immunogenic. In this compilation, we will discuss vaccine therapies used in RCC, which urologists are not so familiar with, in the light of the up-to-date literature.
Collapse
Affiliation(s)
- Mehmet Giray Sönmez
- Department of Urology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Leyla Öztürk Sönmez
- Department of Physiology, Selcuklu Medical School, Selcuk University, Konya, Turkey
| |
Collapse
|
45
|
Zhang Y, Shao Y. Concordance measure and discriminatory accuracy in transformation cure models. Biostatistics 2019; 19:14-26. [PMID: 28481968 DOI: 10.1093/biostatistics/kxx016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 02/22/2017] [Indexed: 01/03/2023] Open
Abstract
Many populations of early-stage cancer patients have non-negligible latent cure fractions that can be modeled using transformation cure models. However, there is a lack of statistical metrics to evaluate prognostic utility of biomarkers in this context due to the challenges associated with unknown cure status and heavy censorship. In this article, we develop general concordance measures as evaluation metrics for the discriminatory accuracy of transformation cure models including the so-called promotion time cure models and mixture cure models. We introduce explicit formulas for the consistent estimates of the concordance measures, and show that their asymptotically normal distributions do not depend on the unknown censoring distribution. The estimates work for both parametric and semiparametric transformation models as well as transformation cure models. Numerical feasibility of the estimates and their robustness to the censoring distributions are illustrated via simulation studies and demonstrated using a melanoma data set.
Collapse
Affiliation(s)
- Yilong Zhang
- Merck Research Laboratories, 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Yongzhao Shao
- Department of Population Health, New York University School of Medicine, 650 first ave 5th FL, New York, NY 10016, USA
| |
Collapse
|
46
|
Lynn GM, Chytil P, Francica JR, Lagová A, Kueberuwa G, Ishizuka AS, Zaidi N, Ramirez-Valdez RA, Blobel NJ, Baharom F, Leal J, Wang AQ, Gerner MY, Etrych T, Ulbrich K, Seymour LW, Seder RA, Laga R. Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction. Biomacromolecules 2019; 20:854-870. [PMID: 30608149 DOI: 10.1021/acs.biomac.8b01473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.
Collapse
Affiliation(s)
- Geoffrey M Lynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Anna Lagová
- Department of Oncology , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , United Kingdom
| | - Gray Kueberuwa
- Department of Oncology , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , United Kingdom
| | - Andrew S Ishizuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Neeha Zaidi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Ramiro A Ramirez-Valdez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Nicolas J Blobel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Faezzah Baharom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Joseph Leal
- Department of Immunology , University of Washington , South Lake Union E-411, 750 Republican Street , Seattle , Washington 98109 , United States
| | - Amy Q Wang
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Michael Y Gerner
- Department of Immunology , University of Washington , South Lake Union E-411, 750 Republican Street , Seattle , Washington 98109 , United States
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Leonard W Seymour
- Department of Oncology , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , United Kingdom
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases , National Institutes of Health, 40 Convent Drive , Bethesda , Maryland 20892 , United States
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
- Department of Oncology , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , United Kingdom
| |
Collapse
|
47
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Schoenberger SP. Is It Possible to Develop Cancer Vaccines to Neoantigens, What Are the Major Challenges, and How Can These Be Overcome? Targeting the Right Antigens in the Right Patients. Cold Spring Harb Perspect Biol 2018; 10:a028837. [PMID: 29254974 PMCID: PMC6211387 DOI: 10.1101/cshperspect.a028837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent advances in genomic sequencing and bioinformatics have empowered a revolution in immuno-oncology that has led to numerous unambiguous demonstrations of spontaneous and therapy-induced T-cell responses in patients against a subset of immunogenic tumor-specific somatic mutations known as neoantigens. These findings raise the exciting possibility that patients could be therapeutically treated with personalized vaccines against the mutations expressed by their own tumor. A central challenge for the broader clinical application of this approach will be to define the best antigens to target, to determine the subset of patients most likely to derive significant clinical benefit, and, finally, to discover both the best method of vaccine delivery and the optimal time in the disease course to do so. A growing number of translational immunologists believe that these challenges can be overcome and this perspective will discuss strategies to achieve this.
Collapse
Affiliation(s)
- Stephen P Schoenberger
- Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; Division of Hematology and Oncology, UCSD Moores Cancer Center, San Diego, California 92123; and Cancer Vaccines Group, Human Longevity Inc., San Diego, California 92121
| |
Collapse
|
49
|
Zhou F, Yang J, Zhang Y, Liu M, Lang ML, Li M, Chen WR. Local Phototherapy Synergizes with Immunoadjuvant for Treatment of Pancreatic Cancer through Induced Immunogenic Tumor Vaccine. Clin Cancer Res 2018; 24:5335-5346. [PMID: 30068705 PMCID: PMC6214772 DOI: 10.1158/1078-0432.ccr-18-1126] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/24/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: To develop a synergistic combination therapy for advanced pancreatic cancer, using local phototherapy and immunotherapy, and to determine the efficacy and mechanism of the novel combination therapy using a highly metastatic pancreatic tumor model in mice.Experimental Design: Mice bearing Panc02-H7 pancreatic tumors (both subcutaneous and orthotopic) were treated with noninvasive or interventional photothermal therapy, followed by local application of an immunoadjuvant. Tumor growth and animal survival were assessed. Immune cell populations within spleen and tumors were evaluated by FACS and IHC, and cytokine levels were determined by ELISA.Results: Up to 75% of mice bearing subcutaneous tumors treated with combination therapy had complete tumor regression. Local photothermal therapy exposed/released damage-associated molecular patterns, which initiated an immunogenic tumor cell death, resulting in infiltration of antigen-presenting cells and Th1 immunity. Concomitant application of immunoadjuvant amplified Th1 immunity, especially the tumor-specific cytotoxic T lymphocyte response, with increased quantity and quality of T cells. Combination therapy also induced tumor-specific immune memory, as demonstrated by resistance to tumor rechallenge and production of memory T cells. For the treatment of orthotopic tumor, the combination therapy significantly reduced the primary tumors and metastases, and prolonged the animal survival time.Conclusions: This study indicated that combination of local phototherapy and immunotherapy induced a systemic immunity against established tumors and metastases in an aggressive, preclinical pancreatic tumor model, leading to a potential clinical method for patients with advanced pancreatic cancer. Clin Cancer Res; 24(21); 5335-46. ©2018 AACR.
Collapse
Affiliation(s)
- Feifan Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuqing Zhang
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Min Li
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Wei R Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma
| |
Collapse
|
50
|
Li X, Huang F, Xu X, Hu S. Polyclonal Rabbit Anti-Cancer-Associated Fibroblasts Globulins Induce Cancer Cells Apoptosis and Inhibit Tumor Growth. Int J Biol Sci 2018; 14:1621-1629. [PMID: 30416376 PMCID: PMC6216025 DOI: 10.7150/ijbs.26520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute a major component of the tumor microenvironment. CAFs regulated the growth and development, invasion and metastasis of primary tumors, as well as response to treatment. Recent studies indicated that monoclonal antibody therapies had limited success, thus more effective polyclonal antibodies (Poly Abs) is urgently needed. Poly Abs is a possible alternative because they target multiple antigens simultaneously. In this report, we prepared Poly Abs by immunizing rabbits with the bFGF-activated fibroblasts. The Poly Abs inhibited the cancer cells proliferation as revealed by MTT analysis. The Poly Abs induced apoptosis as indicated by flow cytometric analysis, and microscopic observation of apoptotic changes in morphology. Compared with the control IgG, Poly Abs significantly inhibited tumor cells migration as indicated by wound healing and transwell analysis in vitro, and lung metastasis analysis in vivo. Serial intravenous injections of Poly Abs inhibited tumor growth in mice bearing murine CT26 colon carcinoma. Ki67 analysis indicated that Poly Abs significantly inhibited tumor cells proliferation, as compared to control Ig G treatments. Our findings suggested that Poly Abs was an effective agent for apoptosis induction, migration and metastasis inhibition. The Poly Abs may be useful as a safe anticancer agent for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiuying Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Fengchang Huang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Xu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Shuenqin Hu
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Kunming, Medical University, Kunming, China
| |
Collapse
|