1
|
Friday CM, Stephens IO, Smith CT, Lee S, Satish D, Devanney NA, Cohen S, Morganti JM, Gordon SM, Johnson LA. APOE4 reshapes the lipid droplet proteome and modulates microglial inflammatory responses. Neurobiol Dis 2025; 212:106983. [PMID: 40451545 PMCID: PMC12187248 DOI: 10.1016/j.nbd.2025.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/14/2025] [Accepted: 05/29/2025] [Indexed: 06/28/2025] Open
Abstract
Excess lipid droplet (LD) accumulation is implicated in various diseases, including Alzheimer's disease (AD), yet the mechanisms underlying this accumulation remain unclear. Apolipoprotein E (ApoE) is a droplet-associated protein, and its E4 variant confers the greatest genetic risk for late-onset AD while also being linked to increased neuroinflammation and LD accumulation. In this study, we compared the lipid and protein composition of hepatic LDs in targeted replacement mice expressing human E3 (neutral) or E4 (risk variant), under both baseline conditions and following lipopolysaccharide (LPS) administration. Lipidomic analysis revealed that E4 LDs exhibit a shift in glycerophospholipid distribution, with an increase in phosphatidylcholine species, such that their baseline profile resembles that of LPS-treated LDs. Quantitative proteomics indicated that E4 LDs are enriched in proteins related to vesicle transport but show decreased levels of proteins involved in fatty acid β-oxidation. Notably, many LD-associated proteins overlapped with those identified in AD postmortem and microglial 'omics studies, suggesting a role for LDs in AD pathogenesis. To further explore these findings, primary microglia from E3 and E4 mice were exposed to exogenous lipids, LPS, and necroptotic N2A cells. Under most conditions, E4 microglia accumulated more LDs and secreted higher levels of proinflammatory cytokines (TNF, IL-1β, IL-10) compared to E3 microglia, although their LPS response was blunted. These data suggest that altered LD dynamics in E4 microglia may contribute to the increased AD risk associated with APOE4.
Collapse
Affiliation(s)
- Cassi M Friday
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Isaiah O Stephens
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sangderk Lee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Diksha Satish
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Sarah Cohen
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Josh M Morganti
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Scott M Gordon
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Center, University of Kentucky, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Yang X, Chi L, Qiao M, Huang A, Wu H, Chen S, Fan J, Lin X, Chen J. The effect of C-reactive protein and interleukin-3 on mild cognitive impairment with APOE ɛ4. J Alzheimers Dis 2025:13872877251333149. [PMID: 40261294 DOI: 10.1177/13872877251333149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundThe apolipoprotein E ε4 allele (APOE ε4) and inflammation are associated with Alzheimer's disease (AD) pathology. Mild cognitive impairment (MCI) is considered the preclinical and early stage of AD. However, the comprehensive effects of APOE ε4 and inflammatory mediators on MCI patients with specific APOE ε4 genotypes remain poorly understood.ObjectiveOur study aimed to explore how different numbers of the APOE ε4 alleles affect plasma C-reactive protein (CRP) and interleukin-3 (IL-3) levels and their associations with brain structure.MethodsA total of 339 MCI patients from the Alzheimer's Disease Neuroimaging Initiative study were enrolled. We compared their plasma concentrations of CRP and IL-3, cognitive performance, and cerebrospinal fluid (CSF) AD biomarkers levels across different APOE ε4 genotypes. Structural magnetic resonance imaging was utilized to measure gray matter volume outcomes. Pearson correlation analysis was used to explore the associations between the above indicators.ResultsPlasma CRP levels increased in the APOE ε4 carriers, but IL-3 expression notably decreased, and the homozygous state is the most significant. A negative correlation between CRP and several cognitive abilities was observed only in APOE ε4 homozygotes. Additionally, a positive correlation between IL-3, cognitive scores, and CSF biomarker levels was confirmed only in APOE ε4 homozygotes. Imaging data demonstrated that the gray matter volume of the right middle frontal gyrus was associated with CRP only in APOE ε4 non-carriers.ConclusionsOur study demonstrated that peripheral inflammatory mediators' effect on cognitive function and brain structure in MCI patients differs based on their APOE ε4 allele carrier status.
Collapse
Affiliation(s)
- Xinyi Yang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Meizhao Qiao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Anxing Huang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Wu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Fan
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Xingjian Lin
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
3
|
Vila-Castelar C, Akinci M, Palpatzis E, Aguilar-Dominguez P, Operto G, Kollmorgen G, Quijano-Rubio C, Blennow K, Zetterberg H, Falcon C, Fauria K, Gispert JD, Grau-Rivera O, Suárez-Calvet M, Arenaza-Urquijo EM. Sex/gender effects of glial reactivity on preclinical Alzheimer's disease pathology. Mol Psychiatry 2025; 30:1430-1439. [PMID: 39384963 PMCID: PMC11919761 DOI: 10.1038/s41380-024-02753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aβ42/40, p-tau181, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [18F] flutemetamol positron emission tomography (n = 341). We ran multiple linear regression models to assess the association between glial markers, AD pathology and hippocampal volumes and their interaction with sex/gender, using False Discovery Rate to correct for multiple comparisons. Glial markers significantly contributed to explain amyloid burden, tau pathology, and hippocampal volumes, beyond age and/or primary AD pathology in a sex/gender-specific manner. Compared to men, women showed increased amyloid burden (centiloids) and CSF p-tau181 with increasing levels of sTREM2 and YKL40, and YKL40 and GFAP, respectively. Compared to women, men with greater tau burden showed lower hippocampal volumes as CSF YKL40 levels increased. Overall, our findings suggest that glial reactivity may contribute to sex/gender differences in AD progression, mostly, downstream amyloid. Further research identifying sex/gender-specific temporal dynamics in AD development is warranted to inform clinical trials.
Collapse
Affiliation(s)
- Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Muge Akinci
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
| | | | - Clara Quijano-Rubio
- Roche Diagnostics International Ltd, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
- UK Dementia Research Institute at UCL, Tottenham Ct Rd, W1T 7NF, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, J5/1 Mezzanine, Madison, WI, WI 53792, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain.
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Valiukas Z, Tangalakis K, Apostolopoulos V, Feehan J. Microglial activation states and their implications for Alzheimer's Disease. J Prev Alzheimers Dis 2025; 12:100013. [PMID: 39800461 PMCID: PMC12184064 DOI: 10.1016/j.tjpad.2024.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia. Current AD treatments have been largely ineffective, though emerging immunotherapies focusing on plaque removal show promise, but often overlook the role of neuroinflammation. Activated microglia display a complex range of phenotypes that can be broadly broken into pro- or anti-inflammatory states, although this dichotomy does not describe the significant overlap between states. Aβ can strongly induce inflammatory activity, triggering the production of reactive oxygen species, inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6), synapse engulfment, blood-brain barrier compromise, and impaired Aβ clearance. These processes contribute to neural tissue loss, manifesting as cognitive decline such as impaired executive function and memory. Conversely, anti-inflammatory activation exerts neuroprotective effects by suppressing inflammatory pathways and releasing neurotrophic factors that aid neuron repair and protection. Induction of anti-inflammatory states may offer a dual therapeutic approach to address both neuroinflammation and plaque accumulation in AD. This approach suggests potential strategies to modulate microglial phenotypes, aiming to restore neuroprotective functions and mitigate disease progression by simultaneously targeting inflammation and plaque pathology.
Collapse
Affiliation(s)
- Zachary Valiukas
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray VIC 3011, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, 70/104 Ballarat Road, Footscray VIC 3011, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia.
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia.
| |
Collapse
|
5
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
6
|
Knudtzon SL, Nordengen K, Grøntvedt GR, Jarholm J, Eliassen IV, Selnes P, Pålhaugen L, Espenes J, Gísladóttir B, Waterloo K, Fladby T, Kirsebom BE. Age-adjusted CSF t-tau and NfL do not improve diagnostic accuracy for prodromal Alzheimer's disease. Neurobiol Aging 2024; 141:74-84. [PMID: 38838442 DOI: 10.1016/j.neurobiolaging.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Cerebrospinal fluid total-tau (t-tau) and neurofilament light chain (NfL) are biomarkers of neurodegeneration and are increased in Alzheimer's disease (AD). In order to adjust for age-related increases in t-tau and NfL, cross-sectional age-adjusted norms were developed based on amyloid negative cognitively normal (CN) adults aged 41-78 years (CN, n = 137). The age-adjusted norms for t-tau and NfL did not improve receiver operating curve based diagnostic accuracies in individuals with mild cognitive impairment (MCI) due to AD (AD-MCI, n = 144). Furthermore, while NfL was correlated with higher age in AD-MCI, no significant correlation was found for t-tau. The cox proportional hazard models, applied in 429 participants with baseline t-tau and NfL, showed higher hazard ratio of progression to MCI or dementia without age-adjustments (HR = 3.39 for t-tau and HR = 3.17 for NfL), as compared to using our norms (HR = 2.29 for t-tau and HR = 1.89 for NfL). Our results indicate that utilizing normative reference data could obscure significant age-related increases in these markers associated with neurodegeneration and AD leading to a potential loss of overall diagnostic accuracy.
Collapse
Affiliation(s)
- Stephanie Lindgård Knudtzon
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Vøllo Eliassen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jacob Espenes
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Foley KE, Wilcock DM. Three major effects of APOE ε4 on Aβ immunotherapy induced ARIA. Front Aging Neurosci 2024; 16:1412006. [PMID: 38756535 PMCID: PMC11096466 DOI: 10.3389/fnagi.2024.1412006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The targeting of amyloid-beta (Aβ) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aβ immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
8
|
Sepulveda J, Kim JY, Binder J, Vicini S, Rebeck GW. APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Mol Neurodegener 2024; 19:24. [PMID: 38468308 DOI: 10.1186/s13024-024-00714-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 μm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid β (Aβ), we infused locally Hi-Lyte Fluor 555-labeled Aβ in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aβ, and less Aβ coverage at early time points after Aβ injection. To test whether P2RY12 is involved in process movement in response to Aβ, we treated acute brain slices with a P2RY12 antagonist before Aβ injection; microglial processes no longer migrated towards Aβ. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aβ pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.
Collapse
Affiliation(s)
- Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - Jennifer Yejean Kim
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Joseph Binder
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
9
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
10
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Matveeva N, Kiselev I, Baulina N, Semina E, Kakotkin V, Agapov M, Kulakova O, Favorova O. Shared genetic architecture of COVID-19 and Alzheimer's disease. Front Aging Neurosci 2023; 15:1287322. [PMID: 37927339 PMCID: PMC10625425 DOI: 10.3389/fnagi.2023.1287322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the сoronavirus disease 2019 (COVID-19) have become a global health threat. At the height of the pandemic, major efforts were focused on reducing COVID-19-associated morbidity and mortality. Now is the time to study the long-term effects of the pandemic, particularly cognitive impairment associated with long COVID. In recent years much attention has been paid to the possible relationship between COVID-19 and Alzheimer's disease, which is considered a main cause of age-related cognitive impairment. Genetic predisposition was shown for both COVID-19 and Alzheimer's disease. However, the analysis of the similarity of the genetic architecture of these diseases is usually limited to indicating a positive genetic correlation between them. In this review, we have described intrinsic linkages between COVID-19 and Alzheimer's disease, pointed out shared susceptibility genes that were previously identified in genome-wide association studies of both COVID-19 and Alzheimer's disease, and highlighted a panel of SNPs that includes candidate genetic risk markers of the long COVID-associated cognitive impairment.
Collapse
Affiliation(s)
- Natalia Matveeva
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Baulina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Viktor Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Mikhail Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Kulakova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga Favorova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
Palmer JM, Huentelman M, Ryan L. More than just risk for Alzheimer's disease: APOE ε4's impact on the aging brain. Trends Neurosci 2023; 46:750-763. [PMID: 37460334 DOI: 10.1016/j.tins.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The apolipoprotein ε4 (APOE ε4) allele is most commonly associated with increased risk for late-onset Alzheimer's disease (AD). However, recent longitudinal studies suggest that these risks are overestimated; most ε4 carriers will not develop dementia in their lifetime. In this article, we review new evidence regarding the impact of APOE ε4 on cognition among healthy older adults. We discuss emerging work from animal models suggesting that ε4 impacts brain structure and function in multiple ways that may lead to age-related cognitive impairment, independent from AD pathology. We discuss the importance of taking an individualized approach in future studies by incorporating biomarkers and neuroimaging methods that may better disentangle the phenotypic influences of APOE ε4 on the aging brain from prodromal AD pathology.
Collapse
Affiliation(s)
- Justin M Palmer
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| | - Matthew Huentelman
- Translational Genomics Research Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Lee Ryan
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
13
|
Kloske CM, Gearon MD, Weekman EM, Rogers C, Patel E, Bachstetter A, Nelson PT, Wilcock DM. Association between APOE genotype and microglial cell morphology. J Neuropathol Exp Neurol 2023; 82:620-630. [PMID: 37087107 PMCID: PMC10280358 DOI: 10.1093/jnen/nlad031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
APOE is the largest genetic risk factor for late-onset Alzheimer disease (AD) with E4 conferring an increased risk for AD compared to E3. The ApoE protein can impact diverse pathways in the brain including neuroinflammation but the precise impact of ApoE isoforms on inflammation remains unknown. As microglia are a primary source of neuroinflammation, this study determined whether ApoE isoforms have an impact on microglial morphology and activation using immunohistochemistry and digital analyses. Analysis of ionized calcium-binding adaptor molecule 1 (Iba1) immunoreactivity indicated greater microglial activation in both the hippocampus and superior and middle temporal gyrus (SMTG) in dementia participants versus non-demented controls. Further, only an increase in activation was seen in E3-Dementia participants in the entire SMTG, whereas in the grey matter of the SMTG, only a diagnosis of dementia impacted activation. Specific microglial morphologies showed a reduction in ramified microglia in the dementia group. For rod microglia, a reduction was seen in E4-Control patients in the hippocampus whereas in the SMTG an increase was seen in E4-Dementia patients. These findings suggest an association between ApoE isoforms and microglial morphologies and highlight the importance of considering ApoE isoforms in studies of AD pathology.
Collapse
Affiliation(s)
- Courtney M Kloske
- Department of Physiology, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Mary D Gearon
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Erica M Weekman
- Department of Physiology, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Colin Rogers
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Adam Bachstetter
- Department of Neuroscience, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M Wilcock
- Department of Physiology, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Kloske CM, Barnum CJ, Batista AF, Bradshaw EM, Brickman AM, Bu G, Dennison J, Gearon MD, Goate AM, Haass C, Heneka MT, Hu WT, Huggins LKL, Jones NS, Koldamova R, Lemere CA, Liddelow SA, Marcora E, Marsh SE, Nielsen HM, Petersen KK, Petersen M, Piña-Escudero SD, Qiu WQ, Quiroz YT, Reiman E, Sexton C, Tansey MG, Tcw J, Teunissen CE, Tijms BM, van der Kant R, Wallings R, Weninger SC, Wharton W, Wilcock DM, Wishard TJ, Worley SL, Zetterberg H, Carrillo MC. APOE and immunity: Research highlights. Alzheimers Dement 2023; 19:2677-2696. [PMID: 36975090 DOI: 10.1002/alz.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
Abstract
INTRODUCTION At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
Collapse
Affiliation(s)
| | | | - Andre F Batista
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mary D Gearon
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alison M Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA
| | - Lenique K L Huggins
- Department of Biology, Duke University, Durham, North Carolina, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Nahdia S Jones
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Radosveta Koldamova
- EOH, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shane A Liddelow
- Neuroscience Institute and Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's disease, Dept. of Genetics & Genomic Sciences, Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kellen K Petersen
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Petersen
- Department of Family Medicine, Institute of Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stefanie D Piña-Escudero
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco, California, USA
| | - Wei Qiao Qiu
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yakeel T Quiroz
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
- Banner Research, Phoenix, Arizona, USA
| | | | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Tcw
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rebecca Wallings
- CTRND, Department of Neuroscience, University of Florida, Florida, USA
| | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tyler James Wishard
- Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
15
|
Qian J, Zhang Y, Betensky RA, Hyman BT, Serrano-Pozo A. Neuropathology-Independent Association Between APOE Genotype and Cognitive Decline Rate in the Normal Aging-Early Alzheimer Continuum. Neurol Genet 2023; 9:e200055. [PMID: 36698453 PMCID: PMC9869750 DOI: 10.1212/nxg.0000000000200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 01/22/2023]
Abstract
Background and Objectives We previously found that the APOE genotype affects the rate of cognitive decline in mild-to-moderate Alzheimer disease (AD) dementia independently of its effects on AD neuropathologic changes (ADNC) and copathologies. In this study, we tested the hypothesis that the APOE alleles differentially affect the rate of cognitive decline at the normal aging-early AD continuum and that this association is independent of their effects on classical ADNC and copathologies. Methods We analyzed APOE associations with the cognitive trajectories (Clinical Dementia Rating scale Sum of Boxes [CDR-SOB] and Mini-Mental State Examination [MMSE]) of more than 1,000 individuals from a national clinicopathologic sample who had either no, mild (sparse neuritic plaques and the Braak neurofibrillary tangle [NFT] stage I/II), or intermediate (moderate neuritic plaques and the Braak NFT stage III/IV) ADNC levels at autopsy via 2 latent classes reverse-time longitudinal modeling. Results Carrying the APOEε4 allele was associated with a faster rate of cognitive decline by both CDR-SOB and MMSE relative to APOEε3 homozygotes. This association remained statistically significant after adjusting for ADNC severity, comorbid pathologies, and the effects of ADNC on the slope of cognitive decline. Our modeling strategy identified 2 latent classes in which APOEε4 carriers declined faster than APOEε3 homozygotes, with latent class 1 members representing slow decliners (CDR-SOB: 76.7% of individuals, 0.195 vs 0.146 points/y in APOEε4 vs APOEε3/ε3; MMSE: 88.6% of individuals, -0.303 vs -0.153 points/y in APOEε4 vs APOEε3/ε3), whereas latent class 2 members were fast decliners (CDR-SOB: 23.3% of participants, 1.536 vs 1.487 points/y in APOEε4 vs APOEε3/ε3; MMSE: 11.4% of participants, -2.538 vs -2.387 points/y in APOEε4 vs APOEε3/ε3). Compared with slow decliners, fast decliners were more likely to carry the APOEε4 allele, younger at initial visit and death, more impaired at initial and last visits, and more likely to have intermediate (vs none or mild) ADNC levels, as well as concurrent Lewy bodies and hippocampal sclerosis at autopsy. Discussion In a large national sample selected to represent the normal aging-early AD continuum, the APOEε4 allele is associated with a modest but statistically significant acceleration of the cognitive decline rate even after controlling for its effects on ADNC and comorbid pathologies.
Collapse
Affiliation(s)
- Jing Qian
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Yiding Zhang
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Rebecca A Betensky
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Bradley T Hyman
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Alberto Serrano-Pozo
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| |
Collapse
|
16
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
17
|
Wang N, Wang M, Jeevaratnam S, Rosenberg C, Ikezu TC, Shue F, Doss SV, Alnobani A, Martens YA, Wren M, Asmann YW, Zhang B, Bu G, Liu CC. Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination. Mol Neurodegener 2022; 17:75. [PMID: 36419137 PMCID: PMC9682675 DOI: 10.1186/s13024-022-00577-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. METHODS To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. RESULTS We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. CONCLUSIONS Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Wang
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Minghui Wang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Suren Jeevaratnam
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Cassandra Rosenberg
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Tadafumi C. Ikezu
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Francis Shue
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Sydney V. Doss
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Alla Alnobani
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Melissa Wren
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yan W. Asmann
- grid.417467.70000 0004 0443 9942Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
18
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
19
|
Shi Q, Feng N, Ma Q, Wang S, Zhang H, Huang D, Sun J, Shi M. ZNF354C Mediated by DNMT1 Ameliorates Lung Ischemia-Reperfusion Oxidative Stress Injury by Reducing TFPI Promoter Methylation to Upregulate TFPI. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7288729. [PMID: 35915612 PMCID: PMC9338733 DOI: 10.1155/2022/7288729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022]
Abstract
Background Pulmonary ischemia reperfusion- (I/R-) induced dysfunction is a significant clinical problem after lung transplantation. In this study, we aim to explore the molecular mechanism of lung I/R injury (LIRI). Methods Bioinformatic analysis of gene involved in oxidative stress. A HUVEC oxygen glucose deprivation/reoxygenation (OGD/R) model and I/R mouse model were first established via I/R. The cellular proliferation, migration, reactive oxygen species (ROS), and parameters of lung injury were assessed via CCK-8, EdU staining, Transwell, cellular ROS kit, and H&E staining. We also confirmed related gene expressions and protein levels and the interaction between the tissue factor pathway inhibitor (TFPI) promotor and ZNF354C. Results Bioinformatic analysis results showed TFPI contributed to oxidative stress. OGD/R caused a reduction in cell viability and migration, hypermethylation of TFPI, increased ROS, and downregulation of ZNF354C, TFPI, and DNA methyltransferases (DNMTs) in HUVECs. Besides, ZNF354C could directly bind to the TFPI promoter, enhance proliferation and migration, and inhibit ROS in OGD/R-induced HUVECs by upregulating TFPI. More importantly, we discovered that 5-Aza could reduce TFPI methylation, upregulate TFPI, and enhance the binding of ZNF354C to the TFPI promoter in LIRI. Furthermore, DNMT1 silencing could induce proliferation and migration and prevent ROS in OGD/R-induced HUVECs by upregulating ZNF354C. Additionally, we verified that ZNF354C could alleviate LIRI by preventing DNA methylation in vivo. Conclusions ZNF354C overexpression induced proliferation and migration, as well as suppressed ROS in OGD/R-induced HUVECs, and alleviated LIRI in mice by inhibiting TFPI promoter methylation to upregulate TFPI. Therefore, ZNF354C and TFPI methylation might be promising molecular markers for LIRI therapy.
Collapse
Affiliation(s)
- Qi Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai 200030, China
| | - Qingyun Ma
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Shaohua Wang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Huijun Zhang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| |
Collapse
|
20
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|