1
|
Zhang Z, Zhou Y, Zhang H, Du X, Cao Z, Wu Y, Liu C, Sun Y. Antibacterial Activity and Mechanisms of TroHepc2-22, a Derived Peptide of Hepcidin2 from Golden Pompano ( Trachinotus ovatus). Int J Mol Sci 2023; 24:ijms24119251. [PMID: 37298202 DOI: 10.3390/ijms24119251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepcidin, a cysteine-rich antimicrobial peptide, has a highly conserved gene structure in teleosts, and it plays an essential role in host immune response against various pathogenic bacteria. Nonetheless, few studies on the antibacterial mechanism of hepcidin in golden pompano (Trachinotus ovatus) have been reported. In this study, we synthesized a derived peptide, TroHepc2-22, from the mature peptide of T. ovatus hepcidin2. Our results showed that TroHepc2-22 has superior antibacterial abilities against both Gram-negative (Vibrio harveyi and Edwardsiella piscicida) and Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) bacteria. Based on the results of a bacterial membrane depolarization assay and propidium iodide (PI) staining assay in vitro, TroHepc2-22 displayed antimicrobial activity by inducing the bacterial membrane depolarization and changing the bacterial membrane permeability. Scanning electron microscopy (SEM) visualization illustrated that TroHepc2-22 brought about membrane rupturing and the leakage of the cytoplasm for the bacteria. In addition, TroHepc2-22 was verified to have hydrolytic activity on bacterial genomic DNA in view of the results of the gel retardation assay. In terms of the in vivo assay, the bacterial loads of V. harveyi in the tested immune tissues (liver, spleen, and head kidney) were significantly reduced in T. ovatus, revealing that TroHepc2-22 significantly enhanced the resistance against V. harveyi infection. Furthermore, the expressions of immune-related genes, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin 1-β (IL-1β), IL-6, Toll-like receptor 1 (TLR1), and myeloid differentiation factor 88 (MyD88) were significantly increased, indicating that TroHepc2-22 might regulate inflammatory cytokines and activate immune-related signaling pathways. To summarize, TroHepc2-22 possesses appreciable antimicrobial activity and plays a vital role in resisting bacterial infection. The observation of our present study unveils the excellent application prospect of hepcidin as a substitute for antibiotics to resist pathogenic microorganisms in teleosts.
Collapse
Affiliation(s)
- Zhengshi Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Han Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Xiangyu Du
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Chunsheng Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Miller SJ, Chittajallu S, Sampson C, Fisher A, Unthank JL, Orschell CM. A Potential Role for Excess Tissue Iron in Development of Cardiovascular Delayed Effects of Acute Radiation Exposure. HEALTH PHYSICS 2020; 119:659-665. [PMID: 32868705 PMCID: PMC7541425 DOI: 10.1097/hp.0000000000001314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Murine hematopoietic-acute radiation syndrome (H-ARS) survivors of total body radiation (TBI) have a significant loss of heart vessel endothelial cells, along with increased tissue iron, as early as 4 mo post-TBI. The goal of the current study was to determine the possible role for excess tissue iron in the loss of coronary artery endothelial cells. Experiments used the H-ARS mouse model with gamma radiation exposure of 853 cGy (LD50/30) and time points from 1 to 12 wk post-TBI. Serum iron was elevated at 1 wk post-TBI, peaked at 2 wk post-TBI, and returned to non-irradiated control values by 4 wk post-TBI. A similar trend was seen for transferrin saturation, and both results correlated inversely with red blood cell number. Perls' Prussian Blue staining, used to detect iron deposition in heart tissue sections, showed myocardial iron was present as early as 2 wk following irradiation. Pretreatment of mice with the iron chelator deferiprone decreased tissue iron but not serum iron at 2 wk. Coronary artery endothelial cell density was significantly decreased as early as 2 wk vs. non-irradiated controls (P<0.05), and the reduced density persisted to 12 wk after irradiation. Deferiprone treatment of irradiated mice prevented the decrease in endothelial cell density at 2 and 4 wk post-TBI compared to irradiated, non-treated mice (P<0.03). Taken together, the results suggest excess tissue iron contributes to endothelial cell loss early following TBI and may be a significant event impacting the development of delayed effects of acute radiation exposure.
Collapse
Affiliation(s)
- Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Supriya Chittajallu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Carol Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181
| |
Collapse
|
3
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
4
|
Rittase WB, Muir JM, Slaven JE, Bouten RM, Bylicky MA, Wilkins WL, Day RM. Deposition of Iron in the Bone Marrow of a Murine Model of Hematopoietic Acute Radiation Syndrome. Exp Hematol 2020; 84:54-66. [PMID: 32240658 DOI: 10.1016/j.exphem.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60Co irradiation, 0.6 Gy/min (LD70-90/30). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14-21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an ∼10-fold increase in bone marrow iron at 14-21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin αMβ2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury.
Collapse
Affiliation(s)
- W Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Jeannie M Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - John E Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Roxane M Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Michelle A Bylicky
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD
| | - W Louis Wilkins
- Department of Laboratory Animal Research, Uniformed Services University of Health Sciences, Bethesda, MD
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD.
| |
Collapse
|
5
|
Yoshiyama M, Okamoto Y, Izumi S, Iizuka D. Graphite Furnace Atomic Absorption Spectrometric Evaluation of Iron Excretion in Mouse Urine Caused by Whole-Body Gamma Irradiation. Biol Trace Elem Res 2019; 191:149-158. [PMID: 30506323 DOI: 10.1007/s12011-018-1589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
A procedure for the determination of iron in mice urine using graphite furnace atomic absorption spectrometry was developed. The mice urinary samples contain many organic compounds in the matrix, whose concentrations are approximately 20%, and the value is 30-fold higher compared to those found in human urine. Moreover, only 0.2 mL or less of urine was obtained as a sample volume per urination event. It was difficult to decompose the organic materials in the samples by wet digestion using mineral acids and oxidising agents, because of the tiny volumes. In this experiment, raw urinary samples were placed directly into the graphite tube furnace for analysis. The organic contents were simply ashed during the preheating stages. To facilitate ashing in the furnace, air was invaded from the surroundings by interrupting the stream of argon gas. Atomic absorption was measured at 248.3270 nm (wavelength for atomic absorption), with the background monitored at 247.0658 nm (wavelength for background correction). The optimised instrument operating conditions precluded the use of chemical modification technique. The analytical procedures used are quite simple, i.e. an aliquot of raw urine sample was injected directly into the graphite tube furnace and was followed by a suitable heating programme with no chemical modifier. Therefore, this method is useful for scientists who are not familiar with delicate chemical experiments. The proposed analytical method was applied as a kind of biomarker by determining iron concentrations in urinary samples of mice, which were irradiated with 4 Gy of gamma irradiation to their whole body. The time dependence of the iron concentration was determined, and the iron concentrations increased within 1 day of irradiation exposure, then decreased to ordinal values after several days.
Collapse
Affiliation(s)
- Makoto Yoshiyama
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashihiroshima, 739-8526, Japan
| | - Yasuaki Okamoto
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashihiroshima, 739-8526, Japan.
| | - Shunsuke Izumi
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashihiroshima, 739-8526, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Iizuka D, Izumi S, Suzuki F, Kamiya K. Analysis of a lectin microarray identifies altered sialylation of mouse serum glycoproteins induced by whole-body radiation exposure. JOURNAL OF RADIATION RESEARCH 2019; 60:189-196. [PMID: 30521038 PMCID: PMC6430252 DOI: 10.1093/jrr/rry100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/19/2018] [Indexed: 05/08/2023]
Abstract
Microarrays containing 45 different lectins were analyzed to identify global changes in the glycosylation of serum glycoproteins from mice exposed to whole-body γ-radiation. The results showed that radiation exposure increased and decreased the relative amounts of α-2,3- and α-2,6-sialic acids, respectively. The expression of α-2,3- and α-2,6-sialyltransferase genes in the liver was analyzed to determine whether changes in their expression were responsible for the sialic acid changes. The increase in α-2,3-sialic acid correlated with St3gal5 upregulation after radiation exposure; however, a decrease in St6gal1 expression was not observed. Analysis of a PCR array of genes expressed in irradiated mouse livers revealed that irradiation did not alter the expression of most of the included genes. These results suggest that glycomic screening of serum glycoproteins using lectin microarrays can be a powerful tool for identifying radiation-induced changes in the post-translational addition of sugar moieties to proteins. In addition, the results indicate that altered sialylation of glycoproteins may be an initial response to acute radiation exposure.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
- Corresponding author. Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. Tel: +81-43-206-3160; Fax: +81-43-206-4138;
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima, Japan
| | - Fumio Suzuki
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
7
|
Iizuka D, Yoshioka S, Kawai H, Izumi S, Suzuki F, Kamiya K. Metabolomic screening using ESI-FT MS identifies potential radiation-responsive molecules in mouse urine. JOURNAL OF RADIATION RESEARCH 2017; 58:273-280. [PMID: 27974505 PMCID: PMC5619916 DOI: 10.1093/jrr/rrw112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Indexed: 05/24/2023]
Abstract
The demand for establishment of high-throughput biodosimetric methods is increasing. Our aim in this study was to identify low-molecular-weight urinary radiation-responsive molecules using electrospray ionization Fourier transform mass spectrometry (ESI-FT MS), and our final goal was to develop a sensitive biodosimetry technique that can be applied in the early triage of a radiation emergency medical system. We identified nine metabolites by statistical comparison of mouse urine before and 8 h after irradiation. Time-course analysis showed that, of these metabolites, thymidine and either thymine or imidazoleacetic acid were significantly increased dose-dependently 8 h after radiation exposure; these molecules have already been reported as potential radiation biomarkers. Phenyl glucuronide was significantly decreased 8 h after radiation exposure, irrespective of the dose. Histamine and 1-methylhistamine were newly identified by MS/MS and showed significant, dose-dependent increases 72 h after irradiation. Quantification of 1-methylhistamine by enzyme-linked immunosorbent assay (ELISA) analysis also showed a significant increase 72 h after 4 Gy irradiation. These results suggest that urinary metabolomics screening using ESI-FT MS can be a powerful tool for identifying promising radiation-responsive molecules, and that urinary 1-methylhistamine is a potential radiation-responsive molecule for acute, high-dose exposure.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima 739-8511, Japan
| | - Susumu Yoshioka
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima 739-8511, Japan
| | - Shunsuke Izumi
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Fumio Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima 739-8511, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|