1
|
Yates AG, Khamhoung A, Gaebel L, Jacob W, Radford-Smith DE, Kiss MG, Huynh P, Gerhardt T, Heiser M, Cohen O, Swirski FK, Anthony DC, Sumowski J, Katz Sand I, McAlpine CS. Myelopoiesis is temporally dynamic and is regulated by lifestyle to modify multiple sclerosis. Nat Commun 2025; 16:3683. [PMID: 40246882 PMCID: PMC12006503 DOI: 10.1038/s41467-025-59074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
Monocytes and neutrophils from the myeloid lineage contribute to multiple sclerosis (MS), but the dynamics of myelopoiesis during MS are unclear. Here we uncover a disease stage-specific relationship between lifestyle, myelopoiesis and neuroinflammation. In mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), myelopoiesis in the femur, vertebrae and spleen is elevated prior to disease onset and during remission, preceding the peaks of clinical disability and neuroinflammation. In progressive EAE (P-EAE), vertebral myelopoiesis rises steadily throughout disease, while femur and splenic myelopoiesis is elevated early before waning later during disease height. In parallel, sleep disruption or hyperlipidemia and cardiometabolic syndrome augment M-CSF generation and multi-organ myelopoiesis to worsen P-EAE clinical symptoms, neuroinflammation, and spinal cord demyelination, with M-CSF blockade abrogating these symptoms. Lastly, results from a previous trial show that Mediterranean diet restrains myelopoietic activity and myeloid lineage progenitor skewing and improves clinical symptomology of MS. Together, our data suggest that myelopoiesis in MS is dynamic and dependent on disease stage and location, and that lifestyle factors modulate disease by influencing M-CSF-mediated myelopoiesis.
Collapse
Affiliation(s)
- Abi G Yates
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annie Khamhoung
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lena Gaebel
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Jacob
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Gerhardt
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merlin Heiser
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - James Sumowski
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis and the Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis and the Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Skuljec J, Sardari M, Su C, Müller-Dahlke J, Singh V, Janjic MM, Kleinschnitz C, Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells In Vitro Without Affecting Their Generation. Int J Mol Sci 2025; 26:3013. [PMID: 40243628 PMCID: PMC11989142 DOI: 10.3390/ijms26073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glatiramer acetate (GA) is the first-line therapy for relapsing-remitting multiple sclerosis (MS) and is increasingly demonstrating promising therapeutic benefits in a range of other conditions. Despite its extensive use, the precise pharmacological mechanism of GA remains unclear. In addition to T and B cells, dendritic cells (DCs) and monocytes play significant roles in the neuroinflammation associated with MS, positioning them as potential initial targets for GA. Here, we investigated GA's influence on the differentiation of human monocytes from healthy donors into monocyte-derived dendritic cells (moDCs) and assessed their activation status. Our results indicate that GA treatment does not hinder the differentiation of monocytes into moDCs or macrophages. Notably, we observed a significant increase in the expression of molecules required for antigen recognition, presentation, and co-stimulation in GA-treated moDCs. Conversely, there was a significant downregulation of CD1a, which is crucial for activating auto-aggressive T cells that respond to the lipid components of myelin. Furthermore, GA treatment resulted in an increased expression of CD68 on both CD14+CD16+ and CD14+CD16- monocyte subsets. These in vitro findings suggest that GA treatment does not impede the generation of moDCs under inflammatory conditions; however, it may modify their functional characteristics in potentially beneficial ways. This provides a basis for future clinical studies in MS patients to elucidate its precise mode of action.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Maryam Sardari
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | | | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| |
Collapse
|
3
|
Qi C, Hao H, Zhang W, Fu Y, Han Y, Li J, Chen L, Cui G, Liu Q, Li Y, Wang X, Wang MW, Liu Q. Targeting formyl peptide receptor 2 to suppress neuroinflammation in neuromyelitis optica spectrum disorder. Theranostics 2025; 15:4495-4506. [PMID: 40225578 PMCID: PMC11984409 DOI: 10.7150/thno.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/08/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated neurological inflammatory disease. As a G protein-coupled receptor, formyl peptide receptor 2 (FPR2) orchestrates innate and adaptive immunity. Yet the precise role of FPR2 in neuroinflammation is poorly understood. Methods: Peripheral blood samples were collected from patients with NMOSD and healthy controls. Single-cell RNA sequencing (scRNA-seq) and flow cytometry were employed to assess the expression of FPR2 in immune cell subsets. We used a mouse model of NMOSD to examine the therapeutic potential and underlying immune mechanisms of an FPR2 antagonist Quin-C7. MRI and immunostaining were performed to quantify central nervous system injury. Results: ScRNA-seq and flow cytometry analyses revealed that FPR2 was expressed in various myeloid and lymphoid cell types in patients with NMOSD and a mouse model of NMOSD. In NMOSD mice, mouse formyl peptide receptor 2 (mFpr2) was mainly upregulated in microglia. Administration of Quin-C7 led to reduced brain lesion volume, astrocyte loss and demyelination in NMOSD mice. Further, FPR2 antagonism reduced the inflammatory activity of microglia and lymphocyte infiltration into the brain. Notably, depletion of microglia using a CSF1R inhibitor diminished the protective effects of FPR2 antagonism, suggesting that microglia contribute to the benefit of FPR2 antagonism in NMOSD. In contrast, genetic deficiency of T and B cells or antibody depletion of NK cells did not affect the benefit of FPR2 antagonism. Conclusion: Collectively, our findings revealed a previously unrecognized role of FPR2/mFpr2 in control of microglia activity during neuroinflammation, implying that FPR2 antagonism may serve as a viable therapeutic approach to restrict detrimental neuroinflammation and warrant further investigation.
Collapse
Affiliation(s)
- Caiyun Qi
- Department of Neurology, Parkinson's Disease Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongying Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Zhang
- Department of Neurology, Parkinson's Disease Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yiwei Fu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yali Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinyi Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lixiang Chen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guiyun Cui
- Department of Neurology, Parkinson's Disease Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Li
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Xiaozhen Wang
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya 572025, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China
| | - Qiang Liu
- Department of Neurology, Parkinson's Disease Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Zhao Q, Chen L, Ma Y, Wang S. Scutellarin Attenuates Pro-Inflammatory Foam Cell Formation and Facilitates M2 Polarization in Microglia during Copper Homeostasis Imbalance via the MAPK Signaling Pathway. FRONT BIOSCI-LANDMRK 2025; 30:36255. [PMID: 40152387 DOI: 10.31083/fbl36255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Clinical and experimental evidence indicates that copper has the ability to promote the progressive development of demyelinating diseases such as multiple sclerosis. Microglia-mediated neuroinflammation is believed to play a crucial role in this process. Scutellarin, a flavonoid compound, has anti-inflammatory, antioxidative, and neuroprotective effects. AIM We investigated the effect of scutellarin on copper-induced inflammatory foam cell formation in microglia. METHODS We exposed BV2 murine microglial cells to copper, then collected the conditioned medium and co-cultured it with MO3.13 human glial cells to mimic myelin damage in vitro. The Cell Counting kit-8 assay, quantitative (polymerase chain reaction) PCR, enzyme-linked immunosorbent assay, Luxol fast blue staining, and western blotting were used to detect the cell phenotype. To investigate whether exposure of BV2 cells to copper can cause neurotoxicity and indirect damage to myelin cells, we determined whether BV2 cells promote inflammation through foam cell formation by oil red O staining and detection of malondialdehyde (MDA) content. Finally, we treated cells with scutellarin to investigate its therapeutic effects. RESULTS Exposure to copper activated the pro-inflammatory phenotype of microglia, as assessed by measuring the transcription of M1/M2-related biomarkers. In addition, increased copper intake by microglia promoted intracellular lipid accumulation and oxidation, facilitating foam cell formation. Rescue experiments showed that copper chelator ammonium tetrathiomolybdate (ATTM) and the lipid oxidation inhibitor ferrostatin-1 (Fer-1) significantly inhibited copper-induced inflammation, reduced intracellular lipid accumulation and MDA levels, and decreased foam cell formation. Moreover, copper-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in microglia led to a shift towards the M1 phenotype and foam cell transformation, which were effectively inhibited by ATTM, Fer-1, and the p38 MAPK inhibitor SB203580. Lastly, after treatment with scutellarin, copper-induced foam microglia exhibited inhibited p38 MAPK phosphorylation, increased production of neurotrophic factors, decreased expression of inflammatory mediators, reduced lipid accumulation, and induced polarization towards the M2 phenotype. CONCLUSIONS Here, we demonstrated that copper can induce microglia to damage myelinating cells, with the key mechanism involving the phosphorylation of p38 MAPK. Scutellarin partially reversed the positive effects of copper on promoting microglial M1 polarization, lipid deposition, and lipid oxidation by mediating the p38 MAPK signaling pathway. Taken together, these results suggest that scutellarin may be a promising drug for the treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Qiting Zhao
- Institute of Biomedical Engineering, Kunming Medical University, 650500 Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, 650051 Kunming, Yunnan, China
| | - Lingyi Chen
- Institute of Biomedical Engineering, Kunming Medical University, 650500 Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, 650051 Kunming, Yunnan, China
| | - Yantuanjin Ma
- Institute of Biomedical Engineering, Kunming Medical University, 650500 Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, 650051 Kunming, Yunnan, China
| | - Shufen Wang
- Institute of Biomedical Engineering, Kunming Medical University, 650500 Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, 650051 Kunming, Yunnan, China
| |
Collapse
|
5
|
Van Gaever F, Mingneau F, Vanherle S, Driege Y, Haegman M, Van Wonterghem E, Xie J, Vandenbroucke RE, Hendriks JJA, Beyaert R, Staal J. The phytohormone abscisic acid enhances remyelination in mouse models of multiple sclerosis. Front Immunol 2024; 15:1500697. [PMID: 39742273 PMCID: PMC11685095 DOI: 10.3389/fimmu.2024.1500697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Over the past few decades, there has been a sudden rise in the incidence of Multiple Sclerosis (MS) in Western countries. However, current treatments often show limited efficacy in certain patients and are associated with adverse effects, which highlights the need for safer and more effective therapeutic approaches. Environmental factors, particularly dietary habits, have been observed to play a substantial role in the development of MS. In this study, we are the first to investigate the potential protective effect of the phytohormone abscisic acid (ABA) in MS. ABA, which is abundant in fruits such as figs, apricots and bilberries, is known to cross the blood-brain barrier and has demonstrated neuroprotective effects in conditions like depression and Alzheimer's disease. Methods In this study, we investigated whether ABA supplementation enhances remyelination in both ex vivo and in vivo mouse models. Results Our results indicated that ABA enhanced remyelination and that this enhanced remyelination is associated with increased lipid droplet load, reduced levels of degraded myelin, and a higher abundance of F4/80+ cells in the demyelinated brain of mice treated with ABA. In in vitro models, we further demonstrated that ABA treatment elevates lipid droplet formation by enhancing the phagocytic capacity of macrophages. Additionally, in a mouse model of microglial activation, we showed that ABA-treated mice maintain a less inflammatory microglial phenotype. Conclusion Our findings highlight a crucial role for macrophages and microglia in enabling ABA to enhance the remyelination process. Furthermore, ABA's ability to improve remyelination together with its ability to reduce microglial activation, make ABA a promising candidate for modulating macrophage phenotype and reducing neuroinflammation in MS.
Collapse
Affiliation(s)
- Femke Van Gaever
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fleur Mingneau
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Yasmine Driege
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mira Haegman
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Junhua Xie
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
McIlvain G. The contributions of relative brain viscosity to brain function and health. Brain Commun 2024; 6:fcae424. [PMID: 39713240 PMCID: PMC11660954 DOI: 10.1093/braincomms/fcae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Magnetic resonance elastography has emerged over the last two decades as a non-invasive method for quantitatively measuring the mechanical properties of the brain. Since the inception of the technology, brain stiffness has been the primary metric used to describe brain microstructural mechanics. However, more recently, a secondary measure has emerged as both theoretical and experimental significance, which is the ratio of tissue viscosity relative to tissue elasticity. This viscous-to-elastic ratio describes different but complementary aspects of brain microstructural health and is theorized to relate to microstructural organization, as opposed to stiffness, which is related to tissue composition. The relative viscosity of brain tissue changes regionally during maturation, aging and neurodegenerative disease. It also exhibits unique characteristics in brain tumours and hydrocephalus, and is of interest for characterizing traumatic head impacts. Most notably, regional measures of relative brain tissue viscosity appear to hold a unique role in describing cognitive function. For instance, in young adults, relatively lower hippocampal viscosity compared to elasticity repeatedly and sensitively relates to spatial, declarative and verbal memory performance. Importantly, these same trends are not found with hippocampal stiffness, or hippocampal volume, highlighting a potential sensitivity of relative viscosity to underlying cellularity that contributions to normal healthy brain function. Likewise in young adults, in the orbitofrontal cortex, lower relative viscosity relates to better performance on fluid intelligence tasks, and in the Broca's area of children ages 5-7, lower relative viscosity is indicative of better language performance. In these instances, this ratio shows heightened sensitivity over other structural MRI metrics, and importantly, provides a quantitative and intrinsic alternative to measuring structure-function relationships with task-based fMRI. There are ongoing efforts to improve the accuracy and repeatability of the relative viscosity measurement, and much work is needed to reveal the cellular underpinning of changes to tissue viscosity. But it appears clear that regionally measuring the viscous-to-elastic ratio holds the potential to noninvasively reveal an aspect of tissue microstructure that is clinically, cognitively and functionally relevant to our understanding of brain function and health.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Jaftha M, Robertson F, van Rensburg SJ, Kidd M, van Toorn R, Kemp MC, Johannes C, Moremi KE, Whati L, Kotze MJ, Engel-Hills P. White Matter Lesion Volumes on 3-T MRI in People With MS Who Had Followed a Diet and Lifestyle Program for More Than 10 Years. Mult Scler Int 2024; 2024:8818934. [PMID: 39524062 PMCID: PMC11548950 DOI: 10.1155/2024/8818934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Cerebral white matter lesion (WML) formation in people with multiple sclerosis (pwMS) is linked to the death of myelin-producing oligodendrocytes. Current MS treatment strategies focus on limiting WML accumulation and disability. Using a pathology-supported genetic testing (PSGT) program, we identified specific risk factors for MS, categorized as deficiencies and aggravators. We developed a novel clinical methodology to mitigate these risk factors, including personalized lifestyle interventions and optimization of cerebral nutrients to prevent oligodendrocyte demise and promote remyelination. Objective: To conduct a pilot case-control study over a 10-year period to ascertain whether the PSGT Program can reduce or prevent WML formation in pwMS. Methods: MRI was performed at baseline as well as after an interval period of at least 10 years or longer in 22 pwMS. WML volumes were determined using Sequence Adaptive Multimodal SEGmentation (SAMSEG) software, part of FreeSurfer 7.2. Other variables included age at MRI, disease duration, disability status, and medication. Results: PwMS (n = 13) who had followed the PSGT program for more than 10 years, had significantly smaller lesion volumes (mm3) compared to pwMS who did not adhere to the program (n = 9) (4950 ± 5303 vs. 17934 ± 11139; p = 0.002). WML volumes were significantly associated (p = 0.02) with disability (EDSS) but not with age (p = 0.350), disease duration (p = 0.709), or Interferon-β treatment (p = 0.70). Conclusion: Dietary and lifestyle changes may lower the risk of developing cerebral WMLs in pwMS and potentially slow disease progression. Larger studies are required to confirm the effectiveness of such interventions in pwMS.
Collapse
Affiliation(s)
- Mariaan Jaftha
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
- Cape University Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frances Robertson
- Cape University Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Susan J. van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Merlisa C. Kemp
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
- Medical Imaging, Department of Health and Care Professions, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Clint Johannes
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, Cape Town, South Africa
| | - Kelebogile E. Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, and National Health Laboratory Service (NHLS), Cape Town, South Africa
| | | | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, and National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
8
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Drake SS, Zaman A, Gianfelice C, Hua EML, Heale K, Afanasiev E, Klement W, Stratton JA, Prat A, Zandee S, Fournier AE. Senolytic treatment diminishes microglia and decreases severity of experimental autoimmune encephalomyelitis. J Neuroinflammation 2024; 21:283. [PMID: 39487537 PMCID: PMC11529445 DOI: 10.1186/s12974-024-03278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The role of senescence in disease contexts is complex, however there is considerable evidence that depletion of senescent cells improves outcomes in a variety of contexts particularly related to aging, cognition, and neurodegeneration. Much research has shown previously that inflammation can promote cellular senescence. Microglia are a central nervous system innate immune cell that undergo senescence with aging and during neurodegeneration. The contribution of senescent microglia to multiple sclerosis, an inflammatory neurodegenerative disease, is not clear, but microglia are strongly implicated in chronic active lesion pathology, tissue injury, and disease progression. Drugs that could specifically eliminate dysregulated microglia in multiple sclerosis are therefore of great interest to the field. RESULTS A single-cell analysis of brain tissue from mice subjected to experimental autoimmune encephalomyelitis (EAE), a mouse model of CNS inflammation that models aspects of multiple sclerosis (MS), identified microglia with a strong transcriptional signature of senescence including the presence of BCL2-family gene transcripts. Microglia expressing Bcl2l1 had higher expression of pro-inflammatory and senescence associated genes than their Bcl2l1 negative counterparts in EAE, suggesting they may exacerbate inflammation. Notably, in human single-nucleus sequencing from MS, BCL2L1 positive microglia were enriched in lesions with active inflammatory pathology, and likewise demonstrated increased expression of immune genes suggesting they may be proinflammatory and contribute to disease processes in chronic active lesions. Employing a small molecule BCL2-family inhibitor, Navitoclax (ABT-263), significantly reduced the presence of microglia and macrophages in the EAE spinal cord, suggesting that these cells can be targeted by senolytic treatment. ABT-263 treatment had a profound effect on EAE mice: decreasing motor symptom severity, improving visual acuity, promoting neuronal survival, and decreasing white matter inflammation. CONCLUSION These results support the hypothesis that microglia and macrophages exhibit transcriptional features of cellular senescence in EAE and MS, and that microglia expressing Bcl2l1 demonstrate a proinflammatory signature that may exacerbate inflammation resulting in negative outcomes in neuroinflammatory disease. Depleting microglia and macrophages using a senolytic results in robust improvement in EAE disease severity, including across measures of neurodegeneration, inflammation, and demyelination, and may therefore represent a novel strategy to address disease progression in multiple sclerosis.
Collapse
Affiliation(s)
- Sienna S Drake
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Aliyah Zaman
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | - Elizabeth M-L Hua
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Kali Heale
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Elia Afanasiev
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Wendy Klement
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l', Université de Montréal (CRCHUM), Montreal, Québec, H2X 0A9, Canada
| | - Jo Anne Stratton
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l', Université de Montréal (CRCHUM), Montreal, Québec, H2X 0A9, Canada
| | - Stephanie Zandee
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alyson E Fournier
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Minote M, Sato W, Kimura K, Kimura A, Lin Y, Okamoto T, Takahashi R, Yamamura T. High frequency of circulating non-classical monocytes is associated with stable remission in relapsing-remitting multiple sclerosis. Immunol Med 2024; 47:151-165. [PMID: 38539051 PMCID: PMC11346389 DOI: 10.1080/25785826.2024.2331271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 08/23/2024] Open
Abstract
'No evidence of disease activity (NEDA)', judged by clinical and radiological findings, is a therapeutic goal in patients with multiple sclerosis (MS). It is, however, unclear if distinct biological mechanisms contribute to the maintenance of NEDA. To clarify the immunological background of long-term disease stability defined by NEDA, circulating immune cell subsets in patients with relapsing-remitting MS (RRMS) were analyzed using flow cytometry. Patients showing long-term NEDA (n = 31) had significantly higher frequencies of non-classical monocytes (NCMs) (6.1% vs 1.4%) and activated regulatory T cells (Tregs; 2.1% vs 1.6%) than those with evidence of disease activity (n = 8). The NCM frequency and NCMs to classical monocytes ratio (NCM/CM) positively correlated with activated Treg frequency and duration of NEDA. Co-culture assays demonstrated that NCMs could increase the frequency of activated Tregs and the expression of PD-L1, contributing to development of Tregs, was particularly high in NCMs from patients with NEDA. Collectively, NCMs contribute to stable remission in patients with RRMS, possibly by increasing activated Treg frequency. In addition, the NCM frequency and NCM/CM ratio had high predictive values for disease stability (AUC = 0.97 and 0.94, respectively), suggesting these markers are potential predictors of a long-term NEDA status in RRMS.
Collapse
Affiliation(s)
- Misako Minote
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
- Section of Research and Development Strategy, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kimitoshi Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsuko Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomoko Okamoto
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
11
|
Monif M, Sequeira RP, Muscat A, Stuckey S, Sanfilippo PG, Minh V, Loftus N, Voo V, Fazzolari K, Moss M, Maltby VE, Nguyen AL, Wesselingh R, Seery N, Nesbitt C, Baker J, Dwyer C, Taylor L, Rath L, Van der Walt A, Marriott M, Kalincik T, Lechner-Scott J, O'Brien TJ, Butzkueven H. CLADIN- CLADribine and INnate immune response in multiple sclerosis - A phase IV prospective study. Clin Immunol 2024; 265:110304. [PMID: 38964633 DOI: 10.1016/j.clim.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Richard P Sequeira
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Andrea Muscat
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sian Stuckey
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Viet Minh
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Melbourne, VIC, Australia
| | - Naomi Loftus
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Veronica Voo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | | | - Melinda Moss
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Vicki E Maltby
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Ai-Lan Nguyen
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Robb Wesselingh
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nabil Seery
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Cassie Nesbitt
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Neurology, Barwon Health, Melbourne, VIC, Australia
| | - Josephine Baker
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Chris Dwyer
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Lisa Taylor
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Louise Rath
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mark Marriott
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| | - Tomas Kalincik
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Jeannette Lechner-Scott
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Arneth B. Current Knowledge about Nonclassical Monocytes in Patients with Multiple Sclerosis, a Systematic Review. Int J Mol Sci 2024; 25:7372. [PMID: 39000478 PMCID: PMC11242477 DOI: 10.3390/ijms25137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Philipps University Marburg, Baldingerst 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Justus Liebig University Giessen, Feulgenstr 12, 35392 Giessen, Germany
| |
Collapse
|
13
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
14
|
Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. Front Immunol 2024; 15:1352946. [PMID: 38660308 PMCID: PMC11039887 DOI: 10.3389/fimmu.2024.1352946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages are crucial cells in the human body's innate immunity and are engaged in a variety of non-inflammatory reactions. Macrophages can develop into two kinds when stimulated by distinct internal environments: pro-inflammatory M1-like macrophages and anti-inflammatory M2-type macrophages. During inflammation, the two kinds of macrophages are activated alternatively, and maintaining a reasonably steady ratio is critical for maintaining homeostasis in vivo. M1 macrophages can induce inflammation, but M2 macrophages suppress it. The imbalance between the two kinds of macrophages will have a significant impact on the illness process. As a result, there are an increasing number of research being conducted on relieving or curing illnesses by altering the amount of macrophages. This review summarizes the role of macrophage polarization in various inflammatory diseases, including autoimmune diseases (RA, EAE, MS, AIH, IBD, CD), allergic diseases (allergic rhinitis, allergic dermatitis, allergic asthma), atherosclerosis, obesity and type 2 diabetes, metabolic homeostasis, and the compounds or drugs that have been discovered or applied to the treatment of these diseases by targeting macrophage polarization.
Collapse
Affiliation(s)
| | | | | | | | - Yuanmin Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, Guizhou, China
| |
Collapse
|
15
|
Zhang S, Zhang M, Zhang L, Wang Z, Tang S, Yang X, Li Z, Feng J, Qin X. Identification of Y‒linked biomarkers and exploration of immune infiltration of normal-appearing gray matter in multiple sclerosis by bioinformatic analysis. Heliyon 2024; 10:e28085. [PMID: 38515685 PMCID: PMC10956066 DOI: 10.1016/j.heliyon.2024.e28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background The knowledge of normal‒appearing cortical gray matter (NAGM) in multiple sclerosis (MS) remains unclear. In this study, we aimed to identify diagnostic biomarkers and explore the immune infiltration characteristics of NAGM in MS through bioinformatic analysis and validation in vivo. Methods Differentially expressed genes (DEGs) were analyzed. Subsequently, the functional pathways of the DEGs were determined. After screening the overlapping DEGs of MS with two machine learning methods, the biomarkers' efficacy and the expression levels of overlapping DEGs were calculated. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) identified the robust diagnostic biomarkers. Additionally, infiltrating immune cell populations were estimated and correlated with the biomarkers. Finally, the characteristics of immune infiltration of NAGM from MS were evaluated. Results A total of 98 DEGs were identified. They participated in sensory transduction of the olfactory system, synaptic signaling, and immune responses. Nine overlapping genes were screened by machine learning methods. After verified by ROC curve, four genes, namely HLA‒DRB1, RPS4Y1, EIF1AY and USP9Y, were screened as candidate biomarkers. The mRNA expression of RPS4Y1 and USP9Y was significantly lower in MS patients than that in the controls. They were selected as the robust diagnostic biomarkers for male MS patients. RPS4Y1 and USP9Y were both positively correlated with memory B cells. Moreover, naive CD4+ T cells and monocytes were increased in the NAGM of MS patients compared with those in controls. Conclusions Low expressed Y‒linked genes, RPS4Y1 and USP9Y, were identified as diagnostic biomarkers for MS in male patients. The inhomogeneity of immune cells in NAGM might exacerbate intricate interplay between the CNS and the immune system in the MS.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zijie Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaolin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhizhong Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
16
|
Liu C, Guo S, Liu R, Guo M, Wang Q, Chai Z, Xiao B, Ma C. Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis. Neural Regen Res 2024; 19:671-679. [PMID: 37721300 PMCID: PMC10581551 DOI: 10.4103/1673-5374.379050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system. Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis, a traditional experimental model of multiple sclerosis. This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis. We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type, as shown by reduced expression of inducible nitric oxide synthase/nitric oxide, interleukin-12, and CD16/32 and increased expression of arginase-1, interleukin-10, CD14, and CD206, which was linked to inhibition of Rho kinase activity, decreased expression of toll-like receptors, nuclear factor-κB, and components of the mitogen-activated protein kinase signaling pathway, and generation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6. Crucially, Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis, resulting in later onset of disease, lower symptom scores, less weight loss, and reduced demyelination compared with unmodified macrophages. In addition, Fasudil-modified macrophages decreased interleukin-17 expression on CD4+ T cells and CD16/32, inducible nitric oxide synthase, and interleukin-12 expression on F4/80+ macrophages, as well as increasing interleukin-10 expression on CD4+ T cells and arginase-1, CD206, and interleukin-10 expression on F4/80+ macrophages, which improved immune regulation and reduced inflammation. These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response, thereby providing new insight into cell immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shangde Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Rong Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
17
|
van den Bosch AMR, van der Poel M, Fransen NL, Vincenten MCJ, Bobeldijk AM, Jongejan A, Engelenburg HJ, Moerland PD, Smolders J, Huitinga I, Hamann J. Profiling of microglia nodules in multiple sclerosis reveals propensity for lesion formation. Nat Commun 2024; 15:1667. [PMID: 38396116 PMCID: PMC10891081 DOI: 10.1038/s41467-024-46068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.
Collapse
Affiliation(s)
- Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nina L Fransen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maria C J Vincenten
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Anneleen M Bobeldijk
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Perry D Moerland
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- MS Center ErasMS, Department of Neurology and Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Asmis R, Medrano MT, Chase Huizar C, Griffith WP, Forsthuber TG. Dietary Supplementation with 23-Hydroxy Ursolic Acid Reduces the Severity and Incidence of Acute Experimental Autoimmune Encephalomyelitis (EAE) in a Murine Model of Multiple Sclerosis. Nutrients 2024; 16:348. [PMID: 38337633 PMCID: PMC10856865 DOI: 10.3390/nu16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
23-Hydroxy ursolic acid (23-OH UA) is a potent atheroprotective and anti-obesogenic phytochemical, with anti-inflammatory and inflammation-resolving properties. In this study, we examined whether dietary 23-OH UA protects mice against the acute onset and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Female C57BL/6 mice were fed either a defined low-calorie maintenance diet (MD) or an MD supplemented with 0.2% wgt/wgt 23-OH UA for 5 weeks prior to actively inducing EAE and during the 30 days post-immunization. We observed no difference in the onset of EAE between the groups of mice, but ataxia and EAE disease severity were suppressed by 52% and 48%, respectively, and disease incidence was reduced by over 49% in mice that received 23-OH UA in their diet. Furthermore, disease-associated weight loss was strikingly ameliorated in 23-OH UA-fed mice. ELISPOT analysis showed no significant differences in frequencies of T cells producing IL-17 or IFN-γ between 23-OH UA-fed mice and control mice, suggesting that 23-OH UA does not appear to regulate peripheral T cell responses. In summary, our findings in EAE mice strongly suggest that dietary 23-OH UA may represent an effective oral adjunct therapy for the prevention and treatment of relapsing-remitting MS.
Collapse
Affiliation(s)
- Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Megan T. Medrano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| |
Collapse
|
19
|
Qin C, Chen M, Dong MH, Yang S, Zhang H, You YF, Zhou LQ, Chu YH, Tang Y, Pang XW, Wu LJ, Tian DS, Wang W. Soluble TREM2 triggers microglial dysfunction in neuromyelitis optica spectrum disorders. Brain 2024; 147:163-176. [PMID: 37740498 DOI: 10.1093/brain/awad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, NY 14600, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
20
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
21
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
22
|
Garcia Corrales AV, Verberk SGS, Haidar M, Grajchen E, Dehairs J, Vanherle S, Loix M, Weytjens T, Gervois P, Matsuzaka T, Lambrichts I, Swinnen JV, Bogie JFJ, Hendriks JJA. Fatty acid elongation by ELOVL6 hampers remyelination by promoting inflammatory foam cell formation during demyelination. Proc Natl Acad Sci U S A 2023; 120:e2301030120. [PMID: 37669365 PMCID: PMC10500284 DOI: 10.1073/pnas.2301030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Aida V. Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Sanne G. S. Verberk
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven3000, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Tine Weytjens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Pascal Gervois
- Department of Cardiology and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Johannes V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven3000, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| |
Collapse
|
23
|
Van San E, Debruyne AC, Veeckmans G, Tyurina YY, Tyurin VA, Zheng H, Choi SM, Augustyns K, van Loo G, Michalke B, Venkataramani V, Toyokuni S, Bayir H, Vandenabeele P, Hassannia B, Vanden Berghe T. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ 2023; 30:2092-2103. [PMID: 37542104 PMCID: PMC10482919 DOI: 10.1038/s41418-023-01195-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury. Here, we report that ferroptosis, an iron-catalyzed mode of regulated cell death (RCD), contributes to MS disease progression. Active and chronic MS lesions and cerebrospinal fluid (CSF) of MS patients revealed several signs of ferroptosis, reflected by the presence of elevated levels of (labile) iron, peroxidized phospholipids and lipid degradation products. Treatment with our candidate lead ferroptosis inhibitor, UAMC-3203, strongly delays relapse and ameliorates disease progression in a preclinical model of relapsing-remitting MS. In conclusion, the results identify ferroptosis as a detrimental and targetable factor in MS. These findings create novel treatment options for MS patients, along with current immunosuppressive strategies.
Collapse
Grants
- R01 NS076511 NINDS NIH HHS
- Research Foundation Flanders, G.0C76.18N, G.0B7.18N, G.0B96.20N, G049720N, G.0A93.22N (TVB, PV); Excellence of Science MODEL-IDI and CD-INFLADIS (TVB, PV, KA); Consortium of excellence at University of Antwerp INFLA-MED (KA, TVB); Industrial Research Fund (KA, TVB) and BOF-IMPULS from University of Antwerp (TVB); Foundation against cancer FAF-C/2018/1250 and F/2022/2067 (TVB); Charcot Foundation (EVS, TVB, PV); VLIRUOS TEAM2018-01-137 (TVB, PV); Research Foundation Flanders G0E0416N, G0C7618N, G0B718N, G.0B9620N (PV); FWO-SBO S001522N (TVB, KA); Flemish Institute of Biotechnology VIB (PV, TVB); Methusalem BOF16/MET_V/007 (PV); iBOF ATLANTIS grant 20/IBF/039 (PV); CRIG and GIGG consortia (PV); NIH NS076511 (HB).
Collapse
Affiliation(s)
- Emily Van San
- Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Angela C Debruyne
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | | | - Yulia Y Tyurina
- Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sze Men Choi
- Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Koen Augustyns
- Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Munich, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
| | - Hülya Bayir
- Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Methusalem program, Ghent University, Ghent, Belgium
| | - Behrouz Hassannia
- Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium.
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Ye F, Yang J, Holste KG, Koduri S, Hua Y, Keep RF, Garton HJL, Xi G. Characteristics of activation of monocyte-derived macrophages versus microglia after mouse experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2023; 43:1475-1489. [PMID: 37113078 PMCID: PMC10414013 DOI: 10.1177/0271678x231173187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023]
Abstract
Both monocyte-derived macrophages (MDMs) and brain resident microglia participate in hematoma resolution after intracerebral hemorrhage (ICH). Here, we utilized a transgenic mouse line with enhanced green fluorescent protein (EGFP) labeled microglia (Tmem119-EGFP mice) combined with a F4/80 immunohistochemistry (a pan-macrophage marker) to visualize changes in MDMs and microglia after ICH. A murine model of ICH was used in which autologous blood was stereotactically injected into the right basal ganglia. The autologous blood was co-injected with CD47 blocking antibodies to enhance phagocytosis or clodronate liposomes for phagocyte depletion. In addition, Tmem119-EGFP mice were injected with the blood components peroxiredoxin 2 (Prx2) or thrombin. MDMs entered the brain and formed a peri-hematoma cell layer by day 3 after ICH and giant phagocytes engulfed red blood cells were found. CD47 blocking antibody increased the number of MDMs around and inside the hematoma and extended MDM phagocytic activity to day 7. Both MDMs and microglia could be diminished by clodronate liposomes. Intracerebral injection of Prx2 but not thrombin attracted MDMs into brain parenchyma. In conclusion, MDMs play an important role in phagocytosis after ICH which can be enhanced by CD47 blocking antibody, suggesting the modulation of MDMs after ICH could be a future therapeutic target.
Collapse
Affiliation(s)
- Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Jinting Yang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Hugh JL Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
26
|
Tomečková V, Tkáčiková S, Talian I, Fabriciová G, Hovan A, Kondrakhova D, Zakutanská K, Skirková M, Komanický V, Tomašovičová N. Experimental Analysis of Tear Fluid and Its Processing for the Diagnosis of Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115251. [PMID: 37299978 DOI: 10.3390/s23115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography-mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid of MS patients and the control spectra; all three significant peaks were located at around the same positions. Raman analysis showed differences between the spectra of the tear fluid of MS patients and the spectra of healthy subjects, which indicated a decrease in tryptophan and phenylalanine content and changes in the relative contributions of the secondary structures of the polypeptide chains of tear proteins. Atomic-force microscopy exhibited a surface fern-shaped dendrite morphology of the tear fluid of patients with MS, with less roughness on both oriented silicon (100) and glass substrates compared to the tear fluid of control subjects. The results of liquid chromatography-mass spectrometry showed downregulation of glycosphingolipid metabolism, sphingolipid metabolism, and lipid metabolism. Proteomic analysis identified upregulated proteins in the tear fluid of patients with MS such as cystatine, phospholipid transfer protein, transcobalamin-1, immunoglobulin lambda variable 1-47, lactoperoxidase, and ferroptosis suppressor protein 1; and downregulated proteins such as haptoglobin, prosaposin, cytoskeletal keratin type I pre-mRNA-processing factor 17, neutrophil gelatinase-associated lipocalin, and phospholipase A2. This study showed that the tear proteome in patients with MS is modified and can reflect inflammation. Tear fluid is not a commonly used biological material in clinico-biochemical laboratories. Experimental proteomics has the potential to become a promising contemporary tool for personalized medicine, and it might be applied in clinical practice by providing a detailed analysis of the tear-fluid proteomic profile of patients with MS.
Collapse
Affiliation(s)
- Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Andrej Hovan
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Daria Kondrakhova
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Katarína Zakutanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Miriama Skirková
- Department of Opthalmology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Vladimír Komanický
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
27
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
28
|
Wang J, He W, Zhang J. A richer and more diverse future for microglia phenotypes. Heliyon 2023; 9:e14713. [PMID: 37025898 PMCID: PMC10070543 DOI: 10.1016/j.heliyon.2023.e14713] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are the only resident innate immune cells derived from the mesoderm in the nerve tissue. They play a role in the development and maturation of the central nervous system (CNS). Microglia mediate the repair of CNS injury and participate in endogenous immune response induced by various diseases by exerting neuroprotective or neurotoxic effects. Traditionally, microglia are considered to be in a resting state, the M0 type, under physiological conditions. In this state, they perform immune surveillance by constantly monitoring pathological responses in the CNS. In the pathological state, microglia undergo a series of morphological and functional changes from the M0 state and eventually polarize into classically activated microglia (M1) and alternatively activated microglia (M2). M1 microglia release inflammatory factors and toxic substances to inhibit pathogens, while M2 microglia exert neuroprotective effects by promoting nerve repair and regeneration. However, in recent years, the view regarding M1/M2 polarization of microglia has gradually changed. According to some researchers, the phenomenon of microglia polarization is not yet confirmed. The M1/M2 polarization term is used for a simplified description of its phenotype and function. Other researchers believe that the microglia polarization process is rich and diverse, and consequently, the classification method of M1/M2 has limitations. This conflict hinders the academic community from establishing more meaningful microglia polarization pathways and terms, and therefore, a careful revision of the concept of microglia polarization is required. The present article briefly reviews the current consensus and controversy regarding microglial polarization typing to provide supporting materials for a more objective understanding of the functional phenotype of microglia.
Collapse
|
29
|
Ma X, Ma R, Zhang M, Qian B, Wang B, Yang W. Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics 2023; 15:pharmaceutics15030728. [PMID: 36986586 PMCID: PMC10057470 DOI: 10.3390/pharmaceutics15030728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the central nervous system. The main pathological features are inflammatory reaction, demyelination, axonal disintegration, reactive gliosis, etc. The etiology and pathogenesis of the disease have not been clarified. The initial studies believed that T cell-mediated cellular immunity is the key to the pathogenesis of MS. In recent years, more and more evidence has shown that B cells and their mediated humoral immune and innate immune cells (such as microglia, dendritic cells, macrophages, etc.) also play an important role in the pathogenesis of MS. This article mainly reviews the research progress of MS by targeting different immune cells and analyzes the action pathways of drugs. The types and mechanisms of immune cells related to the pathogenesis are introduced in detail, and the mechanisms of drugs targeting different immune cells are discussed in depth. This article aims to clarify the pathogenesis and immunotherapy pathway of MS, hoping to find new targets and strategies for the development of therapeutic drugs for MS.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Baicheng Qian
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Baoliang Wang
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- Correspondence: (B.W.); (W.Y.)
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.W.); (W.Y.)
| |
Collapse
|
30
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
31
|
Sobel RA, Albertelli M, Hinojoza JR, Eaton MJ, Grimes KV, Rubenstein E. Azetidine-2-Carboxylic Acid-Induced Oligodendrogliopathy: Relevance to the Pathogenesis of Multiple Sclerosis. J Neuropathol Exp Neurol 2022; 81:414-433. [PMID: 35521963 PMCID: PMC9123080 DOI: 10.1093/jnen/nlac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The naturally occurring imino acid azetidine-2-carboxylic acid (Aze) is consumed by humans and can be misincorporated in place of proline in myelin basic protein (MBP) in vitro. To determine Aze effects on the mammalian CNS in vivo, adult CD1 mice were given Aze orally or intraperitoneally. Clinical signs reminiscent of MBP-mutant mice occurred with 600 mg/kg Aze exposure. Aze induced oligodendrocyte (OL) nucleomegaly and nucleoplasm clearing, dilated endoplasmic reticulum, cytoplasmic vacuolation, abnormal mitochondria, and Aze dose-dependent apoptosis. Immunohistochemistry demonstrated myelin blistering and nuclear translocation of unfolded protein response (UPR)/proinflammatory molecules (ATF3, ATF4, ATF6, eIF2α, GADD153, NFκB, PERK, XBP1), MHC I expression, and MBP cytoplasmic aggregation in OL. There were scattered microglial nodules in CNS white matter (WM); other CNS cells appeared unaffected. Mice given Aze in utero and postnatally showed more marked effects than their dams. These OL, myelin, and microglial alterations are found in normal-appearing WM (NAWM) in multiple sclerosis (MS) patients. Thus, Aze induces a distinct oligodendrogliopathy in mice that recapitulates MS NAWM pathology without leukocyte infiltration. Because myelin proteins are relatively stable throughout life, we hypothesize that Aze misincorporation in myelin proteins during myelinogenesis in humans results in a progressive UPR that may be a primary process in MS pathogenesis.
Collapse
Affiliation(s)
- Raymond A Sobel
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Megan Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Julian R Hinojoza
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mary Jane Eaton
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward Rubenstein
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
32
|
Berghoff SA, Spieth L, Saher G. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci 2022; 45:272-283. [DOI: 10.1016/j.tins.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
33
|
Abstract
Multiple Sclerosis (MS) is a common neuroinflammatory disorder which is associated with disabling clinical consequences. The MS disease process may involve neural centers implicated in the control of breathing, leading to ventilatory disturbances during both wakefulness and sleep. In this chapter, a brief overview of MS disease mechanisms and clinical sequelae including sleep disorders is provided. The chapter then focuses on obstructive sleep apnea-hypopnea (OSAH) which is the most prevalent respiratory control abnormality encountered in ambulatory MS patients. The diagnosis, prevalence, and clinical consequences as well as data on effects of OSAH treatment in MS patients are discussed, including the impact on the disabling symptom of fatigue and other clinical sequelae. We also review pathophysiologic mechanisms contributing to OSAH in MS, and in turn mechanisms by which OSAH may impact on the MS disease process, resulting in a bidirectional relationship between these two conditions. We then discuss central sleep apnea, other respiratory control disturbances, and the pathogenesis and management of respiratory muscle weakness and chronic hypoventilation in MS. We also provide a brief overview of Neuromyelitis Optica Spectrum Disorders and review current data on respiratory control disturbances and sleep-disordered breathing in that condition.
Collapse
Affiliation(s)
- R John Kimoff
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Marta Kaminska
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Daria Trojan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|