1
|
Kirstin S, Matthias G, Valetin B, Valerie S, Andrea F, Nedelina S, Claus K, Jochen R, Regula E. Cerebral blood flow and structural connectivity after working memory or physical training in paediatric cancer survivors - Exploratory findings. Neuropsychol Rehabil 2025; 35:701-727. [PMID: 38809147 DOI: 10.1080/09602011.2024.2356294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Paediatric cancer survivors often suffer from cognitive long-term difficulties. Consequently, strengthening cognition is of major clinical relevance. This study investigated cerebral changes in relation to cognition in non-brain tumour paediatric cancer survivors after working memory or physical training compared to a control group. Thirty-four children (≥one-year post-treatment) either underwent eight weeks of working memory training (n = 10), physical training (n = 11), or a waiting period (n = 13). Cognition and MRI, including arterial spin labelling and diffusion tensor imaging, were assessed at three time points (baseline, post-training, and three-month follow-up). Results show lower cerebral blood flow immediately after working memory training (z = -2.073, p = .038) and higher structural connectivity at the three-month follow-up (z = -2.240, p = .025). No cerebral changes occurred after physical training. Short-term changes in cerebral blood flow correlated with short-term changes in cognitive flexibility (r = -.667, p = .049), while long-term changes in structural connectivity correlated with long-term changes in working memory (r = .786, p = .021). Despite the caution given when interpreting data from small samples, this study suggests a link between working memory training and neurophysiological changes. Further research is needed to validate these findings.
Collapse
Affiliation(s)
- Schuerch Kirstin
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Neuropediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Science, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Grieder Matthias
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Benzing Valetin
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Neuropediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Siegwart Valerie
- Division of Neuropediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federspiel Andrea
- Support Center for Advanced Neuroimaging (SCAN), Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Slavova Nedelina
- Support Center for Advanced Neuroimaging (SCAN), Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Kiefer Claus
- Support Center for Advanced Neuroimaging (SCAN), Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Roessler Jochen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Everts Regula
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Neuropediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
L'Hotta AJ, Martin-Giacalone B, Zink J, Fung A, Myers A, Lipsey K, Brick R. Impact of Non-Pharmacological Cognitive Interventions on Real-World Daily Function in Children With Cancer: A Systematic Review. Pediatr Blood Cancer 2025; 72:e31429. [PMID: 39533503 DOI: 10.1002/pbc.31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Childhood cancer survivors (CCS) frequently experience cognitive challenges, which impact their ability to participate in functional activities. This systematic review examines the effects of nonpharmacological cognitive interventions on functional outcomes (e.g., activities of daily living). We systematically searched eight databases (e.g., PubMed, EMBASE) from 2012 to 2023. Two team members independently screened articles and extracted article, intervention, sample characteristics, and outcome data. We assessed intervention reporting with the Template for Intervention Description and Replication. Fourteen studies met inclusion criteria, representing 12 unique trials. Four of the six trials evaluating Cogmed, a computerized working memory training program, demonstrated functional benefits; small to large effects were observed for academic achievement (Cohen's d = 0.28-0.87) and decreased inattention in daily life (d = -0.36 and -0.98). Other interventions included exergaming, math or reading interventions, occupational therapy, and neurofeedback. Less than half of studies reported on intervention personalization (n = 5), fidelity assessment (n = 4), or cost (n = 1). Study heterogeneity limited our ability to meta-analyze results for functional outcomes. Limited evidence and gaps in quality of intervention reporting are barriers to addressing the cognitive challenges of CCS. Standardizing functional outcome measurement, identifying effective interventions, and improving the quality of intervention reporting could accelerate the translation of intervention research to clinical practice.
Collapse
Affiliation(s)
- Allison J L'Hotta
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Anna Fung
- Tennessee Wesleyan University, Athens, Tennessee, USA
| | - Andrew Myers
- University of California Los Angeles, Los Angeles, California, USA
| | - Kim Lipsey
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
3
|
Bullens K, Sleurs C, Blommaert J, Lemiere J, Jacobs S. A systematic review of interventions for neurocognitive dysfunctions in patients and survivors of a pediatric brain tumor. Pediatr Blood Cancer 2024; 71:e31327. [PMID: 39300698 DOI: 10.1002/pbc.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Due to a high burden of neurocognitive impairment on patients with a pediatric brain tumor, interventions mitigating these symptoms are highly needed. Currently, evidence on the efficacy and feasibility of such interventions remains scarce. A systematic literature study was performed based on four different databases (PubMed, Web of Science Core Collection, Embase, and PsycArticles). Resulting articles (n = 2232) were screened based on title and abstract, and full text. We included 28 articles, investigating cognitive effects of either a lifestyle intervention (n = 6), a cognitive training (n = 15), or pharmacological intervention (n = 7). The most frequently studied interventions were the Cogmed and methylphenidate. Most interventions showed short-term efficacy. Fewer interventions also showed long-term maintenance of positive results. Despite positive trends of these interventions, results are heterogeneous, suggesting relatively limited efficacy of existing interventions and more potential of more individualized as well as multimodal approaches for future interventions.
Collapse
Affiliation(s)
| | - Charlotte Sleurs
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | | | - Jurgen Lemiere
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Jacobs
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Robledo-Castro C, Castillo-Ossa LF, Corchado JM. Artificial Cognitive Systems Applied in Executive Function Stimulation and Rehabilitation Programs: A Systematic Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:2399-2427. [PMID: 36185593 PMCID: PMC9516512 DOI: 10.1007/s13369-022-07292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
This article presents a systematic review of studies on cognitive training programs based on artificial cognitive systems and digital technologies and their effect on executive functions. The aim has been to identify which populations have been studied, the characteristics of the implemented programs, the types of implemented cognitive systems and digital technologies, the evaluated executive functions, and the key findings of these studies. The review has been carried out following the PRISMA protocol; five databases have been selected from which 1889 records were extracted. The articles were filtered following established criteria, to give a final selection of 264 articles that have been used for the purposes of this study in the analysis phase. The findings showed that the most studied populations were school-age children and the elderly. The most studied executive functions were working memory and attentional processes, followed by inhibitory control and processing speed. Many programs were commercial, customizable, gamified, and based on classic tasks. Some more recent initiatives have begun to incorporate user-machine interfaces, robotics, and virtual reality, although studies on their effects remain scarce. The studies recognize multiple benefits of computerized neuropsychological stimulation and rehabilitation programs for executive functions in different age groups, but there is a lack of studies in specific population sectors and with more rigorous research designs. Supplementary Information The online version contains supplementary material available at 10.1007/s13369-022-07292-5.
Collapse
Affiliation(s)
- Carolina Robledo-Castro
- Currículo, Universidad y Sociedad Research Group, Universidad del Tolima, Calle 42 1-02, 730006299 Ibagué, Colombia
- Ingeniería del Software Research Group, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, 170001 Manizales, Colombia
| | - Luis F. Castillo-Ossa
- Ingeniería del Software Research Group, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, 170001 Manizales, Colombia
- Inteligencia Artificial Research Group, Universidad de Caldas, Calle 65 26-10, 170002 Manizales, Colombia
- Departamento de Ingeniería Indutrial, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, 170001 Manizales, Colombia
| | - Juan M. Corchado
- BISITE Research Group, University of Salamanca, Calle Espejo s/n, 37007 Salamanca, Spain
- Air Institute, IoT Digital Innovation Hub, 37188 Salamanca, Spain
- Department of Electronics, Information and Communication, Osaka Institute of Technology, 535-8585 Osaka, Japan
| |
Collapse
|
5
|
Redlinger E, Glas B, Rong Y. Impact of Visual Game-Like Features on Cognitive Performance in a Virtual Reality Working Memory Task: Within-Subjects Experiment. JMIR Serious Games 2022; 10:e35295. [PMID: 35482373 PMCID: PMC9100375 DOI: 10.2196/35295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although the pursuit of improved cognitive function through working memory training has been the subject of decades of research, the recent growth in commercial adaptations of classic working memory tasks in the form of gamified apps warrants additional scrutiny. In particular, the emergence of virtual reality as a platform for cognitive training presents opportunities for the use of novel visual features. OBJECTIVE This study aimed to add to the body of knowledge regarding the use of game-like visual design elements by specifically examining the application of two particular visual features common to virtual reality environments: immersive, colorful backgrounds and the use of 3D depth. In addition, electroencephalography (EEG) data were collected to identify potential neural correlates of any observed changes in performance. METHODS A simple visual working memory task was presented to participants in several game-like adaptations, including the use of colorful, immersive backgrounds and 3D depth. The impact of each adaptation was separately assessed using both EEG and performance assessment outcomes and compared with an unmodified version of the task. RESULTS Results suggest that although accuracy and reaction time may be slightly affected by the introduction of such game elements, the effects were small and not statistically significant. Changes in EEG power, particularly in the beta and theta rhythms, were significant but failed to correlate with any corresponding changes in performance. Therefore, they may only reflect cognitive changes at the perceptual level. CONCLUSIONS Overall, the data suggest that the addition of these specific visual features to simple cognitive tasks does not appear to significantly affect performance or task-dependent cognitive load.
Collapse
Affiliation(s)
- Eric Redlinger
- Tokyo Institute of Technology, Institute of Innovative Research / Koike & Yoshimura Lab, Tokyo, Japan
| | | | - Yang Rong
- Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
6
|
Hooke MC, Mathiason MA, Kunin-Batson AS, Blommer A, Hutter J, Mitby PA, Moore IM, Whitman S, Taylor O, Scheurer ME, Hockenberry MJ. Biomarkers and Cognitive Function in Children and Adolescents During Maintenance Therapy for Leukemia. Oncol Nurs Forum 2021; 48:623-633. [PMID: 34673759 DOI: 10.1188/21.onf.623-633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To explore the relationship between biomarkers of oxidative stress and inflmmation in cerebrospinal fluid (CSF) and cognitive function in children receiving maintenance therapy for acute lymphocytic leukemia (ALL). SAMPLE & SETTING 30 participants aged 4-17 years receiving ALL maintenance therapy at two pediatric cancer centers in the United States. METHODS & VARIABLES F2-isoprostane (F2-ISoP) and interleukin-8 (IL-8) were evaluated in CSF samples, and cognitive function measures were completed during the first and last cycles of ALL maintenance. The Flanker Inhibitory Control and Attention Test (Flanker) and Dimensional Change Card Sort were completed during the last cycle. RESULTS During maintenance therapy, IL-8 decreased, and parent reports of children's cognitive function improved. Higher IL-8 was associated with better parent reports of children's cognitive function at each timepoint. Higher F2-ISoP levels were associated with lower Flanker scores. IMPLICATIONS FOR NURSING F2-ISoP may be a useful biomarker in evaluating cognitive dysfunction in children with ALL and merits further investigation.
Collapse
|
7
|
Thangarajh M, Elfring GL, Trifillis P. Longitudinal Evaluation of Working Memory in Duchenne Muscular Dystrophy. J Clin Med 2020; 9:jcm9092940. [PMID: 32933029 PMCID: PMC7563441 DOI: 10.3390/jcm9092940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 09/02/2020] [Indexed: 01/16/2023] Open
Abstract
Objective: The developmental maturation of forward and backward digit spans—indices of working memory—in boys with nonsense (nm) Duchenne muscular dystrophy (DMD) (nmDMD) was assessed using prospective, longitudinal data. Methods: Fifty-five boys of the 57 subjects with genetically confirmed nmDMD—who were from the placebo arm of a 48-week-long phase 2b clinical trial—were evaluated. Forward and backward digit spans were obtained every 12 weeks for a total of five assessments in all study subjects. Changes in forward and backward digit spans were evaluated based on age, corticosteroid treatment, and DMD mutation location. Results: Boys with nmDMD had lower mean scores on normalized forward digit span. Normalized forward digit spans were comparable between subjects stratified by age and between corticosteroid-naïve and corticosteroid-treated subjects. When stratified by DMD mutation location, normalized forward digit spans were lower in nmDMD subjects with mutations downstream of DMD exon 30, exon 45, and exon 63, both at baseline evaluation and at follow-up evaluation at 48 weeks. On average, normalized backward digit span scores were stable over 48 weeks in these subjects. Developmental growth modeling showed that subjects with nmDMD mutations upstream of DMD exon 30, upstream of DMD exon 45, and upstream of DMD exon 63 appeared to make better gains in working memory than subjects with mutations downstream of DMD exon 30, downstream of DMD exon 45, and downstream of DMD exon 63. Conclusion: Performance in working memory shows deficits in nmDMD and differed based on nmDMD location. Maturation in cognition was seen over a 48-week period. The developmental trajectory of working memory in this cohort was influenced by DMD mutation location.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of Neurology, Virginia Commonwealth University, 1101 East Marshall Street, P.O. Box 980599, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-628-0396
| | - Gary L. Elfring
- PTC Therapeutics Inc., South Plainfield, NJ 07080, USA; (G.L.E.); (P.T.)
| | | |
Collapse
|
8
|
Recla M, Molteni E, Manfredi V, Arrigoni F, Nordio A, Galbiati S, Pastore V, Modat M, Strazzer S. Feasibility Randomized Trial for an Intensive Memory-Focused Training Program for School-Aged Children with Acquired Brain Injury. Brain Sci 2020; 10:E430. [PMID: 32645968 PMCID: PMC7407971 DOI: 10.3390/brainsci10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Memory deficits are common sequelae of pediatric Acquired Brain Injury (ABI). Only methods for non-focused cognitive remediation are available to the pediatric field. The aims of this feasibility trial are the description, implementation, and test of an intensive program specific to the training and re-adaptation of memory function in children, called Intensive Memory-Focused Training Program (IM-FTP); (2) Methods: Eleven children and adolescents with ABI (mean age at injury = 12.2 years, brain tumor survivors excluded) were clinically assessed and rehabilitated over 1-month through IM-FTP, including physio-kinesis/occupational, speech, and neuropsychology treatments. Each patient received a psychometric evaluation and a brain functional MRI at enrollment and at discharge. Ten pediatric controls with ABI (mean age at injury = 13.8 years) were clinically assessed, and rehabilitated through a standard program; (3) Results: After treatment, both groups had marked improvement in both immediate and delayed recall. IM-FTP was associated with better learning of semantically related and unrelated words, and larger improvement in immediate recall in prose memory. Imaging showed functional modification in the left frontal inferior cortex; (4) Conclusions: We described an age-independent reproducible multidisciplinary memory-focused rehabilitation protocol, which can be adapted to single patients while preserving inter-subject comparability, and is applicable up to a few months after injury. IM-FTP will now be employed in a powered clinical trial.
Collapse
Affiliation(s)
- Monica Recla
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, and Centre for Medical Engineering, King’s College, London SE1 7EU, UK; (E.M.); (M.M.)
| | - Valentina Manfredi
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (F.A.); (A.N.)
| | - Andrea Nordio
- Neuroimaging Lab, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (F.A.); (A.N.)
| | - Susanna Galbiati
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Valentina Pastore
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, and Centre for Medical Engineering, King’s College, London SE1 7EU, UK; (E.M.); (M.M.)
| | - Sandra Strazzer
- Neurophysiatric Department, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
9
|
Mendoza LK, Ashford JM, Willard VW, Clark KN, Martin-Elbahesh K, Hardy KK, Merchant TE, Jeha S, Wang F, Zhang H, Conklin HM. Social Functioning of Childhood Cancer Survivors after Computerized Cognitive Training: A Randomized Controlled Trial. CHILDREN-BASEL 2019; 6:children6100105. [PMID: 31569616 PMCID: PMC6826733 DOI: 10.3390/children6100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022]
Abstract
Childhood cancer survivors are at risk for cognitive and social deficits. Previous findings indicate computerized cognitive training can result in an improvement of cognitive skills. The current objective was to investigate whether these cognitive gains generalize to social functioning benefits. Sixty-eight survivors of childhood cancer were randomly assigned to a computerized cognitive intervention (mean age 12.21 ± 2.47 years, 4.97 ± 3.02 years off-treatment) or waitlist control group (mean age 11.82 ± 2.42 years, 5.04 ± 2.41 years off-treatment). Conners 3 Parent and Self-Report forms were completed pre-intervention, immediately post-intervention and six-months post-intervention. Piecewise linear mixed-effects models indicated no significant differences in Peer Relations between groups at baseline and no difference in change between groups from pre- to immediate post-intervention or post- to six-months post-intervention (ps > 0.40). Baseline Family Relations problems were significantly elevated in the control group relative to the intervention group (p < 0.01), with a significantly greater decline from pre- to immediate post-intervention (p < 0.05) and no difference in change between groups from post- to six-months post-intervention (p > 0.80). The study results suggest cognitive gains from computerized training do not generalize to social functioning. Training focused on skill-based social processing (e.g., affect recognition) may be more efficacious.
Collapse
Affiliation(s)
| | - Jason M Ashford
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | - Kellie N Clark
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | - Sima Jeha
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Fang Wang
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Hui Zhang
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
10
|
Remote Technology-Based Training Programs for Children with Acquired Brain Injury: A Systematic Review and a Meta-Analytic Exploration. Behav Neurol 2019; 2019:1346987. [PMID: 31467613 PMCID: PMC6701292 DOI: 10.1155/2019/1346987] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction Multidisciplinary rehabilitation interventions are considered to be a need for children with acquired brain injury (ABI), in order to remediate the important sequelae and promote adjustment. Technology-based treatments represent a promising field inside the rehabilitation area, as they allow delivering interventions in ecological settings and creating amusing exercises that may favor engagement. In this work, we present an overview of remote technology-based training programs (TP) addressing cognitive and behavioral issues delivered to children with ABI and complement it with the results of a meta-analytic exploration. Evidence Acquisition We performed the review process between January and February 2019. 32 studies were included in the review, of which 14 were further selected to be included in the meta-analysis on TP efficacy. Evidence Synthesis Based on the review process, the majority of TP addressing cognitive issues and all TP focusing on behavioral issues were found to be effective. Two meta-analytic models examining the means of either cognitive TP outcomes or behavioral TP outcomes as input outcome yielded a nonsignificant effect size for cognitive TP and a low-moderate effect size for behavioral TP. Additional models on outcomes reflecting the greatest beneficial effects of TP yielded significant moderate effect sizes for both types of TP. Nevertheless, consistent methodological heterogeneity was observed, pointing to cautious interpretation of findings. A subgroup analysis on visuospatial skill outcomes showed a smaller yet significant effect size of cognitive TP, with low heterogeneity, providing a more reliable estimation of overall cognitive TP effects. Conclusions Promising results on remote cognitive and behavioral TP efficacy emerged both at the review process and at the meta-analytic investigation. Nevertheless, the high heterogeneity that emerged across studies prevents us from drawing definite conclusions. Further research is needed to identify whether specific training characteristics and population subgroups are more likely to be associated with greater training efficacy.
Collapse
|
11
|
Hampshire A, Sandrone S, Hellyer PJ. A Large-Scale, Cross-Sectional Investigation Into the Efficacy of Brain Training. Front Hum Neurosci 2019; 13:221. [PMID: 31338032 PMCID: PMC6629869 DOI: 10.3389/fnhum.2019.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/17/2019] [Indexed: 11/24/2022] Open
Abstract
Brain training is a large and expanding industry, and yet there is a recurrent and ongoing debate concerning its scientific basis or evidence for efficacy. Much of evidence for the efficacy of brain training within this debate is from small-scale studies that do not assess the type of “brain training,” the specificity of transfer effects, or the length of training required to achieve a generalized effect. To explore these factors, we analyze cross-sectional data from two large Internet-cohort studies (total N = 60,222) to determine whether cognition differs at the population level for individuals who report that they brain train on different devices, and across different timeframes, with programs in common use circa 2010–2013. Examining scores for an assessment of working-memory, reasoning and verbal abilities shows no cognitive advantages for individuals who brain train. This contrasts unfavorably with significant advantages for individuals who regularly undertake other cognitive pursuits such as computer, board and card games. However, finer grained analyses reveal a more complex relationship between brain training and cognitive performance. Specifically, individuals who have just begun to brain train start from a low cognitive baseline compared to individuals who have never engaged in brain training, whereas those who have trained for a year or more have higher working-memory and verbal scores compared to those who have just started, thus suggesting an efficacy for brain training over an extended period of time. The advantages in global function, working memory, and verbal memory after several months of training are plausible and of clinically relevant scale. However, this relationship is not evident for reasoning performance or self-report measures of everyday function (e.g., employment status and problems with attention). These results accord with the view that although brain training programs can produce benefits, these might extend to tasks that are operationally similar to the training regime. Furthermore, the duration of training regime required for effective enhancement of cognitive performance is longer than that applied in most previous studies.
Collapse
Affiliation(s)
- Adam Hampshire
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Stefano Sandrone
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Peter John Hellyer
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Darling S, De Luca CR, Anderson V, McCarthy M, Hearps S, Seal M. Brain morphology and information processing at the completion of chemotherapy-only treatment for pediatric acute lymphoblastic leukemia. Dev Neurorehabil 2019; 22:293-302. [PMID: 29969366 DOI: 10.1080/17518423.2018.1492988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Approximately 50% of survivors of childhood acute lymphoblastic leukemia (ALL) demonstrate cognitive impairments. However, the trajectory of change and contributing neuropathology is unclear, limiting our ability to tailor intervention content and timing. This study aimed to explore information processing abilities and brain morphology early post-treatment for pediatric ALL. Procedure: Twenty-one children at the end of ALL treatment and 18 controls underwent neuropsychological assessment. A subset also completed structural magnetic resonance imaging. Results: A principal component analysis generated two cognitive factors: information processing capacity and information processing speed. Compared to control group, the ALL group displayed deficits in capacity, but not speed. No group differences were identified in morphology. No relationship was identified between capacity or speed and morphology. Conclusion: Early cognitive intervention should target information processing abilities using a system-wide approach. Future studies should employ alternative imaging techniques sensitive to white-matter microstructure when exploring pathology underlying information processing deficits.
Collapse
Affiliation(s)
- Simone Darling
- a Clinical Sciences , Murdoch Children's Research Institute , Parkville , Australia.,b Department of Paediatrics , University of Melbourne , Melbourne , Australia
| | - Cinzia Rachele De Luca
- a Clinical Sciences , Murdoch Children's Research Institute , Parkville , Australia.,c Children's Cancer Centre , The Royal Children's Hospital , Melbourne , Australia
| | - Vicki Anderson
- a Clinical Sciences , Murdoch Children's Research Institute , Parkville , Australia.,b Department of Paediatrics , University of Melbourne , Melbourne , Australia.,d Psychology Department , The Royal Children's Hospital , Melbourne , Australia
| | - Maria McCarthy
- a Clinical Sciences , Murdoch Children's Research Institute , Parkville , Australia.,c Children's Cancer Centre , The Royal Children's Hospital , Melbourne , Australia
| | - Stephen Hearps
- a Clinical Sciences , Murdoch Children's Research Institute , Parkville , Australia
| | - Marc Seal
- a Clinical Sciences , Murdoch Children's Research Institute , Parkville , Australia.,b Department of Paediatrics , University of Melbourne , Melbourne , Australia
| |
Collapse
|
13
|
Zapotocky M, Beera K, Adamski J, Laperierre N, Guger S, Janzen L, Lassaletta A, Figueiredo Nobre L, Bartels U, Tabori U, Hawkins C, Urbach S, Tsang DS, Dirks PB, Taylor MD, Bouffet E, Mabbott DJ, Ramaswamy V. Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer 2019; 125:1867-1876. [PMID: 30768777 DOI: 10.1002/cncr.31995] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Posterior fossa ependymoma (PFE) comprises 2 groups, PF group A (PFA) and PF group B (PFB), with stark differences in outcome. However, to the authors' knowledge, the long-term outcomes of PFA ependymoma have not been described fully. The objective of the current study was to identify predictors of survival and neurocognitive outcome in a large consecutive cohort of subgrouped patients with PFE over 30 years. METHODS Demographic, survival, and neurocognitive data were collected from consecutive patients diagnosed with PFE from 1985 through 2014 at the Hospital for Sick Children in Toronto, Ontario, Canada. Subgroup was assigned using genome-wide methylation array and/or immunoreactivity to histone H3 K27 trimethylation (H3K27me3). RESULTS A total of 72 PFE cases were identified, 89% of which were PFA. There were no disease recurrences noted among patients with PFB. The 10-year progression-free survival rate for all patients with PFA was poor at 37.1% (95% confidence interval, 25.9%-53.1%). Analysis of consecutive 10-year epochs revealed significant improvements in progression-free survival and/or overall survival over time. This pertains to the increase in the rate of gross (macroscopic) total resection from 35% to 77% and the use of upfront radiotherapy increasing from 65% to 96% over the observed period and confirmed in a multivariable model. Using a mixed linear model, analysis of longitudinal neuropsychological outcomes restricted to patients with PFA who were treated with focal irradiation demonstrated significant continuous declines in the full-scale intelligence quotient over time with upfront conformal radiotherapy, even when correcting for hydrocephalus, number of surgeries, and age at diagnosis (-1.33 ± 0.42 points/year; P = .0042). CONCLUSIONS Data from a molecularly informed large cohort of patients with PFE clearly indicate improved survival over time, related to more aggressive surgery and upfront radiotherapy. However, to the best of the authors' knowledge, the current study is the first, in a subgrouped cohort, to demonstrate that this approach results in reduced neurocognitive outcomes over time.
Collapse
Affiliation(s)
- Michal Zapotocky
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Haematology and Oncology, Second Medical School, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Kiran Beera
- Programme in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jenny Adamski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatric Oncology, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Normand Laperierre
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Sharon Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Janzen
- Programme in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alvaro Lassaletta
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Hematology and Oncology, Child Jesus Hospital, Madrid, Spain
| | | | - Ute Bartels
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey Urbach
- Division of Endocrinology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Derek S Tsang
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Programme in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.,Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Hardy KK, Willard VW, Gioia A, Sharkey C, Walsh KS. Attention-mediated neurocognitive profiles in survivors of pediatric brain tumors: comparison to children with neurodevelopmental ADHD. Neuro Oncol 2019; 20:705-715. [PMID: 29016979 DOI: 10.1093/neuonc/nox174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Attention and working memory symptoms are among the most common late effects in survivors of pediatric brain tumors, and are often associated with academic and psychosocial difficulties. Diagnostic and treatment approaches derived from the literature on attention-deficit hyperactivity disorder (ADHD) have frequently been applied to survivors, yet the extent of overlap in cognitive profiles between these groups is unclear. The objective of the present study is to compare neurocognition in survivors of brain tumors and children with neurodevelopmental ADHD. Methods Neuropsychological data were abstracted from clinically referred brain tumor survivors (n = 105, Mage = 12.0 y, 52.4% male) and children with ADHD (n = 178, Mage = 11.1 y, 64.0% male). Data consist of a battery of parent-report questionnaires and performance-based neuropsychological measures. Results Twenty-five survivors (23.8%) of pediatric brain tumors met symptom criteria for ADHD. Participants with neurodevelopmental ADHD and survivors who met ADHD criteria had significantly greater parent- (P < 0.001) and teacher-reported (P < 0.001) working memory and behavior regulation difficulties than survivors of tumor who did not meet criteria. Children with ADHD symptoms also performed worse on measures of sustained attention than survivors without ADHD symptoms (P < 0.001). Additionally, survivors with ADHD symptoms had greater performance-based working memory difficulties than either survivors without attention problems or children with neurodevelopmental ADHD (P = 0.002). Conclusions Nearly a quarter of survivors with attention symptoms have functional profiles that are similar to children with neurodevelopmental ADHD. They also experience more neurocognitive impairments than survivors without attentional difficulties, particularly in working memory. Screening for ADHD symptoms may help providers triage a subset of individuals in need of earlier or additional neuropsychological assessment.
Collapse
|
15
|
Schiller RM, Tibboel D. Neurocognitive Outcome After Treatment With(out) ECMO for Neonatal Critical Respiratory or Cardiac Failure. Front Pediatr 2019; 7:494. [PMID: 31850291 PMCID: PMC6902043 DOI: 10.3389/fped.2019.00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 01/11/2023] Open
Abstract
Over the years, it has become clear that children growing up after neonatal critical illness are at high risk of long-term neurocognitive deficits that impact their school performance and daily life activities. Although the pathophysiological mechanisms remain largely unknown, emerging evidence seems to suggest that long-term neuropsychological deficits following neonatal critical illness are not associated with the type of treatment, such as extracorporeal membrane oxygenation (ECMO), but rather with underlying disease processes. In this review, neurocognitive outcome and brain pathology following neonatal critical respiratory and cardiac illness, either treated with or without ECMO, are described and compared in order to gain insight into potential underlying pathophysiological mechanisms. Putting these findings together, it becomes apparent that both children with complex congenital heart disease and children who survived severe respiratory failure are at risk of neurocognitive deficits later in life. Neurorehabilitation strategies, such as Cogmed working-memory training, are discussed. While prevention of neurocognitive deficits altogether should be strived for in the future, this is not realistic at this moment. It is therefore of great importance that children growing up after neonatal critical illness receive long-term care that includes psychoeducation and personalized practical tools that can be used to improve their daily life activities.
Collapse
Affiliation(s)
- Raisa M Schiller
- Department of Pediatric Surgery/IC Children and Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery/IC Children and Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
16
|
Stavinoha PL, Askins MA, Powell SK, Pillay Smiley N, Robert RS. Neurocognitive and Psychosocial Outcomes in Pediatric Brain Tumor Survivors. Bioengineering (Basel) 2018; 5:E73. [PMID: 30208602 PMCID: PMC6164803 DOI: 10.3390/bioengineering5030073] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 01/15/2023] Open
Abstract
The late neurocognitive and psychosocial effects of treatment for pediatric brain tumor (PBT) represent important areas of clinical focus and ongoing research. Neurocognitive sequelae and associated problems with learning and socioemotional development negatively impact PBT survivors' overall health-related quality of life, educational attainment and employment rates. Multiple factors including tumor features and associated complications, treatment methods, individual protective and vulnerability factors and accessibility of environmental supports contribute to the neurocognitive and psychosocial outcomes in PBT survivors. Declines in overall measured intelligence are common and may persist years after treatment. Core deficits in attention, processing speed and working memory are postulated to underlie problems with overall intellectual development, academic achievement and career attainment. Additionally, psychological problems after PBT can include depression, anxiety and psychosocial adjustment issues. Several intervention paradigms are briefly described, though to date research on innovative, specific and effective interventions for neurocognitive late effects is still in its early stages. This article reviews the existing research for understanding PBT late effects and highlights the need for innovative research to enhance neurocognitive and psychosocial outcomes in PBT survivors.
Collapse
Affiliation(s)
- Peter L Stavinoha
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martha A Askins
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Stephanie K Powell
- Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Natasha Pillay Smiley
- Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Rhonda S Robert
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Krull KR, Hardy KK, Kahalley LS, Schuitema I, Kesler SR. Neurocognitive Outcomes and Interventions in Long-Term Survivors of Childhood Cancer. J Clin Oncol 2018; 36:2181-2189. [PMID: 29874137 DOI: 10.1200/jco.2017.76.4696] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent research has demonstrated that survivors of childhood cancer are at risk for a myriad of late effects that affect physical and mental quality of life. We discuss the patterns and prevalence of neurocognitive problems commonly experienced by survivors of CNS tumors and acute lymphoblastic leukemia, the two most commonly researched cancer diagnoses. Research documenting the direct effects of tumor location and treatment type and intensity is presented, and patient characteristics that moderate outcomes (eg, age at diagnosis and sex) are discussed. Potential biologic mechanisms of neurotoxic treatment exposures, such as cranial irradiation and intrathecal and high-dose antimetabolite chemotherapy, are reviewed. Genetic, brain imaging, and neurochemical biomarkers of neurocognitive impairment are discussed. Long-term survivors of childhood cancer are also at risk for physical morbidity (eg, cardiac, pulmonary, endocrine) and problems with health behaviors (eg, sleep); research is reviewed that demonstrates these health problems contribute to neurocognitive impairment in survivors with or without exposure to neurotoxic therapies. We conclude this review with a discussion of literature supporting specific interventions that may be beneficial in the treatment of survivors who already experience neurocognitive impairment, as well as in the prevention of impairment manifestation.
Collapse
Affiliation(s)
- Kevin R Krull
- Kevin R. Krull, St Jude Children's Research Hospital, Memphis, TN; Kristina K. Hardy, Children's National Medical Center, Washington, DC; Lisa S. Kahalley, Baylor College of Medicine; Shelli R. Kesler, University of Texas MD Anderson Cancer Center, Houston, TX; and Ilse Schuitema, Leiden University, Leiden, the Netherlands
| | - Kristina K Hardy
- Kevin R. Krull, St Jude Children's Research Hospital, Memphis, TN; Kristina K. Hardy, Children's National Medical Center, Washington, DC; Lisa S. Kahalley, Baylor College of Medicine; Shelli R. Kesler, University of Texas MD Anderson Cancer Center, Houston, TX; and Ilse Schuitema, Leiden University, Leiden, the Netherlands
| | - Lisa S Kahalley
- Kevin R. Krull, St Jude Children's Research Hospital, Memphis, TN; Kristina K. Hardy, Children's National Medical Center, Washington, DC; Lisa S. Kahalley, Baylor College of Medicine; Shelli R. Kesler, University of Texas MD Anderson Cancer Center, Houston, TX; and Ilse Schuitema, Leiden University, Leiden, the Netherlands
| | - Ilse Schuitema
- Kevin R. Krull, St Jude Children's Research Hospital, Memphis, TN; Kristina K. Hardy, Children's National Medical Center, Washington, DC; Lisa S. Kahalley, Baylor College of Medicine; Shelli R. Kesler, University of Texas MD Anderson Cancer Center, Houston, TX; and Ilse Schuitema, Leiden University, Leiden, the Netherlands
| | - Shelli R Kesler
- Kevin R. Krull, St Jude Children's Research Hospital, Memphis, TN; Kristina K. Hardy, Children's National Medical Center, Washington, DC; Lisa S. Kahalley, Baylor College of Medicine; Shelli R. Kesler, University of Texas MD Anderson Cancer Center, Houston, TX; and Ilse Schuitema, Leiden University, Leiden, the Netherlands
| |
Collapse
|
18
|
Marusak HA, Iadipaolo AS, Harper FW, Elrahal F, Taub JW, Goldberg E, Rabinak CA. Neurodevelopmental consequences of pediatric cancer and its treatment: applying an early adversity framework to understanding cognitive, behavioral, and emotional outcomes. Neuropsychol Rev 2018; 28:123-175. [PMID: 29270773 PMCID: PMC6639713 DOI: 10.1007/s11065-017-9365-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023]
Abstract
Today, children are surviving pediatric cancer at unprecedented rates, making it one of modern medicine's true success stories. However, we are increasingly becoming aware of several deleterious effects of cancer and the subsequent "cure" that extend beyond physical sequelae. Indeed, survivors of childhood cancer commonly report cognitive, emotional, and psychological difficulties, including attentional difficulties, anxiety, and posttraumatic stress symptoms (PTSS). Cognitive late- and long-term effects have been largely attributed to neurotoxic effects of cancer treatments (e.g., chemotherapy, cranial irradiation, surgery) on brain development. The role of childhood adversity in pediatric cancer - namely, the presence of a life-threatening disease and endurance of invasive medical procedures - has been largely ignored in the existing neuroscientific literature, despite compelling research by our group and others showing that exposure to more commonly studied adverse childhood experiences (i.e., domestic and community violence, physical, sexual, and emotional abuse) strongly imprints on neural development. While these adverse childhood experiences are different in many ways from the experience of childhood cancer (e.g., context, nature, source), they do share a common element of exposure to threat (i.e., threat to life or physical integrity). Therefore, we argue that the double hit of early threat and cancer treatments likely alters neural development, and ultimately, cognitive, behavioral, and emotional outcomes. In this paper, we (1) review the existing neuroimaging research on child, adolescent, and adult survivors of childhood cancer, (2) summarize gaps in our current understanding, (3) propose a novel neurobiological framework that characterizes childhood cancer as a type of childhood adversity, particularly a form of early threat, focusing on development of the hippocampus and the salience and emotion network (SEN), and (4) outline future directions for research.
Collapse
Affiliation(s)
- Hilary A Marusak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA.
| | - Allesandra S Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
| | - Felicity W Harper
- Population Studies and Disparities Research Program, Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Farrah Elrahal
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
| | - Jeffrey W Taub
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Elimelech Goldberg
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
- Kids Kicking Cancer, Southfield, MI, USA
| | - Christine A Rabinak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Suite 2190, Detroit, MI, 48202, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
19
|
Rossignoli-Palomeque T, Perez-Hernandez E, González-Marqués J. Brain Training in Children and Adolescents: Is It Scientifically Valid? Front Psychol 2018; 9:565. [PMID: 29780336 PMCID: PMC5946581 DOI: 10.3389/fpsyg.2018.00565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/04/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Brain training products are becoming increasingly popular for children and adolescents. Despite the marketing aimed at their use in the general population, these products may provide more benefits for specific neurologically impaired populations. A review of Brain Training (BT) products analyzing their efficacy while considering the methodological limitations of supporting research is required for practical applications. Method: searches were made of the PubMed database (until March 2017) for studies including: (1) empirical data on the use of brain training for children or adolescents and any effects on near transfer (NT) and/or far transfer (FT) and/or neuroplasticity, (2) use of brain training for cognitive training purposes, (3) commercially available training applications, (4) computer-based programs for children developed since the 1990s, and (5) relevant printed and peer-reviewed material. Results: Database searches yielded a total of 16,402 references, of which 70 met the inclusion criteria for the review. We classified programs in terms of neuroplasticity, near and far transfer, and long-term effects and their applied methodology. Regarding efficacy, only 10 studies (14.2%) have been found that support neuroplasticity, and the majority of brain training platforms claimed to be based on such concepts without providing any supporting scientific data. Thirty-six studies (51.4%) have shown far transfer (7 of them are non-independent) and only 11 (15.7%) maintained far transfer at follow-up. Considering the methodology, 40 studies (68.2%) were not randomized and controlled; for those randomized, only 9 studies (12.9%) were double-blind, and only 13 studies (18.6%) included active controls in their trials. Conclusion: Overall, few independent studies have found far transfer and long-term effects. The majority of independent results found only near transfer. There is a lack of double-blind randomized trials which include an active control group as well as a passive control to properly control for contaminant variables. Based on our results, Brain Training Programs as commercially available products are not as effective as first expected or as they promise in their advertisements.
Collapse
Affiliation(s)
- Teresa Rossignoli-Palomeque
- Department of Basic Psychology II, Complutense University of Madrid, Madrid, Spain.,Department of Psychology and Education, Centro Universitario Cardenal Cisneros, Alcalá de Henares, Madrid, Spain
| | - Elena Perez-Hernandez
- Department of Development and Educational Psychology, Autonomous University of Madrid, Madrid, Spain
| | | |
Collapse
|