1
|
Nguyen VK, Tsai SW, Cho IC, Chao TC, Hsiao IT, Huang HC, Liaw JW. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:317. [PMID: 39997879 PMCID: PMC11858237 DOI: 10.3390/nano15040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Gold nanoparticles (GNPs) have gained significant attention as multifunctional agents in biomedical applications, particularly for enhancing radiotherapy. Their advantages, including low toxicity, high biocompatibility, and excellent conductivity, make them promising candidates for improving treatment outcomes across various radiation sources, such as femtosecond lasers, X-rays, Cs-137, and proton beams. However, a deeper understanding of their precise mechanisms in radiotherapy is essential for maximizing their therapeutic potential. This review explores the role of GNPs in enhancing reactive oxygen species (ROS) generation through plasmon-induced hot electrons or radiation-induced secondary electrons, leading to cellular damage in organelles such as mitochondria and the cytoskeleton. This additional pathway enhances radiotherapy efficacy, offering new therapeutic possibilities. Furthermore, we discuss emerging trends and future perspectives, highlighting innovative strategies for integrating GNPs into radiotherapy. This comprehensive review provides insights into the mechanisms, applications, and potential clinical impact of GNPs in cancer treatment.
Collapse
Affiliation(s)
- Viet-Khang Nguyen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - I-Chun Cho
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Tsi-Chian Chao
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsiao-Chieh Huang
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
2
|
Vinnikov V, Kochanova D, Vigašová K, Gulati S, Durdík M, Košík P, Marková E, Jakl L, Zastko L, Kontrišová K, Belyaev I. Dose-response curve for induction of unstable chromosome aberrations by 6 MV linear accelerator photons: Analysis of intra-experimental variations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 902:503849. [PMID: 40044372 DOI: 10.1016/j.mrgentox.2025.503849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 05/13/2025]
Abstract
Cytogenetic biodosimetry relies on dose-response curves (DRCs) for each type of radiation that can cause a radiation emergency. We have constructed a DRC based on the dicentric assay. Blood samples from four healthy volunteers were irradiated with acute 6 MV linac photons, 0.46-4.55 Gy; 0.68 and 1.37 Gy doses were used in the 'blind' validation study. Lymphocytes were cultured with variations in time delay in mitogenic stimulation after irradiation (2 vs. 16 h) and mitotic arrest by colchicine (3.5 vs. 16 h). Aberrations were scored in the first division metaphases, ensured by fluorescence-plus-Giemsa staining. DRCs for dicentrics and dicentrics plus centric rings were efficiently fitted using the linear-quadratic model. We show, for the first time, that neither prolonged mitotic arrest nor delayed mitogenic stimulation has any effect on DRC. However, the latter factor caused a significant increase in the yield of the second division metaphase in culture. Inter-donor differences in the DRC for aberrations were not large, but individual changes in the frequencies of second-division cells were highly variable. In the validation study, the DRC combined from all experimental series provided dose estimates that were as accurate as those, obtained using the donors' individual or culture-type specific DRCs. The DRC coefficients in present study were slightly higher than those reported previously for linac beams and close to values for orthovoltage X-rays. Further cytogenetic studies of megavoltage radiation beams require stringent standardization of experimental conditions.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Dominika Kochanova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Katarína Vigašová
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Matúš Durdík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Pavol Košík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Eva Marková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Lukáš Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic; Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ruzomberok, Ružomberok, Slovak Republic, KUR, Nám. A. Hlinku 48, Ružomberok 03401, Slovak Republic.
| | - Kristína Kontrišová
- Department of Radiation Oncology, St. Elisabeth Cancer Institute, Bratislava, Slovak Republic, OUSA, Heydukova 48, Bratislava 81250, Slovak Republic.
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| |
Collapse
|
3
|
Li J, Chabaytah N, Babik J, Behmand B, Bekerat H, Connell T, Evans M, Ruo R, Vuong T, Abbasinejad Enger S. Relative biological effectiveness of clinically relevant photon energies for the survival of human colorectal, cervical, and prostate cancer cell lines. Phys Med Biol 2024; 69:205008. [PMID: 39299263 DOI: 10.1088/1361-6560/ad7d5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective.Relative biological effectiveness (RBE) differs between radiation qualities. However, an RBE of 1.0 has been established for photons regardless of the wide range of photon energies used clinically, the lack of reproducibility in radiobiological studies, and outdated reference energies used in the experimental literature. Moreover, due to intrinsic radiosensitivity, different cancer types have different responses to radiation. This study aimed to characterize the RBE of clinically relevant high and low photon energiesin vitrofor three human cancer cell lines: HCT116 (colon), HeLa (cervix), and PC3 (prostate).Approach.Experiments were conducted following dosimetry protocols provided by the American Association of Physicists in Medicine. Cells were irradiated with 6 MV x-rays, an192Ir brachytherapy source, 225 kVp and 50 kVp x-rays. Cell survival post-irradiation was assessed using the clonogenic assay. Survival fractions were fitted using the linear quadratic model, and survival curves were generated for RBE calculations.Main results.Cell killing was more efficient with decreasing photon energy. Using 225 kVp x-rays as the reference, the HCT116 RBESF0.1for 6 MV x-rays,192Ir, and 50 kVp x-rays were 0.89 ± 0.03, 0.95 ± 0.03, and 1.24 ± 0.04; the HeLa RBESF0.1were 0.95 ± 0.04, 0.97 ± 0.05, and 1.09 ± 0.03, and the PC3 RBESF0.1were 0.84 ± 0.01, 0.84 ± 0.01, and 1.13 ± 0.02, respectively. HeLa and PC3 cells had varying radiosensitivity when irradiated with 225 and 50 kVp x-rays.Significance.This difference supports the notion that RBE may not be 1.0 for all photons through experimental investigations that employed precise dosimetry. It highlights that different cancer types may not have identical responses to the same irradiation quality. Additionally, the RBE of clinically relevant photons was updated to the reference energy of 225 kVp x-rays.
Collapse
Affiliation(s)
- Joanna Li
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Naim Chabaytah
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joud Babik
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Behnaz Behmand
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Hamed Bekerat
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Montreal, Quebec, Canada
| | - Tanner Connell
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Evans
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Russell Ruo
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Te Vuong
- Jewish General Hospital, Montreal, Quebec, Canada
| | - Shirin Abbasinejad Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Held KD, McNamara AL, Daartz J, Bhagwat MS, Rothwell B, Schuemann J. Dose Rate Effects from the 1950s through to the Era of FLASH. Radiat Res 2024; 202:161-176. [PMID: 38954556 PMCID: PMC11426361 DOI: 10.1667/rade-24-00024.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
- National Council on Radiation Protection and Measurements, Bethesda, Maryland 20814
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Bethany Rothwell
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
5
|
Charalampopoulou A, Barcellini A, Peloso A, Vanoli A, Cesari S, Icaro Cornaglia A, Bistika M, Croce S, Cobianchi L, Ivaldi GB, Locati LD, Magro G, Tabarelli de Fatis P, Pullia MG, Orlandi E, Facoetti A. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers (Basel) 2024; 16:2582. [PMID: 39061220 PMCID: PMC11274431 DOI: 10.3390/cancers16142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
- Hadron Academy PhD Course, School for Advanced Studies (IUSS), 27100 Pavia, Italy
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
| | - Andrea Peloso
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Cesari
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Unit of Histology and Embryology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Margarita Bistika
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Collegium Medicum, University of Social Sciences, 90-419 Łodz, Poland
| | | | - Laura Deborah Locati
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Medical Oncology Unit, Istituti Clinici Scientific Maugeri IRCCS, 27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, 27100 Pavia, Italy;
| | | | - Marco Giuseppe Pullia
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angelica Facoetti
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Ilicic K, Dollinger G, Dombrowsky A, Greubel C, Girst S, Sammer M, Siebenwirth C, Schmid E, Friedrich T, Kundrát P, Friedland W, Scholz M, Combs SE, Schmid TE, Reindl J. Enhanced RBE of Particle Radiation Depends on Beam Size in the Micrometer Range. Radiat Res 2024; 201:140-149. [PMID: 38214379 DOI: 10.1667/rade-23-00217.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
High-linear energy transfer (LET) radiation, such as heavy ions is associated with a higher relative biological effectiveness (RBE) than low-LET radiation, such as photons. Irradiation with low- and high-LET particles differ in the interaction with the cellular matter and therefore in the spatial dose distribution. When a single high-LET particle interacts with matter, it results in doses of up to thousands of gray (Gy) locally concentrated around the ion trajectory, whereas the mean dose averaged over the target, such as a cell nucleus is only in the range of a Gy. DNA damage therefore accumulates in this small volume. In contrast, up to hundreds of low-LET particle hits are required to achieve the same mean dose, resulting in a quasi-homogeneous damage distribution throughout the cell nucleus. In this study, we investigated the dependence of RBE from different spatial dose depositions using different focused beam spot sizes of proton radiation with respect to the induction of chromosome aberrations and clonogenic cell survival. Human-hamster hybrid (AL) as well as Chinese hamster ovary cells (CHO-K1) were irradiated with focused low LET protons of 20 MeV (LET = 2.6 keV/µm) beam energy with a mean dose of 1.7 Gy in a quadratic matrix pattern with point spacing of 5.4 × 5.4 µm2 and 117 protons per matrix point at the ion microbeam SNAKE using different beam spot sizes between 0.8 µm and 2.8 µm (full width at half maximum). The dose-response curves of X-ray reference radiation were used to determine the RBE after a 1.7 Gy dose of radiation. The RBE for the induction of dicentric chromosomes and cell inactivation was increased after irradiation with the smallest beam spot diameter (0.8 µm for chromosome aberration experiments and 1.0 µm for cell survival experiments) compared to homogeneous proton radiation but was still below the RBE of a corresponding high LET single ion hit. By increasing the spot size to 1.6-1.8 µm, the RBE decreased but was still higher than for homogeneously distributed protons. By further increasing the spot size to 2.7-2.8 µm, the RBE was no longer different from the homogeneous radiation. Our experiments demonstrate that varying spot size of low-LET radiation gradually modifies the RBE. This underlines that a substantial fraction of enhanced RBE originates from inhomogeneous energy concentrations on the µm scale (mean intertrack distances of low-LET particles below 0.1 µm) and quantifies the link between such energy concentration and RBE. The missing fraction of RBE enhancement when comparing with high-LET ions is attributed to the high inner track energy deposition on the nanometer scale. The results are compared with model results of PARTRAC and LEM for chromosomal aberration and cell survival, respectively, which suggest mechanistic interpretations of the observed radiation effects.
Collapse
Affiliation(s)
- K Ilicic
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - G Dollinger
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - A Dombrowsky
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - C Greubel
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - S Girst
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - M Sammer
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - C Siebenwirth
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - E Schmid
- Department for Anatomy and Cell Biology, Ludwig-Maximilians Universität München, Germany
| | - T Friedrich
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - P Kundrát
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - W Friedland
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - M Scholz
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - S E Combs
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - T E Schmid
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - J Reindl
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| |
Collapse
|
7
|
Juvkam IS, Zlygosteva O, Sitarz M, Thiede B, Sørensen BS, Malinen E, Edin NJ, Søland TM, Galtung HK. Proton Compared to X-Irradiation Induces Different Protein Profiles in Oral Cancer Cells and Their Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:16983. [PMID: 38069306 PMCID: PMC10707519 DOI: 10.3390/ijms242316983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released from cells, and their cargo can alter the function of recipient cells. EVs from X-irradiated cells have been shown to play a likely role in non-targeted effects. However, EVs derived from proton irradiated cells have not yet been studied. We aimed to investigate the proteome of EVs and their cell of origin after proton or X-irradiation. The EVs were derived from a human oral squamous cell carcinoma (OSCC) cell line exposed to 0, 4, or 8 Gy from either protons or X-rays. The EVs and irradiated OSCC cells underwent liquid chromatography-mass spectrometry for protein identification. Interestingly, we found different protein profiles both in the EVs and in the OSCC cells after proton irradiation compared to X-irradiation. In the EVs, we found that protons cause a downregulation of proteins involved in cell growth and DNA damage response compared to X-rays. In the OSCC cells, proton and X-irradiation induced dissimilar cell death pathways and distinct DNA damage repair systems. These results are of potential importance for understanding how non-targeted effects in normal tissue can be limited and for future implementation of proton therapy in the clinic.
Collapse
Affiliation(s)
- Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
| | - Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway;
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Eirik Malinen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Pathology, Oslo University Hospital, 0372 Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
| |
Collapse
|
8
|
Kouri MA, Spyratou E, Kalkou ME, Patatoukas G, Angelopoulou E, Tremi I, Havaki S, Gorgoulis VG, Kouloulias V, Platoni K, Efstathopoulos EP. Nanoparticle-Mediated Radiotherapy: Unraveling Dose Enhancement and Apoptotic Responses in Cancer and Normal Cell Lines. Biomolecules 2023; 13:1720. [PMID: 38136591 PMCID: PMC10742116 DOI: 10.3390/biom13121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer remains a pressing global health concern, necessitating advanced therapeutic strategies. Radiotherapy, a fundamental treatment modality, has faced challenges such as targeted dose deposition and radiation exposure to healthy tissues, limiting optimal outcomes. To address these hurdles, nanomaterials, specifically gold nanoparticles (AuNPs), have emerged as a promising avenue. This study delves into the realm of cervical cancer radiotherapy through the meticulous exploration of AuNPs' impact. Utilizing ex vivo experiments involving cell lines, this research dissected intricate radiobiological interactions. Detailed scrutiny of cell survival curves, dose enhancement factors (DEFs), and apoptosis in both cancer and normal cervical cells revealed profound insights. The outcomes showcased the substantial enhancement of radiation responses in cancer cells following AuNP treatment, resulting in heightened cell death and apoptotic levels. Significantly, the most pronounced effects were observed 24 h post-irradiation, emphasizing the pivotal role of timing in AuNPs' efficacy. Importantly, AuNPs exhibited targeted precision, selectively impacting cancer cells while preserving normal cells. This study illuminates the potential of AuNPs as potent radiosensitizers in cervical cancer therapy, offering a tailored and efficient approach. Through meticulous ex vivo experimentation, this research expands our comprehension of the complex dynamics between AuNPs and cells, laying the foundation for their optimized clinical utilization.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, 265 Riverside St., Lowell, MA 01854, USA
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece
| | - Maria-Eleni Kalkou
- Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Georgios Patatoukas
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Evangelia Angelopoulou
- 2nd Department of Pathology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna Tremi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Vassilis Kouloulias
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| |
Collapse
|
9
|
Liatsou I, Josefsson A, Yu J, Li Z, Davis K, Brayton C, Wang H, Hobbs RF, Sgouros G. Early Normal Tissue Effects and Bone Marrow Relative Biological Effectiveness for an Actinium 225-Labeled HER2/neu-Targeting Antibody. Int J Radiat Oncol Biol Phys 2023; 117:1028-1037. [PMID: 37331568 DOI: 10.1016/j.ijrobp.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE In this study we determined the dose-independent relative biological effectiveness (RBE2) of bone marrow for an anti-HER2/neu antibody labeled with the alpha-particle emitter actinium 225 (225Ac). Hematologic toxicity is often a consequence of radiopharmaceutical therapy (RPT) administration, and dosimetric guidance to the bone marrow is required to limit toxicity. METHODS AND MATERIALS Female neu/N transgenic mice (MMTV-neu) were intravenously injected with 0 to 16.65 kBq of the alpha-particle emitter labeled antibody, 225Ac-DOTA-7.16.4, and euthanized at 1 to 9 days after treatment. Complete blood counts were performed. Femurs and tibias were collected, and bone marrow was isolated from 1 femur and tibia and counted for radioactivity. Contralateral intact femurs were fixed, decalcified, and assessed by histology. Marrow cellularity was the biologic endpoint selected for RBE2 determination. For the reference radiation, both femurs of the mice were photon irradiated with 0 to 5 Gy using a small animal radiation research platform. RESULTS Response as measured by cellularity for the alpha-particle emitter RPT (αRPT) RPT and the external beam radiation therapy were linear and linear quadratic, respectively, as a function of absorbed dose. The resulting dose-independent RBE2 for bone marrow was 6. CONCLUSIONS As αRPT gains prominence, preclinical studies evaluating RBE in vivo will be important in relating to human experience with beta-particle emitter RPT. Such normal tissue RBE evaluations will help mitigate unexpected toxicity in αRPT.
Collapse
Affiliation(s)
- Ioanna Liatsou
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Anders Josefsson
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing Yu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhi Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kaori Davis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cory Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert F Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
11
|
Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14082004. [PMID: 35454910 PMCID: PMC9032169 DOI: 10.3390/cancers14082004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is a light-activated treatment modality, which is being clinically used and further developed for a number of premalignancies, solid tumors, and disseminated cancers. Nanomedicines that facilitate PDT (photonanomedicines, PNMs) have transformed its safety, efficacy, and capacity for multifunctionality. This review focuses on the state of the art in deep-tissue activation technologies for PNMs and explores how their preclinical use can evolve towards clinical translation by harnessing current clinically available instrumentation. Abstract With the continued development of nanomaterials over the past two decades, specialized photonanomedicines (light-activable nanomedicines, PNMs) have evolved to become excitable by alternative energy sources that typically penetrate tissue deeper than visible light. These sources include electromagnetic radiation lying outside the visible near-infrared spectrum, high energy particles, and acoustic waves, amongst others. Various direct activation mechanisms have leveraged unique facets of specialized nanomaterials, such as upconversion, scintillation, and radiosensitization, as well as several others, in order to activate PNMs. Other indirect activation mechanisms have leveraged the effect of the interaction of deeply penetrating energy sources with tissue in order to activate proximal PNMs. These indirect mechanisms include sonoluminescence and Cerenkov radiation. Such direct and indirect deep-tissue activation has been explored extensively in the preclinical setting to facilitate deep-tissue anticancer photodynamic therapy (PDT); however, clinical translation of these approaches is yet to be explored. This review provides a summary of the state of the art in deep-tissue excitation of PNMs and explores the translatability of such excitation mechanisms towards their clinical adoption. A special emphasis is placed on how current clinical instrumentation can be repurposed to achieve deep-tissue PDT with the mechanisms discussed in this review, thereby further expediting the translation of these highly promising strategies.
Collapse
|
12
|
Parisi A, Struelens L, Vanhavere F. Comparison between the results of a recently-developed biological weighting function (V79-RBE 10BWF) and the in vitroclonogenic survival RBE 10of other repair-competent asynchronized normoxic mammalian cell lines and ions not used for the development of the model. Phys Med Biol 2021; 66. [PMID: 34710862 DOI: 10.1088/1361-6560/ac344e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022]
Abstract
728 simulated microdosimetric lineal energy spectra (26 different ions between 1H and 238U, 28 energy points from 1 to 1000 MeV/n) were used in combination with a recently-developed biological weighting function (Parisi et al., 2020) and 571 published in vitro clonogenic survival curves in order to: 1) assess prediction intervals for the in silico results by deriving an empirical indication of the experimental uncertainty from the dispersion in the in vitro hamster lung fibroblast (V79) data used for the development of the biophysical model; 2) explore the possibility of modeling the relative biological effectiveness (RBE) of the 10% clonogenic survival of asynchronized normoxic repair-competent mammalian cell lines other than the one used for the development of the model (V79); 3) investigate the predictive power of the model through a comparison between in silico results and in vitro data for 10 ions not used for the development of the model. At first, different strategies for the assessment of the in silico prediction intervals were compared. The possible sources of uncertainty responsible for the dispersion in the in vitro data were also shortly reviewed. Secondly, also because of the relevant scatter in the in vitro data, no statistically-relevant differences were found between the RBE10 of the investigated different asynchronized normoxic repair-competent mammalian cell lines. The only exception (Chinese Hamster peritoneal fibroblasts, B14FAF28), is likely due to the limited dataset (all in vitro ion data were extracted from a single publication), systematic differences in the linear energy transfer (LET) calculations for the employed very-heavy ions, and the use of reference photon survival curves extracted from a different publication. Finally, the in silico predictions for the 10 ions not used for the model development were in good agreement with the corresponding in vitro data.
Collapse
Affiliation(s)
- Alessio Parisi
- Radiation Protection Dosimetry and Calibration, Studiecentrum voor Kernenergie, Boeretang 200, Mol, Belgiun, Mol, 2400, BELGIUM
| | - Lara Struelens
- Radiation Protection, Dosimetry and Calibration, Belgian Nuclear Research Centre SCK.CEN, Boeretang 200, Mol, 2400, BELGIUM
| | - Filip Vanhavere
- Institute of Advanced Nuclear Systems, Belgian Nuclear Research Centre SCK.CEN, Boeretang 200, B-2400 Mol, Mol, BELGIUM
| |
Collapse
|
13
|
Tsakanova G, Stepanyan A, Arakelova E, Ayvazyan V, Tonoyan V, Arakelyan A, Hildebrandt G, Schültke E. The radioenhancement potential of Schiff base derived copper (II) compounds against lung carcinoma in vitro. PLoS One 2021; 16:e0253553. [PMID: 34143847 PMCID: PMC8213134 DOI: 10.1371/journal.pone.0253553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
For the last years, copper complexes have been intensively implicated in biomedical research as components of cancer treatment. Herewith, we provide highlights of the synthesis, physical measurements, structural characterization of the newly developed Cu(II) chelates of Schiff Bases, Cu(Picolinyl-L-Tryptopahanate)2, Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2, Cu(Nicotinyl-L-Phenylalaninate)2, Cu(Isonicotinyl-L-Phenylalaninate)2, and their radioenhancement capacity at kV and MV ranges of irradiation of human lung carcinoma epithelial cells in vitro. The methods of cell growth, viability and proliferation were used. All compounds exerted very potent radioenhancer capacities in the irradiated lung carcinoma cells at both kV and MV ranges in a 100 μM concentration. At a concentration of 10 μM, only Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2 possessed radioenhancer properties at kV and MV ranges. Cu(Picolinyl-L-Tryptophanate)2 showed radioenhancer properties only at kV range. Cu(Nicotinyl-L-Phenylalaninate)2 and Cu(Isonicotinyl-L-Phenylalaninate)2 showed remarkable radioenhancer activity only at MV range. All compounds acted in dose-dependent manner at both tested energy ranges. These copper (II) compounds, in combination with 1 Gy irradiation at either 120 kV or 6 MV, are more efficient at delaying cell growth of lung cancer cells and at reducing cell viability in vitro than the irradiation administered alone. Thus, we have demonstrated that the studied copper compounds have a good potential for radioenhancement.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | | | - Vahan Tonoyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
14
|
Zhou Q, Howard ME, Tu X, Zhu Q, Denbeigh JM, Remmes NB, Herman MG, Beltran CJ, Yuan J, Greipp PT, Boughey JC, Wang L, Johnson N, Goetz MP, Sarkaria JN, Lou Z, Mutter RW. Inhibition of ATM Induces Hypersensitivity to Proton Irradiation by Upregulating Toxic End Joining. Cancer Res 2021; 81:3333-3346. [PMID: 33597272 PMCID: PMC8260463 DOI: 10.1158/0008-5472.can-20-2960] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Proton Bragg peak irradiation has a higher ionizing density than conventional photon irradiation or the entrance of the proton beam profile. Whether targeting the DNA damage response (DDR) could enhance vulnerability to the distinct pattern of damage induced by proton Bragg peak irradiation is currently unknown. Here, we performed genetic or pharmacologic manipulation of key DDR elements and evaluated DNA damage signaling, DNA repair, and tumor control in cell lines and xenografts treated with the same physical dose across a radiotherapy linear energy transfer spectrum. Radiotherapy consisted of 6 MV photons and the entrance beam or Bragg peak of a 76.8 MeV spot scanning proton beam. More complex DNA double-strand breaks (DSB) induced by Bragg peak proton irradiation preferentially underwent resection and engaged homologous recombination (HR) machinery. Unexpectedly, the ataxia-telangiectasia mutated (ATM) inhibitor, AZD0156, but not an inhibitor of ATM and Rad3-related, rendered cells hypersensitive to more densely ionizing proton Bragg peak irradiation. ATM inhibition blocked resection and shunted more DSBs to processing by toxic ligation through nonhomologous end-joining, whereas loss of DNA ligation via XRCC4 or Lig4 knockdown rescued resection and abolished the enhanced Bragg peak cell killing. Proton Bragg peak monotherapy selectively sensitized cell lines and tumor xenografts with inherent HR defects, and the repair defect induced by ATM inhibitor coadministration showed enhanced efficacy in HR-proficient models. In summary, inherent defects in HR or administration of an ATM inhibitor in HR-proficient tumors selectively enhances the relative biological effectiveness of proton Bragg peak irradiation. SIGNIFICANCE: Coadministration of an ATM inhibitor rewires DNA repair machinery to render cancer cells uniquely hypersensitive to DNA damage induced by the proton Bragg peak, which is characterized by higher density ionization.See related commentary by Nickoloff, p. 3156.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jian Yuan
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Matthew P Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Tamizh Selvan G, Kanagaraj K, Venkatachalam P. The relative biological effectiveness of high-energy clinical 3 and 6 MV X-rays for micronucleus induction in human lymphocytes. Int J Radiat Biol 2021; 97:687-694. [PMID: 33798020 DOI: 10.1080/09553002.2021.1906972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In the modern era of radiotherapy, use of conventional radiation modalities (based on γ-rays) is being replaced by high-energy linear accelerator-based X-rays. As a result of mishandling of equipment or mechanical errors, health workers can be exposed to these high-energy X-rays. Especially in the absence of personnel monitoring devices, biodosimetry with a lower energy X-ray calibration curve may not provide an acceptable dose estimate. Moreover, the relative biological effectiveness (RBE) value assigned for X-rays is the same (ONE) regardless of beam energy (V), employed in diagnosis, interventional medicine, and radiotherapy. Therefore, the purpose of the study is to examine the induced biological effects, measured through micronucleus (MN) formation, of X-rays of different energies (3 and 6 MV X-rays), and to investigate the RBE relative to 225 kVp X-rays. MATERIALS AND METHODS Peripheral blood lymphocytes (PBLs) from healthy donors (n = 6), were irradiated with 225 kVp, 3 MV, and 6 MV energy X-rays and induced biological damage was quantified as MN formation using the cytokinesis blocked MN (CBMN) assay. RESULTS The MN per cell in the X-irradiated samples for the three different X-ray energies showed a significant (p<.0001) dose-dependent increase, when compared to unexposed samples. Aberration frequencies obtained at the same dose for the three different energies showed significant (p<.05) difference for the MN per cell among the energy levels; however, the in vitro dose-response curve parameters (slope, intercept, and coefficient) did not show any significant differences. The estimated dose in the blinded sample was within the 95% confidence intervals of each of the calibration curves. However, overall, the 6 MV dose-response curve coefficients yielded the closest dose estimate to that of the true dose. The calculated RBE values at 5% induced MN for 3 and 6 MV LINAC X-rays were 2.0 ± 0.04 and 0.70 ± 0.01, respectively, and the average RBE for the complete dose-response curves were 1.13 ± 0.04 and 0.80 ± 0.02 relative to 225 kVp X-rays as standard radiation. CONCLUSION The established dose-response curves obtained for PBL exposed to different energy levels of X-rays of 225 kVp, 3 MV, and 6 MV are ready to use for biological dosimetry purposes. The calculated RBE values for the higher energies of X-rays relative to 225 kVp X-rays in this study suggest that RBE of X-rays may not be equal to one, with the true value dependent on the beam energy, the dose and dose rate, and the endpoint investigated.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Lab, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Karthik Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
16
|
Hernández-Bojórquez M, Trejo-Solis C, Lárraga-Gutiérrez JM, Martínez-Dávalos A. Monte Carlo dosimetry of a cell culture irradiation model using a 6 MV X-ray beam. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:244-263. [PMID: 34337349 PMCID: PMC8323830 DOI: 10.20517/cdr.2020.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
- Correspondence Address: Dr. Jac A. Nickoloff, Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Ft. Collins, CO 80523-1681, USA. E-mail:
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| |
Collapse
|
18
|
Howard ME, Denbeigh JM, Debrot EK, Remmes NB, Herman MG, Beltran CJ. A High-Precision Method for In Vitro Proton Irradiation. Int J Part Ther 2020; 7:62-69. [PMID: 33274258 PMCID: PMC7707323 DOI: 10.14338/ijpt-20-00007.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/02/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Although proton therapy has become a well-established radiation modality, continued efforts are needed to improve our understanding of the molecular and cellular mechanisms occurring during treatment. Such studies are challenging, requiring many resources. The purpose of this study was to create a phantom that would allow multiple in vitro experiments to be irradiated simultaneously with a spot-scanning proton beam. Materials and Methods The setup included a modified patient-couch top coupled with a high-precision robotic arm for positioning. An acrylic phantom was created to hold 4 6-well cell-culture plates at 2 different positions along the Bragg curve in a reproducible manner. The proton treatment plan consisted of 1 large field encompassing all 4 plates with a monoenergetic 76.8-MeV posterior beam. For robust delivery, a mini pyramid filter was used to broaden the Bragg peak (BP) in the depth direction. Both a Markus ionization chamber and EBT3 radiochromic film measurements were used to verify absolute dose. Results A treatment plan for the simultaneous irradiation of 2 plates irradiated with high linear energy transfer protons (BP, 7 keV/μm) and 2 plates irradiated with low linear energy transfer protons (entrance, 2.2 keV/μm) was created. Dose uncertainty was larger across the setup for cell plates positioned at the BP because of beam divergence and, subsequently, variable proton-path lengths. Markus chamber measurements resulted in uncertainty values of ±1.8% from the mean dose. Negligible differences were seen in the entrance region (<0.3%). Conclusion The proposed proton irradiation setup allows 4 plates to be simultaneously irradiated with 2 different portions (entrance and BP) of a 76.8-MeV beam. Dosimetric uncertainties across the setup are within ±1.8% of the mean dose.
Collapse
Affiliation(s)
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: A hybrid Monte Carlo study. Phys Med 2020; 80:297-307. [DOI: 10.1016/j.ejmp.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022] Open
|
20
|
Khachonkham S, Mara E, Gruber S, Preuer R, Kuess P, Dörr W, Georg D, Clausen M. RBE variation in prostate carcinoma cells in active scanning proton beams: In-vitro measurements in comparison with phenomenological models. Phys Med 2020; 77:187-193. [PMID: 32871460 DOI: 10.1016/j.ejmp.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE In-vitro radiobiological studies are essential for modelling the relative biological effectiveness (RBE) in proton therapy. The purpose of this study was to experimentally determine the RBE values in proton beams along the beam path for human prostate carcinoma cells (Du-145). RBE-dose and RBE-LETd (dose-averaged linear energy transfer) dependencies were investigated and three phenomenological RBE models, i.e. McNamara, Rørvik and Wilkens were benchmarked for this cell line. METHODS Cells were placed at multiple positions along the beam path, employing an in-house developed solid phantom. The experimental setup reflected the clinical prostate treatment scenario in terms of field size, depth, and required proton energies (127.2-180.1 MeV) and the physical doses from 0.5 to 6 Gy were delivered. The reference irradiation was performed with 200 kV X-ray beams. Respective (α/β) values were determined using the linear quadratic model and LETd was derived from the treatment planning system at the exact location of cells. RESULTS AND CONCLUSION Independent of the cell survival level, all experimental RBE values were consistently higher in the target than the generic clinical RBE value of 1.1; with the lowest RBE value of 1.28 obtained at the beginning of the SOBP. A systematic RBE decrease with increasing dose was observed for the investigated dose range. The RBE values from all three applied models were considerably smaller than the experimental values. A clear increase of experimental RBE values with LETd parameter suggests that proton LET must be taken into consideration for this low (α/β) tissue.
Collapse
Affiliation(s)
- Suphalak Khachonkham
- Department of Radiation Oncology, Medical University Vienna, Austria; Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University Vienna, Austria; University of Applied Science Wiener, Neustadt, Austria
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University Vienna, Austria
| | - Rafael Preuer
- Department of Radiation Oncology, Medical University Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Monika Clausen
- Department of Radiation Oncology, Medical University Vienna, Austria.
| |
Collapse
|
21
|
Li X, McConnell KA, Che J, Ha CS, Lee SE, Kirby N, Shim EY. DNA Dosimeter Measurement of Relative Biological Effectiveness for 160 kVp and 6 MV X Rays. Radiat Res 2020; 194:173-179. [PMID: 32845988 PMCID: PMC9473327 DOI: 10.1667/rr15500.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/09/2020] [Indexed: 09/05/2024]
Abstract
In this work, we developed a DNA dosimeter, consisting of 4-kb DNA strands attached to magnetic streptavidin beads and labeled with fluorescein, to detect double-strand breaks (DSBs). The purpose here was to evaluate whether the DNA dosimeter readings reflect the relative biological effects of 160 kVp and 6 MV X rays. AVarian 600 C/D linac (6 MV) and a Faxitron cabinet X-ray system (160 kVp), both calibrated using traceable methods, were used to deliver high- and low-energy photons, respectively, to DNA dosimeters and multiple cell lines (mNs-5, HT-22 and Daoy). The responses were fit versus dose, and were used to quantify the dose of low-energy photons that produced the same response as that of the high-energy photons, at doses of 3, 6 and 9 Gy. The equivalent doses were utilized to calculate the relative biological effectiveness (RBEDSB and RBEcell survival). Additionally, a neutral comet assay was performed to measure the amount of intracellular DNA DSB, and ultimately the RBEcomet assay. The results of this work showed 160-kVp photon RBE values and 95% confidence intervals of 1.12 ± 0.04 (mNS-5), 1.16 ± 0.06 (HT-22), 1.25 ± 0.09 (Daoy) and 1.21 ± 0.24 (DNA dosimeter) at 9 Gy and 1.32 ± 0.16 (comet assay) at 3 Gy. Within the current error, the DNA dosimeter measured RBEDSB values in agreement with the RBEcell survival and assay from the cell survival and comet assay RBEcomet measurements. These results suggest that the DNA dosimeter can measure the changes in the radiobiological effects from different energy photons.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Kristen Alycia McConnell
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Jun Che
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Chul Soo Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Sang Eun Lee
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Eun Yong Shim
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| |
Collapse
|
22
|
Howard ME, Herman MG, Grams MP. Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS One 2020; 15:e0233562. [PMID: 32437474 PMCID: PMC7241712 DOI: 10.1371/journal.pone.0233562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022] Open
Abstract
Radiochromic film (RCF) has several advantageous characteristics which make it an attractive dosimeter for many clinical tasks in radiation oncology. However, knowledge of and strict adherence to complicated protocols in order to produce accurate measurements can prohibit RCF from being widely adopted in the clinic. The purpose of this study was to outline some simple and straightforward RCF fundamentals in order to help clinical medical physicists perform accurate RCF measurements. We describe a process and methodology successfully used in our practice with the hope that it saves time and effort for others when implementing RCF in their clinics. Two RCF analysis software programs which differ in cost and complexity, the commercially available FilmQA Pro package and the freely available ImageJ software, were used to show the accuracy, consistency and limitations of each. The process described resulted in a majority of the measurements across a wide dose range to be accurate within ± 2% of the intended dose using either FilmQA Pro or ImageJ.
Collapse
Affiliation(s)
- Michelle E. Howard
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael G. Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael P. Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
23
|
Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel) 2020; 11:E99. [PMID: 31952359 PMCID: PMC7017136 DOI: 10.3390/genes11010099] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Cells manage to survive, thrive, and divide with high accuracy despite the constant threat of DNA damage. Cells have evolved with several systems that efficiently repair spontaneous, isolated DNA lesions with a high degree of accuracy. Ionizing radiation and a few radiomimetic chemicals can produce clustered DNA damage comprising complex arrangements of single-strand damage and DNA double-strand breaks (DSBs). There is substantial evidence that clustered DNA damage is more mutagenic and cytotoxic than isolated damage. Radiation-induced clustered DNA damage has proven difficult to study because the spectrum of induced lesions is very complex, and lesions are randomly distributed throughout the genome. Nonetheless, it is fairly well-established that radiation-induced clustered DNA damage, including non-DSB and DSB clustered lesions, are poorly repaired or fail to repair, accounting for the greater mutagenic and cytotoxic effects of clustered lesions compared to isolated lesions. High linear energy transfer (LET) charged particle radiation is more cytotoxic per unit dose than low LET radiation because high LET radiation produces more clustered DNA damage. Studies with I-SceI nuclease demonstrate that nuclease-induced DSB clusters are also cytotoxic, indicating that this cytotoxicity is independent of radiogenic lesions, including single-strand lesions and chemically "dirty" DSB ends. The poor repair of clustered DSBs at least in part reflects inhibition of canonical NHEJ by short DNA fragments. This shifts repair toward HR and perhaps alternative NHEJ, and can result in chromothripsis-mediated genome instability or cell death. These principals are important for cancer treatment by low and high LET radiation.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (N.S.); (L.T.)
| | | | | |
Collapse
|
24
|
Choi C, Park S, Cho WK, Choi DH. Cyclin D1 is Associated with Radiosensitivity of Triple-Negative Breast Cancer Cells to Proton Beam Irradiation. Int J Mol Sci 2019; 20:ijms20194943. [PMID: 31591311 PMCID: PMC6801441 DOI: 10.3390/ijms20194943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/21/2023] Open
Abstract
Proton therapy offers a distinct physical advantage over conventional X-ray therapy, but its biological advantages remain understudied. In this study, we aimed to identify genetic factors that contribute to proton sensitivity in breast cancer (BC). Therefore, we screened relative biological effectiveness (RBE) of 230 MeV protons, compared to 6 MV X-rays, in ten human BC cell lines, including five triple-negative breast cancer (TNBC) cell lines. Clonogenic survival assays revealed a wide range of proton RBE across the BC cell lines, with one out of ten BC cell lines having an RBE significantly different from the traditional generic RBE of 1.1. An abundance of cyclin D1 was associated with proton RBE. Downregulation of RB1 by siRNA or a CDK4/6 inhibitor increased proton sensitivity but not proton RBE. Instead, the depletion of cyclin D1 increased proton RBE in two TNBC cell lines, including MDA-MB-231 and Hs578T cells. Conversely, overexpression of cyclin D1 decreased the proton RBE in cyclin D1-deficient BT-549 cells. The depletion of cyclin D1 impaired proton-induced RAD51 foci formation in MDA-MB-231 cells. Taken together, this study provides important clues about the cyclin D1-CDK4-RB1 pathway as a potential target for proton beam therapy in TNBC.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| |
Collapse
|
25
|
Lee BQ, Abbott EM, Able S, Thompson JM, Hill MA, Kartsonaki C, Vallis KA, Falzone N. Radiosensitivity of colorectal cancer to 90Y and the radiobiological implications for radioembolisation therapy. Phys Med Biol 2019; 64:135018. [PMID: 31117062 PMCID: PMC6611228 DOI: 10.1088/1361-6560/ab23c4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Approximately 50% of all colorectal cancer (CRC) patients will develop metastasis to the liver. 90Y selective internal radiation therapy (SIRT) is an established treatment for metastatic CRC. There is still a fundamental lack of understanding regarding the radiobiology underlying the dose response. This study was designed to determine the radiosensitivity of two CRC cell lines (DLD-1 and HT-29) to 90Y β− radiation exposure, and thus the relative effectiveness of 90Y SIRT in relation to external beam radiotherapy (EBRT). A 90Y-source dish was sandwiched between culture dishes to irradiate DLD-1 or HT-29 cells for a period of 6 d. Cell survival was determined by clonogenic assay. Dose absorbed per 90Y disintegration was calculated using the PENELOPE Monte Carlo code. PENELOPE simulations were benchmarked against relative dose measurements using EBT3 GAFchromic™ film. Statistical regression based on the linear-quadratic model was used to determine the radiosensitivity parameters and using R. These results were compared to radiosensitivity parameters determined for 6 MV clinical x-rays and 137Cs γ-ray exposure. Equivalent dose of EBRT in 2 Gy () and 10 Gy () fractions were derived for 90Y dose. HT-29 cells were more radioresistant than DLD-1 for all treatment modalities. Radiosensitivity parameters determined for 6 MV x-rays and 137Cs γ-ray were equivalent for both cell lines. The ratio for 90Y β−-particle exposure was over an order of magnitude higher than the other two modalities due to protraction of dose delivery. Consequently, an 90Y SIRT absorbed dose of 60 Gy equates to an of 28.7 and 54.5 Gy and an of 17.6 and 19.3 Gy for DLD-1 and HT-29 cell lines, respectively. We derived radiosensitivity parameters for two CRC cell lines exposed to 90Y β−-particles, 6 MV x-rays, and 137Cs γ-ray irradiation. These radiobiological parameters are critical to understanding the dose response of CRC lesions and ultimately informs the efficacy of 90Y SIRT relative to other radiation therapy modalities.
Collapse
Affiliation(s)
- Boon Q Lee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom. Joint first authors. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Construction of dose response curves up to 6 Gy for Micronucleus and Dicentric Chromosome Aberration Assay with 6 MV X-ray Beam. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Howard ME, Beltran C, Anderson S, Tseung WC, Sarkaria JN, Herman MG. Investigating Dependencies of Relative Biological Effectiveness for Proton Therapy in Cancer Cells. Int J Part Ther 2018; 4:12-22. [PMID: 30159358 DOI: 10.14338/ijpt-17-00031.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Relative biological effectiveness (RBE) accounts for the differences in biological effect from different radiation types. The RBE for proton therapy remains uncertain, as it has been shown to vary from the clinically used value of 1.1. In this work we investigated the RBE of protons and correlated the biological differences with the underlying physical quantities. Materials and Methods Three cell lines were irradiated (CHO, Chinese hamster ovary; A549, human lung adenocarcinoma; and T98, human glioma) and assessed for cell survival by using clonogenic assay. Cells were irradiated with 71- and 160-MeV protons at depths along the Bragg curve and 6-MV photons to various doses. The dose-averaged lineal energy ( y‒D ) was measured under similar conditions as the cells by using a microdosimeter. Dose-averaged linear energy transfer (LETd) was also calculated by using Monte Carlo (MC) simulations. Survival data were fit by using the linear quadratic model. The RBE values were calculated by comparing the physical dose (D6MV/Dp) that results in 50% (RBE0.5) and 10% (RBE0.1) cell survival, and survival after 2 Gy (RBE2Gy). Results Proton RBE values ranged from 0.89 to 2.40. The RBE for all 3 cell lines increased with decreasing proton energy and was higher at 50% survival than at 10% survival. Additionally, both A549 and T98 cells generally had higher RBE values relative to the CHO cells, indicating a greater biological response to protons. An increase in RBE corresponded with an increase in y‒D and LETd. Conclusion Proton RBE was found to depend on mean proton energy, survival end point, and cell type. Changes in both y‒D and LETd were also found to impact proton RBE values, but consideration of the energy spectrum may provide additional information. The RBE values in this study vary greatly, indicating the clinical value of 1.1 may not be suitable in all cases.
Collapse
Affiliation(s)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Anderson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Howard ME, Beltran C, Anderson S, Tseung WC, Sarkaria JN, Herman MG. Investigating Dependencies of Relative Biological Effectiveness for Proton Therapy in Cancer Cells. Int J Part Ther 2018. [PMID: 30159358 DOI: 10.14338/ijpt-17-0031.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
PURPOSE Relative biological effectiveness (RBE) accounts for the differences in biological effect from different radiation types. The RBE for proton therapy remains uncertain, as it has been shown to vary from the clinically used value of 1.1. In this work we investigated the RBE of protons and correlated the biological differences with the underlying physical quantities. MATERIALS AND METHODS Three cell lines were irradiated (CHO, Chinese hamster ovary; A549, human lung adenocarcinoma; and T98, human glioma) and assessed for cell survival by using clonogenic assay. Cells were irradiated with 71- and 160-MeV protons at depths along the Bragg curve and 6-MV photons to various doses. The dose-averaged lineal energy ( y‒D ) was measured under similar conditions as the cells by using a microdosimeter. Dose-averaged linear energy transfer (LETd) was also calculated by using Monte Carlo (MC) simulations. Survival data were fit by using the linear quadratic model. The RBE values were calculated by comparing the physical dose (D6MV/Dp) that results in 50% (RBE0.5) and 10% (RBE0.1) cell survival, and survival after 2 Gy (RBE2Gy). RESULTS Proton RBE values ranged from 0.89 to 2.40. The RBE for all 3 cell lines increased with decreasing proton energy and was higher at 50% survival than at 10% survival. Additionally, both A549 and T98 cells generally had higher RBE values relative to the CHO cells, indicating a greater biological response to protons. An increase in RBE corresponded with an increase in y‒D and LETd. CONCLUSION Proton RBE was found to depend on mean proton energy, survival end point, and cell type. Changes in both y‒D and LETd were also found to impact proton RBE values, but consideration of the energy spectrum may provide additional information. The RBE values in this study vary greatly, indicating the clinical value of 1.1 may not be suitable in all cases.
Collapse
Affiliation(s)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Anderson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|