1
|
Lane MR, Youngentob KN, Clark RG, Skewes JD, Marsh KJ. Home ranges and movements of an arboreal folivore after wildfire: comparing rehabilitated and non-rehabilitated animals in burnt and unburnt woodlands. MOVEMENT ECOLOGY 2024; 12:75. [PMID: 39627876 PMCID: PMC11613491 DOI: 10.1186/s40462-024-00519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Wildfires can have complex effects on wildlife populations. Understanding how post-fire conditions affect the movement ecology of threatened species can assist in better conservation and management, including informing the release of rescued and rehabilitated animals. The 2019-2020 megafires in Australia resulted in thousands of animals coming into care due to injury or concerns over habitat degradation. This included hundreds of koalas (Phascolarctos cinereus), for which relatively little was known about how fire affected habitat suitability, or when rehabilitated animals could be returned to burnt areas. METHODS We compared the movements of koalas across three experimental groups-non-rehabilitated koalas in burnt habitat, non-rehabilitated koalas in nearby unburnt habitat, and rehabilitated koalas returned to their rescue location in burnt habitat in New South Wales, Australia. We GPS-tracked 32 koalas for up to nine months and compared, across treatment groups, home ranges, mean nightly distance moved, the farthest distance moved from their release site and total displacement distance. RESULTS We found no differences in koala movements and home range size between non-rehabilitated koalas in burnt and unburnt habitat. However, rehabilitated koalas moved farther from their release site, had larger displacement distances, and larger home ranges than non-rehabilitated individuals. Regardless of their experimental group, we also found that males moved further than females each night. Additionally, our resource selection analysis showed that, koalas preferred low and moderately burnt habitats over all other fire severity classes. CONCLUSIONS Experimental frameworks that incorporate "treatment" and "control" groups can help isolate disturbance effects on animal movements. Encouragingly, despite catastrophic wildfires, burnt woodlands provided adequate resources for koalas to persist and recover. Furthermore, rehabilitated koalas re-integrated into the burnt landscape despite moving farther from their release sites than non-rehabilitated individuals. Studies like this improve our understanding of the ecological impacts of fire on species and their habitats, and will be instrumental in informing wildlife management and conservation efforts as wildfires increase in frequency and severity worldwide in response to climate change.
Collapse
Affiliation(s)
- Murraya R Lane
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Kara N Youngentob
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert G Clark
- Research School of Finance, Actuarial Studies and Statistics, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - Karen J Marsh
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Gorman NT, Eichholz MW, Skinner DJ, Schlichting PE, Bastille-Rousseau G. Carnivore space use behaviors reveal variation in responses to human land modification. MOVEMENT ECOLOGY 2024; 12:51. [PMID: 39026354 PMCID: PMC11256472 DOI: 10.1186/s40462-024-00493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Spatial behavior, including home-ranging behaviors, habitat selection, and movement, can be extremely informative in estimating how animals respond to landscape heterogeneity. Responses in these spatial behaviors to features such as human land modification and resources can highlight a species' spatial strategy to maximize fitness and minimize mortality. These strategies can vary on spatial, temporal, and individual scales, and the combination of behaviors on these scales can lead to very different strategies among species. METHODS Harnessing the variation present at these scales, we characterized how species may respond to stimuli in their environments ranging from broad- to fine-scale spatial responses to human modification in their environment. Using 15 bobcat-years and 31 coyote-years of GPS data from individuals inhabiting a landscape encompassing a range of human land modification, we evaluated the complexity of both species' responses to human modification on the landscape through their home range size, habitat selection, and functional response behaviors, accounting for annual, seasonal, and diel variation. RESULTS Bobcats and coyotes used different strategies in response to human modification in their home ranges, with bobcats broadly expanding their home range with increases in human modification and displaying temporal consistency in functional response in habitat selection across both season and time of day. Meanwhile, coyotes did not expand their home ranges with increased human modification, but instead demonstrated fine-scale responses to human modification with habitat selection strategies that sometimes varied by time of day and season, paired with functional responses in selection behaviors. CONCLUSIONS These differences in response to habitat, resources, and human modification between the two species highlighted the variation in spatial behaviors animals can use to exist in anthropogenic environments. Categorizing animal spatial behavior based on these spatiotemporal responses and individual variation can help in predicting how a species will respond to future change based on their current spatial behavior.
Collapse
Affiliation(s)
- Nicole T Gorman
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, IL, USA.
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA.
| | - Michael W Eichholz
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, IL, USA
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | | | | | - Guillaume Bastille-Rousseau
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, IL, USA
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
3
|
Čapkun-Huot C, Blumstein DT, Garant D, Sol D, Réale D. Toward a unified framework for studying behavioural tolerance. Trends Ecol Evol 2024; 39:446-455. [PMID: 38177010 DOI: 10.1016/j.tree.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Behavioural responses are widely held to allow animals to cope with human-induced environmental changes. Less often appreciated is that the absence of behavioural response can also be advantageous. This is particularly true when animals become tolerant to situations that may be perceived as risky, although the actual risk is nonexistent. We provide a framework to understand the causes and consequences of behavioural tolerance. Tolerance can emerge from genetic, epigenetic, or learning mechanisms, each exerting different degrees of influence on its speed of acquisition, reversibility, specificity, and duration. The ultimate impact on fitness hinges on the interplay between these mechanisms and the nature of the stressor. Mechanistic clarity is therefore essential to better understand and manage human-wildlife interactions in the Anthropocene.
Collapse
Affiliation(s)
- Catherine Čapkun-Huot
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal H2X 1Y4, Canada.
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1606, USA
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Canada
| | - Daniel Sol
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain; Centre for Ecological Research and Applied Forestries, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal H2X 1Y4, Canada
| |
Collapse
|
4
|
Broekman MJE, Hilbers JP, Hoeks S, Huijbregts MAJ, Schipper AM, Tucker MA. Environmental drivers of global variation in home range size of terrestrial and marine mammals. J Anim Ecol 2024; 93:488-500. [PMID: 38459628 DOI: 10.1111/1365-2656.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.
Collapse
Affiliation(s)
- Maarten J E Broekman
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jelle P Hilbers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Hill JE, Miller ML, Helton JL, Chipman RB, Gilbert AT, Beasley JC, Dharmarajan G, Rhodes OE. Raccoon spatial ecology in the rural southeastern United States. PLoS One 2023; 18:e0293133. [PMID: 37943745 PMCID: PMC10635488 DOI: 10.1371/journal.pone.0293133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The movement ecology of raccoons varies widely across habitats with important implications for the management of zoonotic diseases such as rabies. However, the spatial ecology of raccoons remains poorly understood in many regions of the United States, particularly in the southeast. To better understand the spatial ecology of raccoons in the southeastern US, we investigated the role of sex, season, and habitat on monthly raccoon home range and core area sizes in three common rural habitats (bottomland hardwood, upland pine, and riparian forest) in South Carolina, USA. From 2018-2022, we obtained 264 monthly home ranges from 46 raccoons. Mean monthly 95% utilization distribution (UD) sizes ranged from 1.05 ± 0.48 km2 (breeding bottomland females) to 5.69 ± 3.37 km2 (fall riparian males) and mean monthly 60% UD sizes ranged from 0.25 ± 0.15 km2 (breeding bottomland females) to 1.59 ± 1.02 km2 (summer riparian males). Males maintained home range and core areas ~2-5 times larger than females in upland pine and riparian habitat throughout the year, whereas those of bottomland males were only larger than females during the breeding season. Home ranges and core areas of females did not vary across habitats, whereas male raccoons had home ranges and core areas ~2-3 times larger in upland pine and riparian compared to bottomland hardwood throughout much of the year. The home ranges of males in upland pine and riparian are among the largest recorded for raccoons in the United States. Such large and variable home ranges likely contribute to elevated risk of zoonotic disease spread by males in these habitats. These results can be used to inform disease mitigation strategies in the southeastern United States.
Collapse
Affiliation(s)
- Jacob E. Hill
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| | - Madison L. Miller
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| | - James L. Helton
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States of America
| | - Richard B. Chipman
- National Rabies Management Program, USDA, APHIS, Wildlife Services, Concord, NH, United States of America
| | - Amy T. Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, United States of America
| | - James C. Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States of America
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
- Odum School of Ecology, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
6
|
Huang CW, Ooi JQ, Yau SY. The landscape ecological view of vertebrate species richness in urban areas across biogeographic realms. Sci Rep 2023; 13:16647. [PMID: 37789152 PMCID: PMC10547837 DOI: 10.1038/s41598-023-43896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Understanding how the spatial arrangement of remnant green spaces in cities complements biodiversity provides an opportunity for synergy between urban development and biological conservation. However, the geography of urbanization is shifting from Europe and North America to Asia and Africa, and more research is needed for fast-growing regions. To understand how shifting urbanization shapes biodiversity patterns, we analyzed the contribution of landscape factors in explaining vertebrate species richness in urban areas across biogeographic realms. We used variation partitioning to quantify and compare the relative importance of landscape factors (composition and configuration) and environmental factors (climate, elevation, and latitude) in explaining vertebrate species richness in landscapes with at least a million inhabitants across biogeographic realms. Our results pointed out that in the Indo-Malayan, the Afrotropical, and the Neotropical realm (on average of 16.46%) and China and India (11.88%), the influence of landscape factors on vertebrate species richness are significantly higher than that of the Palearctic and Nearctic realms (6.48%). Our findings outline the importance of landscape composition and configuration in shaping biodiversity patterns in regions with fast urban growth during the next two decades, such as Africa, Latin America, and Southeastern Asia. We suggest improving land governance and urban planning to construct eco-friendly landscape structures to mitigate biodiversity loss due to urbanization.
Collapse
Affiliation(s)
- Chun-Wei Huang
- General Education Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - Jia Qing Ooi
- Department of Geography, National Taiwan University, Taipei, 10617, Taiwan
| | - Si Ying Yau
- Department of Geography, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
7
|
Dhakal T, Jang GS, Kim M, Kim JH, Park J, Lim SJ, Park YC, Lee DH. Habitat utilization distribution of sika deer ( Cervus nippon). Heliyon 2023; 9:e20793. [PMID: 37867813 PMCID: PMC10585228 DOI: 10.1016/j.heliyon.2023.e20793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Habitat-specific and movement-related behavioral studies are essential for the development of sustainable biodiversity management practices. Although the number of studies on sika deer is increasing, habitat utilization distribution (UD)-related studies remain limited. In this study, we investigated the habitat UD behavior of sika deer (Cervus nippon) using a literature survey and an experimental study on Suncheon Bonghwasan Mountain, South Korea. We reviewed home range-related literature on sika deer published between 1982 and 2019 in order to assess their estimation methods, study region, and research background. We observed that the number of studies on sika deer has increased. The minimum convex polygon (MCP) has been utilized the most to estimate habitat UD, followed by the kernel density (KD), the Brownian bridge model, and a combination of these methods. The average home ranges (95 % utilization distribution) of sika deer from the literature survey were 236.99 ha and 1183.96 ha using the minimum convex polygon and kernel density approaches, respectively. The five female deer in our experimental study on Suncheon Bonghwasan Mountain had a mean home range of 66.831 ± 15.241 ha using the MCP approach and 78.324 ± 20.82 ha using the KD approach. The UD behavior of sika deer explored in this research is expected to benefit future scholars and policymakers when formulating deer management and wildlife conservation strategies.
Collapse
Affiliation(s)
- Thakur Dhakal
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gab-Sue Jang
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minhan Kim
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - JoongYeol Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Jin Lim
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yung-Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Do-Hun Lee
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| |
Collapse
|
8
|
Johnson-Bice SM, Gable TD, Homkes AT, Windels SK, Bump JK, Bruggink JG. Logging, linear features, and human infrastructure shape the spatial dynamics of wolf predation on an ungulate neonate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2911. [PMID: 37602927 DOI: 10.1002/eap.2911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
Humans are increasingly recognized as important players in predator-prey dynamics by modifying landscapes. This trend has been well-documented for large mammal communities in North American boreal forests: logging creates early seral forests that benefit ungulates such as white-tailed deer (Odocoileus virginianus), while the combination of infrastructure development and resource extraction practices generate linear features that allow predators such as wolves (Canis lupus) to travel and forage more efficiently throughout the landscape. Disturbances from recreational activities and residential development are other major sources of human activity in boreal ecosystems that may further alter wolf-ungulate dynamics. Here, we evaluate the influence that several major types of anthropogenic landscape modifications (timber harvest, linear features, and residential infrastructure) have on where and how wolves hunt ungulate neonates in a southern boreal forest ecosystem in Minnesota, USA. We demonstrate that each major anthropogenic disturbance significantly influences wolf predation of white-tailed deer fawns (n = 427 kill sites). In contrast with the "human shield hypothesis" that posits prey use human-modified areas as refuge, wolves killed fawns closer to residential buildings than expected based on spatial availability. Fawns were also killed within recently-logged areas more than expected. Concealment cover was higher at kill sites than random sites, suggesting wolves use senses other than vision, probably olfaction, to detect hidden fawns. Wolves showed strong selection for hunting along linear features, and kill sites were also closer to linear features than expected. We hypothesize that linear features facilitated wolf predation on fawns by allowing wolves to travel efficiently among high-quality prey patches (recently logged areas, near buildings), and also increase encounter rates with olfactory cues that allow them to detect hidden fawns. These findings provide novel insight into the strategies predators use to hunt ungulate neonates and the many ways human activity alters wolf-ungulate neonate predator-prey dynamics, which have remained elusive due to the challenges of locating sites where predators kill small prey. Our research has important management and conservation implications for wolf-ungulate systems subjected to anthropogenic pressures, particularly as the range of overlap between wolves and deer expands and appears to be altering food web dynamics in boreal ecosystems.
Collapse
Affiliation(s)
- Sean M Johnson-Bice
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas D Gable
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Austin T Homkes
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Steve K Windels
- Voyageurs National Park, International Falls, Minnesota, USA
| | - Joseph K Bump
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - John G Bruggink
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
9
|
Caspi T, Johnson JR, Lambert MR, Schell CJ, Sih A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol Evol 2022; 37:1092-1103. [PMID: 36058767 DOI: 10.1016/j.tree.2022.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Plasticity-led evolution is central to evolutionary theory. Although challenging to study in nature, this process may be particularly apparent in novel environments such as cities. We document abundant evidence of plastic behavioral changes in urban animals, including learning, contextual, developmental, and transgenerational plasticities. Using behavioral drive as a conceptual framework, our analysis of notable case studies suggests that plastic behaviors, such as altered habitat use, migration, diurnal and seasonal activity, and courtship, can have faciliatory and cascading effects on urban evolution via spatial, temporal, and mate-choice mechanisms. Our findings highlight (i) the need to incorporate behavioral plasticity more formally into urban evolutionary research and (ii) the opportunity provided by urban environments to study behavioral mechanisms of plasticity-led processes.
Collapse
Affiliation(s)
- Tal Caspi
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Jacob R Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA.
| | - Max R Lambert
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA; Science Division, Habitat Program, Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| |
Collapse
|
10
|
Brunk KM, West EH, Peery MZ, Pidgeon A. Failed despots and the equitable distribution of fitness in a subsidized species. Behav Ecol 2022. [DOI: 10.1093/beheco/arac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Territorial species are often predicted to adhere to an ideal despotic distribution and under-match local food resources, meaning that individuals in high-quality habitat achieve higher fitness than those in low-quality habitat. However, conditions such as high density, territory compression, and frequent territorial disputes in high-quality habitat are expected to cause habitat quality to decline as population density increases and, instead, promote resource matching. We studied a highly human-subsidized and under-matched population of Steller’s jays (Cyanocitta stelleri) to determine how under-matching is maintained despite high densities, compressed territories, and frequent agonistic behaviors, which should promote resource matching. We examined the distribution of fitness among individuals in high-quality, subsidized habitat, by categorizing jays into dominance classes and characterizing individual consumption of human food, body condition, fecundity, and core area size and spatial distribution. Individuals of all dominance classes consumed similar amounts of human food and had similar body condition and fecundity. However, the most dominant individuals maintained smaller core areas that had greater overlap with subsidized habitat than those of subordinates. Thus, we found that (1) jays attain high densities in subsidized areas because dominant individuals do not exclude subordinates from human food subsidies and (2) jay densities do not reach the level necessary to facilitate resource matching because dominant individuals monopolize space in subsidized areas. Our results suggest that human-modified landscapes may decouple dominance from fitness and that incomplete exclusion of subordinates may be a common mechanism underpinning high densities and creating source populations of synanthropic species in subsidized environments.
Collapse
Affiliation(s)
- Kristin M Brunk
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Drive, Madison WI 53706 , USA
| | - Elena H West
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota-Twin Cities , 2003 Upper Buford Circle, St. Paul, MN 55108 , USA
| | - M Zachariah Peery
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Drive, Madison WI 53706 , USA
| | - Anna Pidgeon
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Drive, Madison WI 53706 , USA
| |
Collapse
|
11
|
Regacho T, delBarco-Trillo J. Morphological stability of rural populations supports their use as controls in urban ecology studies. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Gracanin A, Mikac KM. The Use of Selfie Camera Traps to Estimate Home Range and Movement Patterns of Small Mammals in a Fragmented Landscape. Animals (Basel) 2022; 12:912. [PMID: 35405900 PMCID: PMC8997104 DOI: 10.3390/ani12070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The use of camera traps to track individual mammals to estimate home range and movement patterns, has not been previously applied to small mammal species. Our aim was to evaluate the use of camera trapping, using the selfie trap method, to record movements of small mammals within and between fragments of habitat. In a fragmented landscape, 164 cameras were set up across four survey areas, with cameras left to record continuously for 28 nights. Live trapping was performed prior to ear mark animals to facilitate individual identification on camera. Four small mammal species (sugar glider; Petaurus breviceps; brown antechinus; Antechinus stuartii, bush rat; Rattus fuscipes, and brown rat; Rattus norvigecus) were recorded on camera (N = 284 individuals). The maximum distance travelled by an individual sugar glider was 14.66 km, antechinus 4.24 km; bush rat 1.90 km and brown rat 1.28 km. Movements of both female and male sugar gliders in linear fragments were recorded at much higher rates than in larger patches of forest sampled in grids. Short term core homes ranges (50% KDE) of 34 sugar gliders ranged from 0.3 ha to 4.2 ha. Sugar glider core home ranges were on average 1.2 ha (±0.17) for females and 2.4 ha (±0.28) for males. The selfie trap is an efficient camera trapping method for estimating home ranges and movements due to its ability to obtain high recapture rates for multiple species and individuals. In our study landscape, linear strips of habitat were readily utilised by all small mammals, highlighting their importance as wildlife corridors in a fragmented landscape.
Collapse
Affiliation(s)
| | - Katarina M. Mikac
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
13
|
Panter CT, Literák I, Raab R, Tolhurst BA, White RL. Age, landscape, and arrival date explain ranging behavior of wintering red kites in southwest Europe. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Connor T. Panter
- Ecology, Conservation and Zoonosis Research and Enterprise Group, School of Applied Sciences University of Brighton Brighton BN2 4GJ United Kingdom
| | - Ivan Literák
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology University of Veterinary and Pharmaceutical Sciences Brno Brno Czech Republic
| | - Rainer Raab
- Technisches Büro für Biologie Mag. Dr. Rainer Raab Quadenstrasse 13, 2232 Deutsch‐Wagram Austria
| | - Bryony A. Tolhurst
- Ecology, Conservation and Zoonosis Research and Enterprise Group, School of Applied Sciences University of Brighton Brighton BN2 4GJ United Kingdom
| | - Rachel L. White
- Ecology, Conservation and Zoonosis Research and Enterprise Group, School of Applied Sciences University of Brighton Brighton BN2 4GJ United Kingdom
| |
Collapse
|
14
|
Urban habitat use and home ranges of fishing cats in Colombo, Sri Lanka. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Rabon J, Nuñez C, Coates P, Ricca M, Johnson T. Ecological correlates of fecal corticosterone metabolites in female Greater Sage-Grouse (Centrocercus urophasianus). CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Measurement of physiological responses can reveal effects of ecological conditions on an animal and correlate with demographic parameters. Ecological conditions for many animal species have deteriorated as a function of invasive plants and habitat fragmentation. Expansion of juniper (genus Juniperus L.) trees and invasion of annual grasses into sagebrush (genus Artemisia L.) ecosystems have contributed to habitat degradation for Greater Sage-Grouse (Centrocercus urophasianus (Bonaparte, 1827); hereinafter Sage-Grouse), a species of conservation concern throughout its range. We evaluated relationships between habitat use in a landscape modified by juniper expansion and annual grasses and corticosterone metabolite levels (stress responses) in feces (FCORTm) of female Sage-Grouse. We used remotely sensed data to estimate vegetation cover within the home ranges of hens and accounted for factors that influence FCORTm in other vertebrates, such as age and weather. We collected 35 fecal samples from 22 radio-collared hens during the 2017–2018 brood-rearing season (24 May–26 July) in southwestern Idaho (USA). Concentrations of corticosterone increased with home range size but decreased with reproductive effort and temperature. The importance of home range size suggests that maintaining or improving habitats that promote smaller home ranges would likely facilitate a lower stress response by hens, which should benefit Sage-Grouse survival and reproduction.
Collapse
Affiliation(s)
- J.C. Rabon
- University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA
| | - C.M.V. Nuñez
- University of Memphis, 3774 Walker Avenue, Memphis, TN 38152, USA
| | - P.S. Coates
- Western Ecological Research Center, U.S. Geological Survey, 800 Business Park Drive, Dixon, CA 95620, USA
| | - M.A. Ricca
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, 777 Northwest Ninth Street #400, Corvallis, OR 97330, USA
| | - T.N. Johnson
- University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA
| |
Collapse
|
16
|
Allen ML, Avrin AC, Farmer MJ, Whipple LS, Alexander EP, Cervantes AM, Bauder JM. Limitations of current knowledge about the ecology of Grey Foxes hamper conservation efforts. JOURNAL OF THREATENED TAXA 2021. [DOI: 10.11609/jott.7102.13.8.19079-19092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Species-specific conservation is important for maintaining the integrity of ecological communities but is dependent on sufficiently understanding multiple aspects of a species’ ecology. Species-specific data are commonly lacking for species in geographic areas with little research and species perceived to have insufficient charisma or economic importance. Despite their widespread distribution across central and North America and status as a furbearing mammal, little is known about the ecology of Grey Foxes Urocyon cinereoargenteus compared to other species of furbearing mammals. To understand what is known about this species, especially factors affecting population dynamics, we performed a systematic review of the scientific literature. We found 234 studies about Grey Foxes, with studies increasing substantially over time but with geographic gaps in the Great Plains and most of Mexico and central America. Most studies we reviewed examined relative abundance or occupancy (n= 35), habitat associations (n= 30), primarily as part of larger mammalian community studies, or spatiotemporal effects of other mammalian carnivores (n= 19), predominately Coyote Canis latrans. Grey Foxes were primarily forest-associated although associations with specific forest communities or anthropogenically disturbed habitats varied among studies. Multiple studies across ecoregions reported this fox as among both the most- and least-abundant mammalian carnivore. The inter-specific effects of Coyote were often, but not exclusively, negative and were likely mediated by landscape composition and human development. Importantly, very few studies examined population-effects of coyotes on Grey Foxes. Studies of population trends, demographics, and space use of Grey Foxes were comparatively rare and small inter- and intra-study sample sizes limited our ability to infer broader patterns. We suggest multiple avenues for future research to better understand the population status of this species throughout their range.
Collapse
|