1
|
Clement K, Nemec-Bakk AS, Jun SR, Sridharan V, Patel CM, Williams DK, Newhauser WD, Willey JS, Williams J, Boerma M, Chancellor JC, Koturbash I. Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:17-27. [PMID: 39841235 DOI: 10.1007/s00411-025-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.5 Gy, or 1.5 Gy simplified simulated 5 ion GCR (GCRsim). Exposure to microgravity was simulated using hindlimb unloading (HLU). At nine months post exposure, the mice were terminated to assess for the presence of exposure-induced epigenetic alterations. DNA hypermethylation in the 5'-untranslated regions of Lx_III, MdFanc_I, and MdMus_II families of the Long Interspersed Nucleotide Element 1 (LINE-1) was observed in the lungs of male mice. These effects were accompanied by increases in the expression of DNA methyltransferases Dnmt1 and Dnmt3a, and methyl-binding protein, MecP2. Trends towards DNA hypomethylation, although insignificant, were observed in the lungs of female mice in the HLU + 1.5 Gy GCRsim group. Altogether, our findings suggest persistent and sex-specific epigenetic reprogramming in the mouse lung and suggests that the DNA methylation status of LINE-1 can serve as a robust and reliable biomarker of previous radiation exposure.
Collapse
Affiliation(s)
- Kirsten Clement
- Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Ashley S Nemec-Bakk
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Chirayu M Patel
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - D Keith Williams
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Mary Bird Perkins Cancer Center, Louisiana State University, 439-B Nicholson Hall, Tower Dr, Baton Rouge, LA, 70803-4001, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Jeffrey C Chancellor
- Department of Medical Physiology, College of Medicine, Medical Research and Education Building II, Texas A&M University, 8447 Riverside Pkwy, Office, 341, Bryan, TX, 77807, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Impey S, Raber J. Irradiation and Alterations in Hippocampal DNA Methylation. EPIGENOMES 2024; 8:27. [PMID: 39051185 PMCID: PMC11270359 DOI: 10.3390/epigenomes8030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during and following space missions. The mechanisms mediating the effects of irradiation on the hippocampus might be associated with alterations in hippocampal DNA methylation. Changes in cytosine methylation involving the addition of a methyl group to cytosine (5 mC) and especially those involving the addition of a hydroxy group to 5 mC (hydroxymethylcytosine or 5 hmC) play a key role in regulating the expression of genes required for hippocampal function. In this review article, we will discuss the effects of radiation on hippocampal DNA methylation and whether these effects are associated with hippocampus-dependent cognitive measures and molecular measures in the hippocampus involved in cognitive measures. We will also discuss whether the radiation-induced changes in hippocampal DNA methylation show an overlap across different doses of heavy ion irradiation and across irradiation with different ions. We will also discuss whether the DNA methylation changes show a tissue-dependent response.
Collapse
Affiliation(s)
- Soren Impey
- Dow Neurobiology Laboratories, Legacy Research Institute Legacy Health Systems, 1225 NE 2nd Ave, Portland, OR 97232, USA
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
3
|
Afshari N, Koturbash I, Boerma M, Newhauser W, Kratz M, Willey J, Williams J, Chancellor J. A Review of Numerical Models of Radiation Injury and Repair Considering Subcellular Targets and the Extracellular Microenvironment. Int J Mol Sci 2024; 25:1015. [PMID: 38256089 PMCID: PMC10816679 DOI: 10.3390/ijms25021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.
Collapse
Affiliation(s)
- Nousha Afshari
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Maria Kratz
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffery Chancellor
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
- Outer Space Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Sun H, Song K, Zhou Y, Ding JF, Tu B, Yang JJ, Sha JM, Zhao JY, Zhang Y, Tao H. MTHFR epigenetic derepression protects against diabetes cardiac fibrosis. Free Radic Biol Med 2022; 193:330-341. [PMID: 36279972 DOI: 10.1016/j.freeradbiomed.2022.10.304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diabetes cardiac fibrosis is associated with altered DNA methylation of fibrogenic genes; however, the underlying mechanisms remain unclear. OBJECTIVES In this study, we investigate the critical role of DNA methylation aberration-associated suppression of MTHFR in diabetes cardiac fibrosis, and the protective effects of folate on diabetes cardiac fibrosis, using cultured cells, animal models, and clinical samples. METHODS AND RESULTS Herein, we report that DNA methylation repression of MTHFR, critically involved in diabetes cardiac fibrosis, mediates the significant protective effects of folate in a mouse model of diabetes cardiac fibrosis induced by STZ. Heart MTHFR expression was markedly suppressed in diabetes cardiac fibrosis patients and mice, accompanied by increased DNMT3A and MTHFR promoter methylation. Knockdown of DNMT3A demethylated MTHFR promoter, recovered the MTHFR loss, and alleviated the diabetes cardiac fibrosis pathology and cardiac fibroblasts pyroptosis. Mechanistically, DNMT3A epigenetically repressed MTHFR expression via methylation of the promoter. Interestingly, folate supplementation can rescue the effect of MTHFR loss in diabetes cardiac fibrosis, suggesting that inactivation of MTHFR through epigenetics is a critical mediator of diabetes cardiac fibrosis. CONCLUSIONS The current study identifies that MTHFR repression due to aberrant DNMT3A elevation and subsequent MTHFR promoter hypermethylation is likely an important epigenetic feature of diabetes cardiac fibrosis, and folate supplementation protects against diabetes cardiac fibrosis.
Collapse
Affiliation(s)
- He Sun
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Ji-Fei Ding
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China; Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Ye Zhang
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China; Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
6
|
Yushkova E. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogaster living for a long time in the zone of the Chernobyl nuclear disaster. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 251-252:106945. [PMID: 35696883 DOI: 10.1016/j.jenvrad.2022.106945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The accident at the Chernobyl Nuclear Power Plant (ChNPP) led to the negative impact of chronic radioactive contamination on populations of organisms associated with the transgenerational transmission of genome instability. When the destabilization of genome, different genetic damages occur, the accumulation of which leads to the formation of mutations, morphological anomalies, and mortality in the offspring. The mechanisms underlying the manifestation of transgenerational events in the offspring of irradiated parents are not well understood. In this study, for the first time, the features of the influence of transposable elements (TEs) on the long-term biological consequences of the ChNPP are considered. In this work, specimens of D. melanogaster obtained from natural populations in 2007 in the areas of the ChNPP with heterogeneous radioactive contamination were studied. The descendants from these populations were maintained in laboratory (inbred) conditions for 160 generations. A stable transgenerational transmission of dominant lethal mutations (DLMs) to the offspring of all studied populations was shown. The DLM frequencies strongly were correlated with the level of survival of offspring. The mean frequencies of recessive sex-linked lethal mutations varied at the level of spontaneous point mutations. The simultaneous presence of P, hobo and I elements indicates that the studied populations do not have a definite cytotype, their phenotypic status is unstable. The behavior of TEs in the genomes of offspring depends not only on parental exposure, but also on origin of population, distance to the ChNPP, and inbred conditions. The obtained results confirm the hypothesis that TEs are involved in transgenerational transmission and accumulation of mutations by the offspring of irradiated parents. The TEs pattern present in the Chernobyl genomes of D. melanogaster is a peculiar of epigenetic mechanism for the regulation of plasticity and adaptation of populations living for many generations under conditions of a technogenically caused radiation background.
Collapse
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia.
| |
Collapse
|
7
|
Huff JL, Plante I, Blattnig SR, Norman RB, Little MP, Khera A, Simonsen LC, Patel ZS. Cardiovascular Disease Risk Modeling for Astronauts: Making the Leap From Earth to Space. Front Cardiovasc Med 2022; 9:873597. [PMID: 35665268 PMCID: PMC9161032 DOI: 10.3389/fcvm.2022.873597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
NASA has recently completed several long-duration missions to the International Space Station and is solidifying plans to return to the Moon, with an eye toward Mars and beyond. As NASA pushes the boundaries of human space exploration, the hazards of spaceflight, including space radiation, levy an increasing burden on astronaut health and performance. The cardiovascular system may be especially vulnerable due to the combined impacts of space radiation exposure, lack of gravity, and other spaceflight hazards. On Earth, the risk for cardiovascular disease (CVD) following moderate to high radiation doses is well-established from clinical, environmental, and occupational exposures (largely from gamma- and x-rays). Less is known about CVD risks associated with high-energy charged ions found in space and increasingly used in radiotherapy applications on Earth, making this a critical area of investigation for occupational radiation protection. Assessing CVD risk is complicated by its multifactorial nature, where an individual's risk is strongly influenced by factors such as family history, blood pressure, and lipid profiles. These known risk factors provide the basis for development of a variety of clinical risk prediction models (CPMs) that inform the likelihood of medical outcomes over a defined period. These tools improve clinical decision-making, personalize care, and support primary prevention of CVD. They may also be useful for individualizing risk estimates for CVD following radiation exposure both in the clinic and in space. In this review, we summarize unique aspects of radiation risk assessment for astronauts, and we evaluate the most widely used CVD CPMs for their use in NASA radiation risk assessment applications. We describe a comprehensive dual-use risk assessment framework that supports both clinical care and operational management of space radiation health risks using quantitative metrics. This approach is a first step in using personalized medicine for radiation risk assessment to support safe and productive spaceflight and long-term quality of life for NASA astronauts.
Collapse
Affiliation(s)
- Janice L. Huff
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
- *Correspondence: Janice L. Huff
| | - Ianik Plante
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Steve R. Blattnig
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Ryan B. Norman
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Mark P. Little
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services (DHHS), Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amit Khera
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa C. Simonsen
- National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States
| | - Zarana S. Patel
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
8
|
Yushkova E. Radiobiological features in offspring of natural populations of Drosophila melanogaster after Chernobyl accident. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:84-97. [PMID: 35275441 DOI: 10.1002/em.22476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In their natural habitats, populations of organisms are faced with different levels of chronic low-intensity radiation, causing a wide range of radiobiological effects (from radiosensitivity to radioadaptive response and hormesis). In this study, specimens of Drosophila melanogaster were selected from territories of the Chernobyl nuclear power plant with different levels of radioactive contamination. The isogenic stocks derived from these specimens represent the genetic systems of current populations and make it possible to study radioresistance and its mechanisms in future generations under controlled laboratory conditions. Previous studies have shown that transgenerational radiation effects at the level of lethal mutations and survival rate are unstable and depend not only on the level of chronic low-intensity irradiation, but also on other factors. A single acute irradiation exposure of offspring whose parents inhabited a site with a higher level of chronic irradiation made it possible to reveal pronounced radioresistant features in the offspring. And the offspring whose parents were exposed to radiation levels close to the natural radiation background, on the contrary, acquired radiosensitive features. Their response to acute exposure includes a high-frequency of lethal mutations and a short lifespan. The differential response to different levels of chronic parental exposure is caused by differences in the activities of certain transposons that destabilize the genome. Our data contribute to the understanding of genetic and epigenetic mechanisms (via transposon activity) of the effect of parental radiation exposure on the health and adaptive potential of populations affected by the technogenically increased radiation background.
Collapse
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia
| |
Collapse
|
9
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222413305. [PMID: 34948098 PMCID: PMC8703695 DOI: 10.3390/ijms222413305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Collapse
|
11
|
Kucher OV, Vydyborets SV. LONG/TERM GENETIC AND EPIGENETIC DISORDERS IN PERSONS EXPOSED TO IONIZING RADIATION AND THEIR DESCENDANTS (review). PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:36-56. [PMID: 34965542 DOI: 10.33145/2304-8336-2021-26-36-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 06/14/2023]
Abstract
The review is devoted to long-term genetic and epigenetic disorders in exposed individuals and their descendants,namely to cytogenetic effects in the Chornobyl NPP accident clean-up workers and their children, DNA methylation as an epigenetic modification of human genome. Data presented in review expand the understanding of risk of the prolonged exposure for the present and future generations, which is one of key problems posed by fundamental radiation genetics and human radiobiology.
Collapse
Affiliation(s)
- O V Kucher
- Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
| | - S V Vydyborets
- Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
| |
Collapse
|
12
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
14
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
15
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
16
|
Kuzmina NS, Lapteva NS, Rusinova GG, Azizova TV, Vyazovskaya NS, Rubanovich AV. Dose Dependence of Hypermethylation of Gene Promoters in Blood Leukocytes in Humans Occupationally Exposed to External γ-Radiation. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019110062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Miousse IR, Skinner CM, Sridharan V, Seawright JW, Singh P, Landes RD, Cheema AK, Hauer-Jensen M, Boerma M, Koturbash I. Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions ( 16O). LIFE SCIENCES IN SPACE RESEARCH 2019; 22:8-15. [PMID: 31421852 PMCID: PMC6703167 DOI: 10.1016/j.lssr.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 05/13/2023]
Abstract
Cardiovascular disease constitutes an important threat to humans after space missions beyond the Earth's magnetosphere. Epigenetic alterations have an important role in the etiology and pathogenesis of cardiovascular disease. Previous research in animal models has shown that protons and 56Fe ions cause long-term changes in DNA methylation and expression of repetitive elements in the heart. However, astronauts will be exposed to a variety of ions, including the smaller fragmented products of heavy ions after they interact with the walls of the space craft. Here, we investigated the effects of 16O on the cardiac methylome and one-carbon metabolism in male C57BL/6 J mice. Left ventricles were examined 14 and 90 days after exposure to space-relevant doses of 0.1, 0.25, or 1 Gy of 16O (600 MeV/n). At 14 days, the two higher radiation doses elicited global DNA hypomethylation in the 5'-UTR of Long Interspersed Nuclear Elements 1 (LINE-1) compared to unirradiated, sham-treated mice, whereas specific LINE-1 elements exhibited hypermethylation at day 90. The pericentromeric major satellites were affected both at the DNA methylation and expression levels at the lowest radiation dose. DNA methylation was elevated, particularly after 90 days, while expression showed first a decrease followed by an increase in transcript abundance. Metabolomics analysis revealed that metabolites involved in homocysteine remethylation, central to DNA methylation, were unaffected by radiation, but the transsulfuration pathway was impacted after 90 days, with a large increase in cystathione levels at the lowest dose. In summary, we observed dynamic changes in the cardiac epigenome and metabolome three months after exposure to a single low dose of oxygen ions.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Charles M Skinner
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John W Seawright
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amrita K Cheema
- Georgetown University Medical Center, Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Washington, DC, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
18
|
Koturbash I. 2017 Michael Fry Award Lecture When DNA is Actually Not a Target: Radiation Epigenetics as a Tool to Understand and Control Cellular Response to Ionizing Radiation. Radiat Res 2018; 190:5-11. [PMID: 29697303 PMCID: PMC6036898 DOI: 10.1667/rr15027.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aside from the generally accepted potential to cause DNA damage, it is becoming increasingly recognized that ionizing radiation has the capability to target the cellular epigenome. Epigenetics unifies the chemical marks and molecules that collectively facilitate the proper reading of genetic material. Among the epigenetic mechanisms of regulation, methylation of DNA is known to be the key player in the postirradiation response by controlling the expression of genetic information and activity of transposable elements. Radiation-induced alterations to DNA methylation may lead to cellular epigenetic reprogramming that, in turn, can substantially compromise the genomic integrity and has been proposed as one of the mechanisms of radiation-induced carcinogenesis. DNA methylation is strongly dependent on the one-carbon metabolism. This metabolic pathway is central to the support of DNA methylation by means of providing the donor of methyl groups, as well as for the synthesis of amino acids. To better understand the mechanisms of radiation-induced health effects, we study how exposure to radiation affects DNA methylation and one-carbon metabolism. Also, a tight interaction that exists between DNA methylation and one-carbon metabolism allows us to simultaneously manipulate both cellular epigenetic and metabolic profiles to modulate the normal and cancerous tissue response to radiotherapy.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
19
|
Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer. Sci Rep 2018; 8:6709. [PMID: 29712937 PMCID: PMC5928241 DOI: 10.1038/s41598-018-24755-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56Fe and 28Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56Fe ion sensitive sites, but not those affected by X ray or 28Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.
Collapse
|
20
|
Trijau M, Asselman J, Armant O, Adam-Guillermin C, De Schamphelaere KAC, Alonzo F. Transgenerational DNA Methylation Changes in Daphnia magna Exposed to Chronic γ Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4331-4339. [PMID: 29486114 DOI: 10.1021/acs.est.7b05695] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our aim was to investigate epigenetic changes in Daphnia magna after a 25-day chronic external γ irradiation (generation F0 exposed to 6.5 μGy·h-1 or 41.3 mGy·h-1) and their potential inheritance by subsequent recovering generations, namely, F2 (exposed as germline cells in F1 embryos) and F3 (the first truly unexposed generation). Effects on survival, growth, and reproduction were observed and DNA was extracted for whole-genome bisulfite sequencing in all generations. Results showed effects on reproduction in F0 but no effect in the subsequent generations F1, F2, and F3. In contrast, we observed significant methylation changes at specific CpG positions in every generation independent of dose rate, with a majority of hypomethylation. Some of these changes were shared between dose rates and between generations. Associated gene functions included gene families and genes that were previously shown to play roles during exposure to ionizing radiation. Common methylation changes detected between generations F2 and F3 clearly showed that epigenetic modifications can be transmitted to unexposed generations, most likely through the germline, with potential implications for environmental risk.
Collapse
Affiliation(s)
- Marie Trijau
- Institut de Radioprotection et de Sûreté Nucléaire , PSE-ENV, SRTE, LECO, Cadarache, Saint-Paul-lèz-Durance 13115 , France
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology , Ghent University , Ghent 9000 , Belgium
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire , PSE-ENV, SRTE, LECO, Cadarache, Saint-Paul-lèz-Durance 13115 , France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire , PSE-ENV, SRTE, LECO, Cadarache, Saint-Paul-lèz-Durance 13115 , France
| | | | - Frédéric Alonzo
- Institut de Radioprotection et de Sûreté Nucléaire , PSE-ENV, SRTE, LECO, Cadarache, Saint-Paul-lèz-Durance 13115 , France
| |
Collapse
|
21
|
Miousse IR, Ewing LE, Kutanzi KR, Griffin RJ, Koturbash I. DNA Methylation in Radiation-Induced Carcinogenesis: Experimental Evidence and Clinical Perspectives. Crit Rev Oncog 2018; 23:1-11. [PMID: 29953365 PMCID: PMC6369919 DOI: 10.1615/critrevoncog.2018025687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ionizing radiation is a valuable tool in many spheres of human life. At the same time, it is a genotoxic agent with a well-established carcinogenic potential. Progress achieved in the last two decades has demonstrated convincingly that ionizing radiation can also target the cellular epigenome. Epigenetics is defined as heritable changes in the expression of genes that are not due to alterations of DNA sequence but consist of specific covalent modifications of chromatin components, such as methylation of DNA, histone modifications, and control performed by non-coding RNAs. Accumulating evidence suggests that DNA methylation, a key epigenetic mechanism involved in the control of expression of genetic information, may serve as one of the driving mechanisms of radiation-induced carcinogenesis. Here, we review the literature on the effects of ionizing radiation on DNA methylation in various biological systems, discuss the role of DNA methylation in radiation carcinogenesis, and provide our opinion on the potential utilization of this knowledge in radiation oncology.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura E. Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kristy R. Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert J. Griffin
- Department of Radiation Oncology, Radiation Biology Division, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
22
|
Schofield PN, Kondratowicz M. Evolving paradigms for the biological response to low dose ionizing radiation; the role of epigenetics. Int J Radiat Biol 2017; 94:769-781. [PMID: 29157078 DOI: 10.1080/09553002.2017.1388548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE In the late 1990s, it had become clear that the long-standing paradigm for the action of radiation on living cells and organisms did not have sufficient power to explain the observed effects of low dose ionizing radiation. The purpose of this commentary is to examine the experiments that lead up to the modification of the classic paradigm consequent on these observations, their historical precedents, and the development of our understanding of the role of epigenetics in low dose radiation effects. RESULTS AND CONCLUSIONS We discuss how parallel advances in epigenetics from developmental biology and cancer studies, and the discovery of epigenetic modifications of chromatin, such as DNA methylation, impacted on the development of an epigenetic paradigm for low dose effects. We also assess the impact of technology development in supporting the paradigm shift. We then examine recent accumulated data on epigenetic modification in response to irradiation since that shift took place, and identify areas where bringing together data from developmental biology and cancer might answer some of the paradoxes and contradictions in this data. We predict that further paradigm shifts are imminent.
Collapse
Affiliation(s)
- Paul N Schofield
- a Department of Physiology, Development, and Neuroscience , University of Cambridge , Cambridge , UK
| | - Monika Kondratowicz
- a Department of Physiology, Development, and Neuroscience , University of Cambridge , Cambridge , UK
| |
Collapse
|
23
|
Koturbash I. LINE-1 in response to exposure to ionizing radiation. Mob Genet Elements 2017; 7:e1393491. [PMID: 29209557 DOI: 10.1080/2159256x.2017.1393491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
It is becoming increasingly recognized that Long Interspersed Nuclear Element, 1 (LINE-1), the most ubiquitous repetitive element in the mammalian genomes, plays an important role in the pathogenesis of disease and in the response to exposure to environmental stressors. Ionizing radiation is a known genotoxic stressor, but it is capable of targeting the cellular epigenome as well. Radiation-induced alterations in LINE-1 DNA methylation are the most frequently observed epigenetic effects of exposure. The extent of this aberrant DNA methylation, however, strongly depends on a number of factors, including the type and dose of radiation. Two other factors are being discussed in this commentary - the evolutionary age and type of the LINE-1 promoter, as well as the type of irradiated cell. This knowledge will further aid in elucidating the mechanisms of response to ionizing radiation exposure, as well in understanding the pathogenesis of the negative health effects associated with exposure.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
24
|
Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana É, Kutanzi KR, Landes RD, Tackett AJ, Hauer-Jensen M, Zhou D, Koturbash I. Inter-Strain Differences in LINE-1 DNA Methylation in the Mouse Hematopoietic System in Response to Exposure to Ionizing Radiation. Int J Mol Sci 2017; 18:ijms18071430. [PMID: 28677663 PMCID: PMC5535921 DOI: 10.3390/ijms18071430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons are the major repetitive elements in mammalian genomes. LINE-1s are well-accepted as driving forces of evolution and critical regulators of the expression of genetic information. Alterations in LINE-1 DNA methylation may lead to its aberrant activity and are reported in virtually all human cancers and in experimental carcinogenesis. In this study, we investigated the endogenous DNA methylation status of the 5′ untranslated region (UTR) of LINE-1 elements in the bone marrow hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs), and mononuclear cells (MNCs) in radioresistant C57BL/6J and radiosensitive CBA/J mice and in response to ionizing radiation (IR). We demonstrated that basal levels of DNA methylation within the 5′-UTRs of LINE-1 elements did not differ significantly between the two mouse strains and were negatively correlated with the evolutionary age of LINE-1 elements. Meanwhile, the expression of LINE-1 elements was higher in CBA/J mice. At two months after irradiation to 0.1 or 1 Gy of 137Cs (dose rate 1.21 Gy/min), significant decreases in LINE-1 DNA methylation in HSCs were observed in prone to radiation-induced carcinogenesis CBA/J, but not C57BL/6J mice. At the same time, no residual DNA damage, increased ROS, or changes in the cell cycle were detected in HSCs of CBA/J mice. These results suggest that epigenetic alterations may potentially serve as driving forces of radiation-induced carcinogenesis; however, future studies are needed to demonstrate the direct link between the LINE-1 DNA hypomethylation and radiation carcinogenesis.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Jianhui Chang
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Lijian Shao
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Étienne Nzabarushimana
- Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA.
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Alan J Tackett
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
25
|
Miousse IR, Tobacyk J, Melnyk S, James SJ, Cheema AK, Boerma M, Hauer-Jensen M, Koturbash I. One-carbon metabolism and ionizing radiation: a multifaceted interaction. Biomol Concepts 2017; 8:83-92. [PMID: 28574375 PMCID: PMC6693336 DOI: 10.1515/bmc-2017-0003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/03/2017] [Indexed: 01/20/2023] Open
Abstract
Ionizing radiation (IR) is a ubiquitous component of our environment and an important tool in research and medical treatment. At the same time, IR is a potent genotoxic and epigenotoxic stressor, exposure to which may lead to negative health outcomes. While the genotoxocity is well described and characterized, the epigenetic effects of exposure to IR and their mechanisms remain under-investigated. In this conceptual review, we propose the IR-induced changes to one-carbon metabolism as prerequisites to alterations in the cellular epigenome. We also provide evidence from both experimental and clinical studies describing the interactions between IR and one-carbon metabolism. We further discuss the potential for the manipulation of the one-carbon metabolism in clinical applications for the purpose of normal tissue protection and for increasing the radiosensitivity of cancerous cells.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Julia Tobacyk
- Departments of Environmental and Occupational Health, and Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - S. Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amrita K. Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
26
|
Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93:457-469. [PMID: 28134023 PMCID: PMC5411327 DOI: 10.1080/09553002.2017.1287454] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. CONCLUSIONS In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.
Collapse
Affiliation(s)
- Isabelle R Miousse
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kristy R Kutanzi
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
27
|
Prior S, Miousse IR, Nzabarushimana E, Pathak R, Skinner C, Kutanzi KR, Allen AR, Raber J, Tackett AJ, Hauer-Jensen M, Nelson GA, Koturbash I. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. ENVIRONMENTAL RESEARCH 2016; 150:470-481. [PMID: 27419368 PMCID: PMC5003736 DOI: 10.1016/j.envres.2016.06.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 05/26/2023]
Abstract
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.
Collapse
Affiliation(s)
- Sara Prior
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Etienne Nzabarushimana
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charles Skinner
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alan J Tackett
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA 92350, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
28
|
Boerma M, Sridharan V, Mao XW, Nelson GA, Cheema AK, Koturbash I, Singh SP, Tackett AJ, Hauer-Jensen M. Effects of ionizing radiation on the heart. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:319-327. [PMID: 27919338 DOI: 10.1016/j.mrrev.2016.07.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
This article provides an overview of studies addressing effects of ionizing radiation on the heart. Clinical studies have identified early and late manifestations of radiation-induced heart disease, a side effect of radiation therapy to tumors in the chest when all or part of the heart is situated in the radiation field. Studies in preclinical animal models have contributed to our understanding of the mechanisms by which radiation may injure the heart. More recent observations in human subjects suggest that ionizing radiation may have cardiovascular effects at lower doses than was previously thought. This has led to examinations of low-dose photons and low-dose charged particle irradiation in animal models. Lastly, studies have started to identify non-invasive methods for detection of cardiac radiation injury and interventions that may prevent or mitigate these adverse effects. Altogether, this ongoing research should increase our knowledge of biological mechanisms of cardiovascular radiation injury, identify non-invasive biomarkers for early detection, and potential interventions that may prevent or mitigate these adverse effects.
Collapse
Affiliation(s)
- Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States.
| | - Vijayalakshmi Sridharan
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States
| | - Xiao-Wen Mao
- Loma Linda University, Department of Basic Sciences, Loma Linda, CA, United States
| | - Gregory A Nelson
- Loma Linda University, Department of Basic Sciences, Loma Linda, CA, United States
| | - Amrita K Cheema
- Georgetown University Medical Center, Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Washington, DC, United States
| | - Igor Koturbash
- University of Arkansas for Medical Sciences, Department of Environment and Occupational Health, Little Rock, AR, United States
| | - Sharda P Singh
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, United States
| | - Alan J Tackett
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, United States
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Surgical Service, Little Rock, AR, United States
| |
Collapse
|
29
|
Rithidech KN, Jangiam W, Tungjai M, Gordon C, Honikel L, Whorton EB. Induction of Chronic Inflammation and Altered Levels of DNA Hydroxymethylation in Somatic and Germinal Tissues of CBA/CaJ Mice Exposed to (48)Ti Ions. Front Oncol 2016; 6:155. [PMID: 27446801 PMCID: PMC4921787 DOI: 10.3389/fonc.2016.00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/10/2016] [Indexed: 11/17/2022] Open
Abstract
Although the lung is one of the target organs at risk for cancer induction from exposure to heavy ions found in space, information is insufficient on cellular/molecular responses linked to increased cancer risk. Knowledge of such events may aid in the development of new preventive measures. Furthermore, although it is known that germinal cells are sensitive to X- or γ-rays, there is little information on the effects of heavy ions on germinal cells. Our goal was to investigate in vivo effects of 1 GeV/n (48)Ti ions (one of the important heavy ions found in the space environment) on somatic (lung) and germinal (testis) tissues collected at various times after a whole body irradiation of CBA/CaJ mice (0, 0.1, 0.25, or 0.5 Gy, delivered at 1 cGy/min). We hypothesized that (48)Ti-ion-exposure induced damage in both tissues. Lung tissue was collected from each mouse from each treatment group at 1 week, 1 month, and 6 months postirradiation. For the testis, we collected samples at 6 months postirradiation. Hence, only late-occurring effects of (48)Ti ions in the testis were studied. There were five mice per treatment group at each harvest time. We investigated inflammatory responses after exposure to (48)Ti ions by measuring the levels of activated nuclear factor kappa B and selected pro-inflammatory cytokines in both tissues of the same mouse. These measurements were coupled with the quantitation of the levels of global 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Our data clearly showed the induction of chronic inflammation in both tissues of exposed mice. A dose-dependent reduction in global 5hmC was found in the lung at all time-points and in testes collected at 6 months postirradiation. In contrast, significant increases in global 5mC were found only in lung and testes collected at 6 months postirradiation from mice exposed to 0.5 Gy of 1 GeV/n (48)Ti ions. Overall, our data showed that (48)Ti ions may create health risks in both lung and testicular tissues.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Chris Gordon
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
30
|
Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res 2016; 787:43-53. [PMID: 26963372 DOI: 10.1016/j.mrfmmm.2016.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ((56)Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation.
Collapse
|
31
|
Boerma M, Nelson GA, Sridharan V, Mao XW, Koturbash I, Hauer-Jensen M. Space radiation and cardiovascular disease risk. World J Cardiol 2015; 7:882-888. [PMID: 26730293 PMCID: PMC4691814 DOI: 10.4330/wjc.v7.i12.882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/18/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.
Collapse
|
32
|
Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J, Olsen RHJ, Raber J, Hauer-Jensen M, Nelson GA, Koturbash I. Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:1-8. [PMID: 26553631 PMCID: PMC4641818 DOI: 10.1016/j.lssr.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 05/15/2023]
Abstract
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.
Collapse
Affiliation(s)
- Etienne Nzabarushimana
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sara Prior
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Isabelle R Miousse
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, 97239, USA
| | - Jacob Raber
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University Portland, OR, 97239, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Igor Koturbash
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
33
|
Rithidech KN, Honikel LM, Reungpathanaphong P, Tungjai M, Jangiam W, Whorton EB. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions. Mutat Res 2015; 781:22-31. [PMID: 26398320 DOI: 10.1016/j.mrfmmm.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 MeV/n (28)Si ions.
Collapse
Affiliation(s)
| | - Louise M Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Paiboon Reungpathanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | | |
Collapse
|
34
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|