1
|
Jîjie AR, Iliescu D, Sbârcea L, Boru C, Pătrașcu D, Iftode OA, Minda ID, Avram Ș, Trandafirescu CM, Dehelean CA, Moacă EA. A Deep Dive into the Botanical and Medicinal Heritage of Taxus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1439. [PMID: 40431004 PMCID: PMC12115136 DOI: 10.3390/plants14101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
The genus Taxus comprises a unique group of gymnosperms known for their botanical longevity, cultural significance, and exceptional pharmacological potential. This review explores the multifaceted profile of Taxus species, with a focus on their morphological traits, phytochemical composition, traditional uses, and therapeutic applications. Particular attention is given to taxanes, especially paclitaxel, which have revolutionized cancer treatment through microtubule-stabilizing mechanisms. In addition to well-established uses of the bark and leaves, the review synthesizes emerging research on the aril, a non-toxic and antioxidant-rich plant part, suggesting novel biomedical applications. By integrating ethnobotanical knowledge with contemporary pharmacological insights, this work underscores the enduring relevance of Taxus in traditional medicine while emphasizing its evolving role in modern drug discovery. The findings advocate for intensified interdisciplinary research and sustainable exploitation strategies to fully harness the genus's therapeutic potential without compromising biodiversity.
Collapse
Affiliation(s)
- Alex-Robert Jîjie
- University Clinic of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (D.P.); (O.A.I.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Dan Iliescu
- University Clinic of Surgical Semiology I and Thoracic Surgery, Faculty of Medicine, “Victor Babes” University of Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Laura Sbârcea
- University Department of Drug Analysis, Environmental Chemistry, Hygiene, Nutrition, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Casiana Boru
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 86 Liviu Rebreanu Street, 310048 Arad, Romania
| | - Dalia Pătrașcu
- University Clinic of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (D.P.); (O.A.I.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Oana Andrada Iftode
- University Clinic of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (D.P.); (O.A.I.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Ionela-Daliana Minda
- University Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-D.M.); (Ș.A.)
- Research and Processing Center for Medicinal and Aromatic Plants, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Ștefana Avram
- University Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-D.M.); (Ș.A.)
- Research and Processing Center for Medicinal and Aromatic Plants, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina-Maria Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- University Clinic of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (D.P.); (O.A.I.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- University Clinic of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (D.P.); (O.A.I.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Paul-Traversaz M, Umehara K, Watanabe K, Rachidi W, Sève M, Souard F. Kampo herbal ointments for skin wound healing. Front Pharmacol 2023; 14:1116260. [PMID: 36860294 PMCID: PMC9969195 DOI: 10.3389/fphar.2023.1116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
The management of skin wound healing problems is a public health issue in which traditional herbal medicines could play a determining role. Kampo medicine, with three traditionally used ointments, provides interesting solutions for these dermatological issues. These ointments named Shiunkō, Chuōkō, and Shinsen taitsukō all have in common a lipophilic base of sesame oil and beeswax from which herbal crude drugs are extracted according to several possible manufacturing protocols. This review article brings together existing data on metabolites involved in the complex wound healing process. Among them are representatives of the botanical genera Angelica, Lithospermum, Curcuma, Phellodendron, Paeonia, Rheum, Rehmannia, Scrophularia, or Cinnamomum. Kampo provides numerous metabolites of interest, whose content in crude drugs is very sensitive to different biotic and abiotic factors and to the different extraction protocols used for these ointments. If Kampo medicine is known for its singular standardization, ointments are not well known, and research on these lipophilic formulas has not been developed due to the analytical difficulties encountered in biological and metabolomic analysis. Further research considering the complexities of these unique herbal ointments could contribute to a rationalization of Kampo's therapeutic uses for wound healing.
Collapse
Affiliation(s)
- Manon Paul-Traversaz
- Univ. Grenoble Alpes, CNRS, TIMC UMR 5525, EPSP, Grenoble, France,Yokohama University of Pharmacy, Kampo Natural Product Chemistry Laboratory, Yokohama, Japan,Yokohama University of Pharmacy, Yokohama, Japan,Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France,*Correspondence: Manon Paul-Traversaz,
| | - Kaoru Umehara
- Yokohama University of Pharmacy, Kampo Natural Product Chemistry Laboratory, Yokohama, Japan,Yokohama University of Pharmacy, Yokohama, Japan
| | | | - Walid Rachidi
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France
| | - Michel Sève
- Univ. Grenoble Alpes, CNRS, TIMC UMR 5525, EPSP, Grenoble, France
| | - Florence Souard
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, Grenoble, France,Univ. libre de Bruxelles, Department of Pharmacotherapy and Pharmaceutics, Faculty of Pharmacy, Brussels, Belgium
| |
Collapse
|
3
|
Flavonoid Components, Distribution, and Biological Activities in Taxus: A review. Molecules 2023; 28:molecules28041713. [PMID: 36838700 PMCID: PMC9959731 DOI: 10.3390/molecules28041713] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Taxus, also known as "gold in plants" because of the famous agents with emphases on Taxol and Docetaxel, is a genus of the family Taxaceae, distributed almost around the world. The plants hold an important place in traditional medicine in China, and its products are used for treating treat dysuria, swelling and pain, diabetes, and irregular menstruation in women. In order to make a further study and better application of Taxus plants for the future, cited references from between 1958 and 2022 were collected from the Web of Science, the China National Knowledge Internet (CNKI), SciFinder, and Google Scholar, and the chemical structures, distribution, and bioactivity of flavonoids identified from Taxus samples were summed up in the research. So far, 59 flavonoids in total with different skeletons were identified from Taxus plants, presenting special characteristics of compound distribution. These compounds have been reported to display significant antibacterial, antiaging, anti-Alzheimer's, antidiabetes, anticancer, antidepressant, antileishmaniasis, anti-inflammatory, antinociceptive and antiallergic, antivirus, antilipase, neuronal protective, and hepatic-protective activities, as well as promotion of melanogenesis. Flavonoids represent a good example of the utilization of the Taxus species. In the future, further pharmacological and clinical experiments for flavonoids could be accomplished to promote the preparation of relative drugs.
Collapse
|
4
|
Ungur RA, Borda IM, Codea RA, Ciortea VM, Năsui BA, Muste S, Sarpataky O, Filip M, Irsay L, Crăciun EC, Căinap S, Jivănescu DB, Pop AL, Singurean VE, Crișan M, Groza OB, Martiș (Petruț) GS. A Flavonoid-Rich Extract of Sambucus nigra L. Reduced Lipid Peroxidation in a Rat Experimental Model of Gentamicin Nephrotoxicity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:772. [PMID: 35160718 PMCID: PMC8837157 DOI: 10.3390/ma15030772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The use of gentamicin (GM) is limited due to its nephrotoxicity mediated by oxidative stress. This study aimed to evaluate the capacity of a flavonoid-rich extract of Sambucus nigra L. elderflower (SN) to inhibit lipoperoxidation in GM-induced nephrotoxicity. The HPLC analysis of the SN extract recorded high contents of rutin (463.2 ± 0.0 mg mL-1), epicatechin (9.0 ± 1.1 µg mL-1), and ferulic (1.5 ± 0.3 µg mL-1) and caffeic acid (3.6 ± 0.1 µg mL-1). Thirty-two Wistar male rats were randomized into four groups: a control group (C) (no treatment), GM group (100 mg kg-1 bw day-1 GM), GM+SN group (100 mg kg-1 bw day-1 GM and 1 mL SN extract day-1), and SN group (1 mL SN extract day-1). Lipid peroxidation, evaluated by malondialdehyde (MDA), and antioxidant enzymes activity-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)-were recorded in renal tissue after ten days of experimental treatment. The MDA level was significantly higher in the GM group compared to the control group (p < 0.0001), and was significantly reduced by SN in the GM+SN group compared to the GM group (p = 0.021). SN extract failed to improve SOD, CAT, and GPX activity in the GM+SN group compared to the GM group (p > 0.05), and its action was most probably due to the ability of flavonoids (rutin, epicatechin) and ferulic and caffeic acids to inhibit synthesis and neutralize reactive species, to reduce the redox-active iron pool, and to inhibit lipid peroxidation. In this study, we propose an innovative method for counteracting GM nephrotoxicity with a high efficiency and low cost, but with the disadvantage of the multifactorial environmental variability of the content of SN extracts.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| | - Orsolya Sarpataky
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania;
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Elena Cristina Crăciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Delia Bunea Jivănescu
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, Nutrition, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Victoria Emilia Singurean
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Maria Crișan
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Oana Bianca Groza
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Georgiana Smaranda Martiș (Petruț)
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| |
Collapse
|
5
|
Adenan MNH, Yazan LS, Christianus A, Md Hashim NF, Mohd Noor S, Shamsudin S, Ahmad Bahri FJ, Abdul Rahim K. Radioprotective Effects of Kelulut Honey in Zebrafish Model. Molecules 2021; 26:1557. [PMID: 33809054 PMCID: PMC8000245 DOI: 10.3390/molecules26061557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) on zebrafish (Danio rerio) embryos. Viable zebrafish embryos at 24 hpf were dechorionated and divided into four groups, namely untreated and non-irradiated, untreated and irradiated, KH pre-treatment and amifostine pre-treatment. The embryos were first treated with KH (8 mg/mL) or amifostine (4 mM) before irradiation at doses of 11 Gy to 20 Gy using gamma ray source, caesium-137 (137Cs). Lethality and abnormality analysis were performed on all of the embryos in the study. Immunohistochemistry assay was also performed using selected proteins, namely γ-H2AX and caspase-3, to investigate DNA damages and incidences of apoptosis. KH was found to reduce coagulation effects at up to 20 Gy in the lethality analysis. The embryos developed combinations of abnormality, namely microphthalmia (M), body curvature and microphthalmia (BM), body curvature with microphthalmia and microcephaly (BMC), microphthalmia and pericardial oedema (MO), pericardial oedema (O), microphthalmia with microcephaly and pericardial oedema (MCO) and all of the abnormalities (AA). There were more abnormalities developed from 24 to 72 h (h) post-irradiation in all groups. At 96 h post-irradiation, KH was identified to reduce body curvature effect in the irradiated embryos (up to 16 Gy). γ-H2AX and caspase-3 intensities in the embryos pre-treated with KH were also found to be lower than the untreated group at gamma irradiation doses of 11 Gy to 20 Gy and 11 Gy to 19 Gy, respectively. KH was proven to increase the survival rate of zebrafish embryos and exhibited protection against organ-specific abnormality. KH was also found to possess cellular protective mechanism by reducing DNA damage and apoptosis proteins expression.
Collapse
Affiliation(s)
- Mohd Noor Hidayat Adenan
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, Kajang 43000, Malaysia; (M.N.H.A.); (S.S.); (K.A.R.)
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
| | - Latifah Saiful Yazan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Annie Christianus
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia;
| | - Shuhaimi Shamsudin
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, Kajang 43000, Malaysia; (M.N.H.A.); (S.S.); (K.A.R.)
| | - Farah Jehan Ahmad Bahri
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
| | - Khairuddin Abdul Rahim
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, Kajang 43000, Malaysia; (M.N.H.A.); (S.S.); (K.A.R.)
| |
Collapse
|
6
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
7
|
Butt H, Mehmood A, Ejaz A, Humayun S, Riazuddin S. Epigallocatechin-3-gallate protects Wharton's jelly derived mesenchymal stem cells against in vitro heat stress. Eur J Pharmacol 2020; 872:172958. [PMID: 32001222 DOI: 10.1016/j.ejphar.2020.172958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
The deteriorating effects of heat stress abrogate the therapeutic implications of human Wharton's jelly derived mesenchymal stem cells (hWJMSCs) transplanted in burn wounds. Topically applied green tea extract comprising epigallocatechin-3-gallate (EGCG) is known to repair burn wounds. Here, we investigated the protective role of EGCG priming of hWJMSCs against heat-induced stress in vitro along with the involved underlying mechanism. EGCG ameliorated heat-induced injuries as demonstrated by significantly improved cell morphology, viability, triggered cell migration and enhanced expression of heat shock proteins. In addition, decreased lactate dehydrogenase release and reduced percentage of senescent and apoptotic cells were observed. EGCG priming alleviated the detrimental effects of thermal stress in hWJMSCs as observed by significant down-regulation in expression of BCL2 associated X (BAX), interleukin 6 (IL6), and interleukin 1 beta (IL1β) genes, while proliferating cell nuclear antigen (PCNA), BCL2 like 1 (BCL2L1), vascular endothelial growth factor (VEGF), transforming growth factor beta 1 (TGFβ1), hepatocyte growth factor (HGF) and interleukin 4 (IL4) genes were up-regulated. Accompanying gene expression data, EGCG primed cells exposed to heat stress also exhibited remarkably increased secretion of VEGF, HGF, epidermal growth factor (EGF), stromal-derived factor 1 (SDF1) proteins while the reduced release of IL-6, and tumor necrosis factor-alpha (TNF-α) proteins. Further, synergistic activation of extracellular-signal-regulated kinase (ERK) and protein kinase B (PKB/AKT) proteins was observed. These findings suggest that EGCG priming might enhance the therapeutic efficacy of hWJMSCs in the burnt tissue through regulation of ERK and AKT signaling pathways, and improved cellular responses.
Collapse
Affiliation(s)
- Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, Pakistan.
| | - Asim Ejaz
- Adipose Stem Cells Center, Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, USA.
| | - Shamsa Humayun
- Fatima Jinnah Medical University, Sir Ganga Ram Hospital, Lahore, Pakistan.
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of Punjab, Lahore, Pakistan; Jinnah Burn & Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
8
|
Diaz A, Treviño S, Pulido-Fernandez G, Martínez-Muñoz E, Cervantes N, Espinosa B, Rojas K, Pérez-Severiano F, Montes S, Rubio-Osornio M, Jorge G. Epicatechin Reduces Spatial Memory Deficit Caused by Amyloid-β25⁻35 Toxicity Modifying the Heat Shock Proteins in the CA1 Region in the Hippocampus of Rats. Antioxidants (Basel) 2019; 8:113. [PMID: 31052185 PMCID: PMC6562866 DOI: 10.3390/antiox8050113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia and the aggregation of the amyloid beta peptide (Aβ). Aβ25-35 is the most neurotoxic sequence, whose mechanism is associated with the neuronal death in the Cornu Ammonis 1 (CA1) region of the hippocampus (Hp) and cognitive damage. Likewise, there are mechanisms of neuronal survival regulated by heat shock proteins (HSPs). Studies indicate that pharmacological treatment with flavonoids reduces the prevalence of AD, particularly epicatechin (EC), which shows better antioxidant activity. The aim of this work was to evaluate the effect of EC on neurotoxicity that causes Aβ25-35 at the level of spatial memory as well as the relationship with immunoreactivity of HSPs in the CA1 region of the Hp of rats. Our results show that EC treatment reduces the deterioration of spatial memory induced by the Aβ25-35, in addition to reducing oxidative stress and inflammation in the Hp of the animals treated with EC + Aβ25-35. Likewise, the immunoreactivity to HSP-60, -70, and -90 is lower in the EC + Aβ25-35 group compared to the Aβ25-35 group, which coincides with a decrease of dead neurons in the CA1 region of the Hp. Our results suggest that EC reduces the neurotoxicity induced by Aβ25-35, as well as the HSP-60, -70, and -90 immunoreactivity and neuronal death in the CA1 region of the Hp of rats injected with Aβ25-35, which favors an improvement in the function of spatial memory.
Collapse
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. PC. 72540, Mexico.
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. PC. 72540, Mexico.
| | - Guadalupe Pulido-Fernandez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. PC. 72540, Mexico.
| | - Estefanía Martínez-Muñoz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México PC. 04510, Mexico.
| | - Nallely Cervantes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México PC. 04510, Mexico.
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, SSA, Ciudad de Mexico, PC. 14269, Mexico.
| | - Karla Rojas
- Departamento de Ciencias de la Salud, Psicologia. Universidad del Valle de México, sede Sur., Ciudad de Mexico, PC. 04910, Mexico.
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología, SSA, Ciudad de Mexico, PC. 14269, Mexico.
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología, SSA, Ciudad de Mexico, PC. 14269, Mexico.
| | - Moises Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerarivas, SSA, Ciudad de Mexico, PC. 14269, Mexico.
| | - Guevara Jorge
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México PC. 04510, Mexico.
| |
Collapse
|
9
|
Shimura T, Koyama M, Aono D, Kunugita N. Epicatechin as a promising agent to countermeasure radiation exposure by mitigating mitochondrial damage in human fibroblasts and mouse hematopoietic cells. FASEB J 2019; 33:6867-6876. [PMID: 30840834 DOI: 10.1096/fj.201802246rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accidental radiation exposure that is due to a nuclear accident or terrorism using radioactive materials has severe detrimental effects on human health, and it can manifest as acute radiation syndrome depending on the dose and distribution of the radiation. Therefore, the development of radiation countermeasure agents is urgently needed to protect humans against radiation injury. Besides nuclear DNA, the mitochondria are important targets of ionizing radiation (IR) because these organelles generate reactive oxygen species (ROS). Recently, we revealed that mitochondrial ROS-activated cell signaling is associated with IR-induced tumor formation. Here, we investigated the effectiveness of ascorbic acid and epicatechin (EC) in scavenging ROS as radiation countermeasure agents by using human cells and mouse. Preradiation and postradiation treatments with EC mitigate ROS-mediated mitochondrial damage, IR-induced oxidative stress responses including reduction of superoxide dismutase activity, and elevated nuclear factor erythroid 2-related factor 2 expression, and they improve human fibroblast survival. As well as in vitro, EC mitigated ROS-mediated mitochondrial damage after exposure to IR in vivo in mouse platelets. Furthermore, oral administration of EC significantly enhanced the recovery of mouse hematopoietic cells from radiation injury in vivo. In summary, EC is a potentially viable countermeasure agent that is immediately effective against accidental IR exposure by targeting mitochondria-mediated oxidative stress.-Shimura, T., Koyama, M., Aono, D., Kunugita, N. Epicatechin as a promising agent to countermeasure radiation exposure by mitigating mitochondrial damage in human fibroblasts and mouse hematopoietic cells.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and
| | - Mao Koyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and.,Meiji Pharmaceutical University, Tokyo, Japan
| | - Daiki Aono
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and.,Meiji Pharmaceutical University, Tokyo, Japan
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and
| |
Collapse
|
10
|
Barrera-Reyes PK, Hernández-Ramírez N, Cortés J, Poquet L, Redeuil K, Rangel-Escareño C, Kussmann M, Silva-Zolezzi I, Tejero ME. Gene expression changes by high-polyphenols cocoa powder intake: a randomized crossover clinical study. Eur J Nutr 2018; 58:1887-1898. [PMID: 29948216 PMCID: PMC6647247 DOI: 10.1007/s00394-018-1736-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Purpose To assess the effect of the intake of a single dose of high-polyphenols cocoa on gene expression in peripheral mononuclear cells (PBMCs), and analyze conjugated (−)-epicatechin metabolites in plasma, which may be related with an antioxidant response in healthy human. Methods A randomized, controlled, double-blind, cross-over, clinical trial in healthy young adults who consumed a single dose of high-polyphenols cocoa powder and maltodextrins as control, with a one-week washout period. Analysis of circulating metabolites, plasma antioxidant capacity and gene expression changes in PBMCs were performed under fasting conditions and 2-h after treatment using microarray in a subsample. Pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). Results Twenty healthy participants (9 F) were included in the study. A significant increase in circulating (−)-epicatechin metabolites was found after cocoa intake in all participants without related changes in antioxidant capacity of plasma. The metabolites profile slightly varied across subjects. Treatments triggered different transcriptional changes in PBMC. A group of 98 genes showed changes in expression after cocoa treatment, while only 18 were modified by control. Differentially expressed genes included inflammatory cytokines and other molecules involved in redox balance. Gene and network analysis after cocoa intake converged in functions annotated as decreased production of reactive oxygen species (p = 9.58E−04), decreased leukocyte activation (p = 4E−03) and calcium mobilization (p = 2.51E–05). Conclusions No association was found between conjugated metabolites in plasma and antioxidant capacity. Changes in PBMCs gene expression suggest anti-inflammatory effects. Electronic supplementary material The online version of this article (10.1007/s00394-018-1736-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P K Barrera-Reyes
- Nutrigenomics and Nutrigenetics, National Institute of Genomic Medicine, 14610, Mexico City, Mexico
| | - N Hernández-Ramírez
- Nutrigenomics and Nutrigenetics, National Institute of Genomic Medicine, 14610, Mexico City, Mexico
| | - J Cortés
- Nutrigenomics and Nutrigenetics, National Institute of Genomic Medicine, 14610, Mexico City, Mexico
| | - L Poquet
- Vitamins and Phytonutrients, Nestlé Research Centre, 1000, Lausanne, Switzerland
| | - K Redeuil
- Vitamins and Phytonutrients, Nestlé Research Centre, 1000, Lausanne, Switzerland
| | - C Rangel-Escareño
- Computational Genomics, National Institute of Genomic Medicine, 14610, Mexico City, Mexico
| | - M Kussmann
- Systems Nutrition, Metabonomics and Proteomics, Nestlé Institute of Health Sciences, 1015, Lausanne, Switzerland.,Liggins Institute, 1142, Auckland, New Zealand
| | - I Silva-Zolezzi
- Metabolic Programming, Nestlé Research Centre, 1000, Lausanne, Switzerland
| | - M E Tejero
- Nutrigenomics and Nutrigenetics, National Institute of Genomic Medicine, 14610, Mexico City, Mexico.
| |
Collapse
|
11
|
Nikseresht M, Kamali AM, Rahimi HR, Delaviz H, Toori MA, Kashani IR, Mahmoudi R. The Hydroalcoholic Extract of Matricaria chamomilla Suppresses Migration and Invasion of Human Breast Cancer MDA-MB-468 and MCF-7 Cell Lines. Pharmacognosy Res 2017; 9:87-95. [PMID: 28250660 PMCID: PMC5330110 DOI: 10.4103/0974-8490.199778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Matricaria chamomilla is an aromatic plant with antioxidant, anticancer, and anti-inflammatory properties. However, the inhibitory role of M. chamomilla on migration and invasion of human breast cancer cells remains unclear. Objective: This study investigated the methods to evaluate these anticancer mechanisms of M. chamomilla on human breast cancer MCF-7 and MDA-MB-468 cell lines. Materials and Methods: The cells were treated with hydroalcoholic extract of M. chamomilla at different concentrations (50–1300 μg/mL) for 24, 48, and 72 h in a culture medium containing 10% fetal bovine serum. This study quantified the 50% growth inhibition concentrations (IC50) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; apoptosis and necrosis through Hoechst 33342/propidium iodide staining; cell proliferation and clone formation by clonogenic assay as well as cellular migration, invasion, and attachment. After 24, 48, and 72 h of treatment, the IC50levels were 992 ± 2.3 μg/mL, 893 ± 5.4 μg/mL, and 785 ± 4.8 μg/mL against MDA-MB-468, respectively, and 1288 ± 5.6 μg/mL, 926 ± 2.5 μg/mL, and 921 ± 3.5 μg/mL, against MCF-7, respectively. Furthermore, increasing the extract concentrations induced cellular apoptosis and necrosis and decreased cellular invasion or migration through 8 μm pores, colonization and attachment in a dose-dependent manner. Results: It indicated time- and dose-dependent anti-invasive and antimigrative or proliferative and antitoxic effects of hydroalcoholic extract of aerial parts of chamomile on breast cancer cells. Conclusion: This study demonstrated an effective plant in preventing or treating breast cancer. SUMMARY Antioxidant compounds in Matricaria chamomilla have anticancer effects. Hydroalcoholic extract of M. chamomilla controls cellular proliferation and apoptosis induction. Hoechst 33342/propidium iodide staining suggested that the extract induces apoptosis more than necrosis. Hydroalcoholic extract of M. chamomilla prevents colonization and cellular migration of human breast cancer MDA-MB-468 and MCF-7 cell lines in a time- and dose-dependent manner. M. chamomilla has low cytotoxic effects on natural cells.
Abbreviations Used: IARC: International Agency for Research on Cancer; WHO: World Health Organization; FBS: Fetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; PI: Propidium iodide; LN: Live cells with normal nucleus; LA: Live cells with apoptized nucleus; DN: Dead cells with normal nucleus; DA: Dead cells with apoptized nucleus; BSA: Bovine serum albumin; ANOVA: Analysis of variance; IC50: 50% growth inhibition concentration; GSE: Grape seed extract
Collapse
Affiliation(s)
- Mohsen Nikseresht
- Department of Biochemistry, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Mohammad Kamali
- Student Research Committee, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamid Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamdollah Delaviz
- Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Akbartabar Toori
- Department of Nutrition, Social Determinants of Health Research Center, Faculty of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahmoudi
- Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
12
|
Proshkina E, Lashmanova E, Dobrovolskaya E, Zemskaya N, Kudryavtseva A, Shaposhnikov M, Moskalev A. Geroprotective and Radioprotective Activity of Quercetin, (-)-Epicatechin, and Ibuprofen in Drosophila melanogaster. Front Pharmacol 2016; 7:505. [PMID: 28066251 PMCID: PMC5179547 DOI: 10.3389/fphar.2016.00505] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
The modulation of longevity genes and aging-associated signaling pathways using pharmacological agents is one of the potential ways to prolong the lifespan and increase the vitality of an organism. Phytochemicals flavonoids and non-steroidal anti-inflammatory drugs have a large potential as geroprotectors. The goal of the present study was to investigate the effects of long-term and short-term consumption of quercetin, (-)-epicatechin, and ibuprofen on the lifespan, resistance to stress factors (paraquat, hyperthermia, γ-radiation, and starvation), as well as age-dependent physiological parameters (locomotor activity and fecundity) of Drosophila melanogaster. The long-term treatment with quercetin and (-)-epicatechin didn't change or decreased the lifespan of males and females. In contrast, the short-term treatment with flavonoids had a beneficial effect and stimulated the resistance to paraquat and acute γ-irradiation. The short-term ibuprofen consumption had a positive effect on the lifespan of females when it was carried out at the middle age (30–40 days), and to the survival of flies under conditions of oxidative and genotoxic stresses. However, it didn't change the lifespan of males and females after the treatment during first 10 days of an imago life. Additionally, quercetin, (-)-epicatechin, and ibuprofen decreased the spontaneous locomotor activity of males, but had no effect of stimulated the physical activity and fecundity of females. Revealed quercetin, (-)-epicatechin, and ibuprofen activity can be associated with the stimulation of stress response mechanisms through the activation of pro-longevity pathways, or the induction of hormesis.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS) Syktyvkar, Russia
| | - Ekaterina Lashmanova
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology (MIPT) Dolgoprudny, Russia
| | - Eugenia Dobrovolskaya
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS) Syktyvkar, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS)Syktyvkar, Russia; Department of Ecology, Institute of Natural Sciences, Syktyvkar State UniversitySyktyvkar, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology (EIMB), Russian Academy of Sciences (RAS) Moscow, Russia
| | - Mikhail Shaposhnikov
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS)Syktyvkar, Russia; Department of Ecology, Institute of Natural Sciences, Syktyvkar State UniversitySyktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS)Syktyvkar, Russia; Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology (MIPT)Dolgoprudny, Russia; Department of Ecology, Institute of Natural Sciences, Syktyvkar State UniversitySyktyvkar, Russia; Engelhardt Institute of Molecular Biology (EIMB), Russian Academy of Sciences (RAS)Moscow, Russia
| |
Collapse
|
13
|
Gouveia B, Macedo T, Santos J, Barberino R, Menezes V, Müller M, Almeida J, Figueiredo J, Matos M. Supplemented base medium containing Amburana cearensis associated with FSH improves in vitro development of isolated goat preantral follicles. Theriogenology 2016; 86:1275-84. [DOI: 10.1016/j.theriogenology.2016.04.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
|
14
|
Jittreetat T, Shin YS, Hwang HS, Lee BS, Kim YS, Sannikorn P, Kim CH. Tolfenamic Acid Inhibits the Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma: Involvement of p38-Mediated Down-Regulation of Slug. Yonsei Med J 2016; 57:588-98. [PMID: 26996556 PMCID: PMC4800346 DOI: 10.3349/ymj.2016.57.3.588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/22/2015] [Accepted: 08/23/2015] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to exhibit antitumor effects in various cancers apart from nasopharyngeal cancer (NPC). NPC exhibits high invasiveness, as well as metastatic potential, and patients continue to suffer from residual, recurrent, or metastatic disease even after chemoradiation therapy. Therefore, new treatment strategies are needed for NPC. In this study, we investigated the efficacy and molecular mechanisms of TA in NPC treatment. MATERIALS AND METHODS TA-induced cell death was detected by cell viability assay in the NPC cell lines, HNE1 and HONE1. Wound healing assay, invasion assay, and Western blot analysis were used to evaluate the antitumor effects of TA in NPC cell lines. RESULTS Treatment with TA suppressed the migration and invasion of HNE1 and HONE1 cells. Hepatocyte growth factor enhanced the proliferation, migration, and invasion abilities of NPC cells. This enhancement was successfully inhibited by TA treatment. Treatment with TA increased phosphorylation of p38, and the inhibition of p38 with SB203580 reversed the cytotoxic, anti-invasive, and anti-migratory effects of TA treatment in NPC cell lines. Moreover, inhibition of p38 also reversed the decrease in expression of Slug that was induced by TA treatment. CONCLUSION In conclusion, the activation of p38 plays a role in mediating TA-induced cytotoxicity and inhibition of invasion and migration via down-regulation of Slug.
Collapse
Affiliation(s)
- Tatsanachat Jittreetat
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Center of Excellent in Otorhinolaryngology, Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hye Sook Hwang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yeon Soo Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Phakdee Sannikorn
- Center of Excellent in Otorhinolaryngology, Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand.
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea.
| |
Collapse
|
15
|
Shin YS, Cha HY, Lee BS, Kang SU, Hwang HS, Kwon HC, Kim CH, Choi EC. Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death. Cancer Res Treat 2015; 48:738-52. [PMID: 26511816 PMCID: PMC4843729 DOI: 10.4143/crt.2015.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/31/2015] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. MATERIALS AND METHODS Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. RESULTS Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. CONCLUSION Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.
Collapse
Affiliation(s)
- Yoo Seob Shin
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Young Cha
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Korea
| | - Sung Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Korea
| | - Hye Sook Hwang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Hak Cheol Kwon
- Natural Medicine Center, KIST Gangneung Institute, Gangneung, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Korea
| | - Eun Chang Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181260. [PMID: 26180580 PMCID: PMC4477097 DOI: 10.1155/2015/181260] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023]
Abstract
With recent insight into the mechanisms involved in diseases, such as cardiovascular disease, cancer, stroke, neurodegenerative diseases, and diabetes, more efficient modes of treatment are now being assessed. Traditional medicine including the use of natural products is widely practiced around the world, assuming that certain natural products contain the healing properties that may in fact have a preventative role in many of the diseases plaguing the human population. This paper reviews the biological effects of a group of natural compounds called polyphenols, including apigenin, epigallocatechin gallate, genistein, and (-)-epicatechin, with a focus on the latter. (-)-Epicatechin has several unique features responsible for a variety of its effects. One of these is its ability to interact with and neutralize reactive oxygen species (ROS) in the cell. (-)-Epicatechin also modulates cell signaling including the MAP kinase pathway, which is involved in cell proliferation. Mutations in this pathway are often associated with malignancies, and the use of (-)-epicatechin holds promise as a preventative agent and as an adjunct for chemotherapy and radiation therapy to improve outcome. This paper discusses the potential of some phenolic compounds to maintain, protect, and possibly reinstate health.
Collapse
|
17
|
Dimri M, Joshi J, Chakrabarti R, Sehgal N, Sureshbabu A, Kumar IP. Todralazine protects zebrafish from lethal effects of ionizing radiation: role of hematopoietic cell expansion. Zebrafish 2014; 12:33-47. [PMID: 25517940 DOI: 10.1089/zeb.2014.0992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Johns Hopkins Clinical Compound Library (JHCCL), a collection of Food and Drug Administration (FDA)-approved small molecules (1400), was screened in silico for identification of novel β2AR blockers and tested for hematopoietic stem cell (HSC) expansion and radioprotection in zebrafish embryos. Docking studies, followed by the capacity to hasten erythropoiesis, identified todralazine (Binding energy, -8.4 kcal/mol) as a potential HSC-modulating agent. Todralazine (5 μM) significantly increased erythropoiesis in caudal hematopoietic tissue (CHT) in wild-type and anemic zebrafish embryos (2.33- and 1.44-folds, respectively) when compared with untreated and anemic control groups. Todralazine (5 μM) treatment also led to an increased number of erythroid progenitors, as revealed from the increased expression of erythroid progenitor-specific genes in the CHT region. Consistent with these effects, zebrafish embryos, Tg(cmyb:gfp), treated with 5 μM todralazine from 24 to 36 hours post fertilization (hpf) showed increased (approximately two-folds) number of HSCs at the aorta-gonad-mesonephros region (AGM). Similarly, expression of HSC marker genes, runx1 (3.3-folds), and cMyb (1.41-folds) also increased in case of todralazine-treated embryos, further supporting its HSC expansion potential. Metoprolol, a known beta blocker, also induced HSC expansion (1.36- and 1.48-fold increase in runx1 and cMyb, respectively). Todralazine (5 μM) when added 30 min before 20 Gy gamma radiation, protected zebrafish from radiation-induced organ toxicity, apoptosis, and improved survival (80% survival advantage over 6 days). The 2-deoxyribose degradation test further suggested hydroxyl (OH) radical scavenging potential of todralazine, and the same is recapitulated in vivo. These results suggest that todralazine is a potential HSC expanding agent, which might be acting along with important functions, such as antioxidant and free radical scavenging, in manifesting radioprotection.
Collapse
Affiliation(s)
- Manali Dimri
- 1 Radiation Biosciences Division, Institute of Nuclear Medicine and Allied Sciences , Defense Research and Development Organization, Delhi, India
| | | | | | | | | | | |
Collapse
|
18
|
Elbaz HA, Lee I, Antwih DA, Liu J, Hüttemann M, Zielske SP. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PLoS One 2014; 9:e88322. [PMID: 24516636 PMCID: PMC3916420 DOI: 10.1371/journal.pone.0088322] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/13/2014] [Indexed: 12/27/2022] Open
Abstract
Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (-)-epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (-)-epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (-)-Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (-)-Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF) of 1.7, 1.5, and 1.2, respectively. (-)-Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (-)-Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (-)-epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.
Collapse
Affiliation(s)
- Hosam A. Elbaz
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Wayne State University and Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Deborah A. Antwih
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan, United States of America
- Wayne State University and Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Wayne State University and Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Cardiovascular Research Institute, Wayne State University, Detroit, Michigan, United States of America
- Wayne State University and Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Steven P. Zielske
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan, United States of America
- Wayne State University and Karmanos Cancer Institute, Detroit, Michigan, United States of America
| |
Collapse
|