1
|
Zer H, Ben‐Ami AZ, Keren N. Static and dynamic acclimation mechanisms to extreme light intensities in Hedera helix (Ivy) plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70217. [PMID: 40231843 PMCID: PMC11998634 DOI: 10.1111/ppl.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Under natural conditions, plants face the need to acclimate to widely varying light intensities to optimize photosynthetic efficiency and minimize photodamage. Studying the mechanisms underlying these acclimation processes is essential for understanding plant productivity and resilience under fluctuating environmental conditions. This study aimed to investigate static and dynamic acclimation mechanisms in Hedera helix (Ivy) plants under two extreme light conditions spanning the range of their adaptive abilities, deep shade (LL, ~5 μmol photons m-2 s-1) to full sunlight (HL, ~2000 μmol photons m-2 s-1), focusing on their structural and functional acclimation. LL and HL plants were examined for their leaf structure, chlorophyll and carotenoid contents, and photosynthetic protein levels. Dynamic responses were evaluated through chlorophyll fluorescence spectroscopy, measuring the effective photosynthetic unit size (σ) and the capacity for non-photochemical quenching (NPQ). HL plants exhibited a ~ 78% lower chlorophyll contents as compared to LL and increased chlorophyll a/b ratios. The carotenoid content of HL plants was ~94% lower, while the PsbS content increased fivefold. These results may indicate a smaller HL effective antenna size. However, σ fast fluorescence kinetics analysis indicated the opposite. NPQ analysis demonstrated that both compositions of the photosynthetic systems supported the ability to quench access energy. HL plants had a large dynamic range for NPQ and faster on/off kinetics. Our finding suggests massive changes in the organization of the photosynthetic apparatus. These modifications preserve a large dynamic range for reacting to light intensity under both conditions.
Collapse
Affiliation(s)
- Hagit Zer
- Department of plant and Environmental StudiesInstitute of Life Sciences, The Hebrew University of JerusalemJerusalem
| | - Ayelet Zion Ben‐Ami
- Department of plant and Environmental StudiesInstitute of Life Sciences, The Hebrew University of JerusalemJerusalem
| | - Nir Keren
- Department of plant and Environmental StudiesInstitute of Life Sciences, The Hebrew University of JerusalemJerusalem
| |
Collapse
|
2
|
Jia L, Yu G, Zhao Z, Lü L. Effects of cadmium (Cd) on photosynthetic characteristics and chlorophyll fluorescence parameters in the ornamental Plant Salvia splendens Ker-Gawl. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:507-519. [PMID: 40256272 PMCID: PMC12006627 DOI: 10.1007/s12298-025-01584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/22/2025]
Abstract
Salvia splendens Ker-Gawl. (scarlet sage), widely used in urban landscaping, it is frequently exposed to cadmium (Cd) contamination resulting from industrial and vehicular emissions. However, its tolerance and adaptability to Cd stress remain poorly understood. A soil experiment was conducted to investigate the effects of Cd on the growth and the photosynthetic performance of S. splendens by measuring photosynthetic pigments, gas exchange and chlorophyll fluorescence parameters. Four weeks-seedlings were treated with 0 (CK), 0.5, 2.5, 5, 10, 25 and 50 mg·kg-1 Cd for 60 days. Results showed significant reductions in root length and biomass of leaves, stems, and roots, with shoot and root biomass notably decreasing by up to 46.3% and 28.5% at higher Cd levels, respectively. The translocation factor remained low (TF < 1.0), and the bioaccumulation factors (BCF < 1.0) decreased when Cd higher than 5 mg·kg-1, indicating limited Cd uptake. Cd stress (> 5 mg·kg-1) caused a decrease in Chl a and Chl b content, but increased the Chl a/b ratio, thereby disrupting photosynthesis and causing significant declines in photosynthetic parameters. Cd exposure (> 2.5 mg·kg-1) significantly decreased net photosynthetic rate (Pn) by 18.94-52.91%, stomatal conductance (Gs) by 35.77-58.53%, and transpiration rate (Tr) by 24.63-48.83%, accompanied by only a slight reduction in inter-cellular CO2 concentration (Ci) of just 7.0%, indicating non-stomatal factors in Pn decline. Cd concentrations (> 5 mg·kg-1) caused a reduction in initial fluorescence (Fo) by 7.44-31.58% and maximal fluorescence (Fm) measurements by about 20%, indicating damage to photosystem II (PSII). At 50 mg·kg-1, further decreases were observed in photochemical quenching (qP) by 40.31%, the quantum yield of photochemical energy dissipation (ΦPSII) by 44.77%, and the electron transport rate (ETR) by 25.11%, while non-photochemical quenching increased by 42.66%, signifying significant PSII inhibition and enhanced photoinhibition. Decrease in ΦPSII, along with the increase in the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) and the quantum yield of non-regulated energy loss in PSII (ΦNO) as Cd levels rise, indicates enhanced non-photochemical energy dissipation and greater photoinhibition. S. splendens shows high sensitivity to Cd stress, with reduced growth and disrupted photosynthesis, highlighting its potential as a bioindicator for Cd contamination in urban areas.
Collapse
Affiliation(s)
- Lian Jia
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| | - Guangchao Yu
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| | - Zhen Zhao
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| | - LinLin Lü
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| |
Collapse
|
3
|
van Doan C, Maghrebi M, Gatti N, Mannino G, Vigani G, Maffei ME. The Rare Earth Element Lanthanum (La) Accumulates in Brassica rapa L. and Affects the Plant Metabolism and Mineral Nutrition. PLANTS (BASEL, SWITZERLAND) 2025; 14:692. [PMID: 40094588 PMCID: PMC11901600 DOI: 10.3390/plants14050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Lanthanum (La) is often used in industry and agriculture, leading to its accumulation in natural environments and potential ecological risks. The objective of this study was to examine the effects on the growth, metabolism, and nutrient composition of Brassica rapa exposed to at low (1 µM), medium (1 mM), and high (10 mM) La concentrations. We used chemical analytical, molecular, and metabolomic methods and found that high La exposure induced a hormetic effect, triggering both stimulatory and inhibitory responses. La reduced aluminum (Al), cobalt (Co), nickel (Ni), and chromium (Cr) levels at all concentrations, while medium and high doses also decreased phosphorus (P) and iron (Fe). La accumulation in B. rapa increased with La levels, affecting metabolic processes by modulating reactive oxygen species (ROS), increasing proline, and reducing total polyphenol content. Flavonoid levels were altered, chlorophyll and carotenoids declined, and non-photochemical quenching increased. Gene expressions related to flavonoid, carotenoid, and chlorophyll metabolism, as well as ion transport, exhibited a dose-dependent modulation. On the contrary, fatty acid composition remained unaffected. Our results indicate that La accumulates in in B. rapa and disrupts the plant metabolism. Despite an evident effect on plant productivity, our results also raise concerns about the potential health risks of consuming La-enriched B. rapa plants.
Collapse
|
4
|
Devkota S, Durnford DG. Photoacclimation strategies of Chlamydomonas reinhardtii in response to high-light stress in stationary phase. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113082. [PMID: 39693706 DOI: 10.1016/j.jphotobiol.2024.113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Under ideal conditions, Chlamydomonas reinhardtii can photoacclimate to excess light through various short- and long-term mechanisms. However, how microalgae handle excess light stress once they exit exponential growth, and especially in stationary phase, is less understood. Our study explored C. reinhardtii's photoprotection capacity and acclimation strategies during high-light stress once batch culture growth reached stationary phase. We monitored cultures of wildtype strain (CC125) over five days once they reached stationary phase under both low-light (LL) and high-light (HL) conditions. Under HL, many photosynthetic proteins were degraded but the stress-related light harvesting complex protein (LHCSR) was rapidly induced and contributed to the rapid activation of nonphotochemical quenching (NPQ). However, the LHCSR3-defective mutant (CC4614, npq4) lacked the rapid induction of quenching typical of post-exponential cultures, indicating that LHCSR3 is required for this response in stationary phase. Collectively, the main strategy for photoacclimation in stationary phase appears to be a dramatic reduction of photosystems while maintaining LHCII-LHCSR antenna complexes that prime the antenna for rapid activation of quenching upon light exposure. Part of this response to HL involves a resumption of cell growth after two days, that we hypothesized is due to the stimulation of growth-regulating pathways due to increased metabolite pools from the HL-induced protein turnover in the cell, something that remains to be tested. These findings demonstrate how C. reinhardtii manages high-light stress during stationary phases to maximize longevity.
Collapse
Affiliation(s)
- Shilpa Devkota
- Department of Biology, University of New Brunswick, Fredericton E3B5A3, NB, Canada
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton E3B5A3, NB, Canada.
| |
Collapse
|
5
|
de Oliveira UA, do Amaral Junior AT, Kamphorst SH, de Lima VJ, Olivares FL, Khan S, de Souza Santos M, da Silva Figueiredo J, da Silva SP, Viana FN, Santos TDO, Gonçalves GR, Campostrini E, Viana AP, Mora-Poblete F. Bacillus cereus: An Ally Against Drought in Popcorn Cultivation. Microorganisms 2024; 12:2351. [PMID: 39597741 PMCID: PMC11596106 DOI: 10.3390/microorganisms12112351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the development of adapted popcorn cultivars such as UENF WS01, strategies such as bacterial inoculation are being explored to enhance plant resilience to abiotic stress. This study investigates the impact of drought stress on popcorn cultivation. Specifically, the aim was to identify the benefits of Bacillus cereus interaction with the drought-tolerant hybrid UENF WS01 for its morphophysiology and growth by comparing inoculated and non-inoculated plants under water-stressed (WS) and well-watered (WW) conditions. This evaluation was conducted using a randomized complete block design in a factorial arrangement. For WS with inoculation samples, there were significant increases in relative chlorophyll content, maximum fluorescence intensity, and agronomic water use efficiency. Chlorophyll content increased by an average of 50.39% for WS samples, compared to a modest increase of 2.40% for WW samples. Both leaf and stem biomass also significantly increased for WS relative to WW conditions. Overall, B. cereus inoculation mitigated the impact of water stress, significantly enhancing the expression of physiological and morphological traits, even when paired with a drought-tolerant hybrid.
Collapse
Affiliation(s)
- Uéliton Alves de Oliveira
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Antônio Teixeira do Amaral Junior
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Samuel Henrique Kamphorst
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Valter Jário de Lima
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Fábio Lopes Olivares
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Shahid Khan
- Faculty of Agriculture Sciences, Universidade Federal da Grande Dourados (UFGD), Dourados 79800-000, MS, Brazil;
| | - Monique de Souza Santos
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Jardel da Silva Figueiredo
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Samuel Pereira da Silva
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Flávia Nicácio Viana
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Talles de Oliveira Santos
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Gabriella Rodrigues Gonçalves
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Eliemar Campostrini
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Alexandre Pio Viana
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro–UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (A.T.d.A.J.); (V.J.d.L.); (M.d.S.S.); (J.d.S.F.); (S.P.d.S.); (F.N.V.); (T.d.O.S.); (G.R.G.); (E.C.); (A.P.V.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, Talca 34655-48, Chile;
| |
Collapse
|
6
|
Pfleger A, Arc E, Grings M, Gnaiger E, Roach T. Flavodiiron proteins prevent the Mehler reaction in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149497. [PMID: 39048034 DOI: 10.1016/j.bbabio.2024.149497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Ana Pfleger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Austria
| | - Mateus Grings
- Oroboros Instruments GmbH, Schöpfstraße 18, 6020 Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments GmbH, Schöpfstraße 18, 6020 Innsbruck, Austria
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Austria.
| |
Collapse
|
7
|
Pancheri T, Baur T, Roach T. Singlet-Oxygen-Mediated Regulation of Photosynthesis-Specific Genes: A Role for Reactive Electrophiles in Signal Transduction. Int J Mol Sci 2024; 25:8458. [PMID: 39126029 PMCID: PMC11313482 DOI: 10.3390/ijms25158458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), β-cyclocitral, a β-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0-4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or β-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES.
Collapse
Affiliation(s)
| | | | - Thomas Roach
- Department of Botany, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Tryfon P, Sperdouli I, Moustaka J, Adamakis IDS, Giannousi K, Dendrinou-Samara C, Moustakas M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int J Mol Sci 2024; 25:8350. [PMID: 39125918 PMCID: PMC11312163 DOI: 10.3390/ijms25158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m-2 s-1) and at high irradiance (HI) (1000 μmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | | | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Zheng M, Pang X, Chen M, Tian L. Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas. Nat Commun 2024; 15:4437. [PMID: 38789432 PMCID: PMC11126702 DOI: 10.1038/s41467-024-48789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojie Pang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Moustakas M, Sperdouli I, Adamakis IDS, Şaş B, İşgören S, Moustaka J, Morales F. Mechanistic Approach on Melatonin-Induced Hormesis of Photosystem II Function in the Medicinal Plant Mentha spicata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4025. [PMID: 38068660 PMCID: PMC10708495 DOI: 10.3390/plants12234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024]
Abstract
Melatonin (MT) is considered a new plant hormone having a universal distribution from prokaryotic bacteria to higher plants. It has been characterized as an antistress molecule playing a positive role in the acclimation of plants to stress conditions, but its impact on plants under non-stressed conditions is not well understood. In the current research, we evaluated the impact of MT application (10 and 100 μM) on photosystem II (PSII) function, reactive oxygen species (ROS) generation, and chlorophyll content on mint (Mentha spicata L.) plants in order to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process that under non-stressed conditions is still unclear. Seventy-two hours after the foliar spray of mint plants with 100 μM MT, the improved chlorophyll content imported a higher amount of light energy capture, which caused a 6% increase in the quantum yield of PSII photochemistry (ΦPSII) and electron transport rate (ETR). Nevertheless, the spray with 100 μM MT reduced the efficiency of the oxygen-evolving complex (OEC), causing donor-side photoinhibition, with a simultaneous slight increase in ROS. Even so, the application of 100 μM MT decreased the excess excitation energy at PSII implying superior PSII efficiency. The decreased excitation pressure at PSII, after 100 μM MT foliar spray, suggests that MT induced stomatal closure through ROS production. The response of ΦPSII to MT spray corresponds to a J-shaped hormetic curve, with ΦPSII enhancement by 100 μM MT. It is suggested that the hormetic stimulation of PSII functionality was triggered by the non-photochemical quenching (NPQ) mechanism that stimulated ROS production, which enhanced the photosynthetic function. It is concluded that MT molecules can be used under both stress and non-stressed conditions as photosynthetic biostimulants for enhancing crop yields.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 19710 Saint-Petersburg, Russia
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
11
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Moustakas M, Dendrinou-Samara C. Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5846. [PMID: 37687539 PMCID: PMC10488754 DOI: 10.3390/ma16175846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 μmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
12
|
Yadav RM, Marriboina S, Zamal MY, Pandey J, Subramanyam R. High light-induced changes in whole-cell proteomic profile and its correlation with the organization of thylakoid super-complex in cyclic electron transport mutants of Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1198474. [PMID: 37521924 PMCID: PMC10374432 DOI: 10.3389/fpls.2023.1198474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023]
Abstract
Light and nutrients are essential components of photosynthesis. Activating the signaling cascades is critical in starting adaptive processes in response to high light. In this study, we have used wild-type (WT), cyclic electron transport (CET) mutants like Proton Gradient Regulation (PGR) (PGRL1), and PGR5 to elucidate the actual role in regulation and assembly of photosynthetic pigment-protein complexes under high light. Here, we have correlated the biophysical, biochemical, and proteomic approaches to understand the targeted proteins and the organization of thylakoid pigment-protein complexes in the photoacclimation. The proteomic analysis showed that 320 proteins were significantly affected under high light compared to the control and are mainly involved in the photosynthetic electron transport chain, protein synthesis, metabolic process, glycolysis, and proteins involved in cytoskeleton assembly. Additionally, we observed that the cytochrome (Cyt) b6 expression is increased in the pgr5 mutant to regulate proton motive force and ATPase across the thylakoid membrane. The increased Cyt b6 function in pgr5 could be due to the compromised function of chloroplast (cp) ATP synthase subunits for energy generation and photoprotection under high light. Moreover, our proteome data show that the photosystem subunit II (PSBS) protein isoforms (PSBS1 and PSBS2) expressed more than the Light-Harvesting Complex Stress-Related (LHCSR) protein in pgr5 compared to WT and pgrl1 under high light. The immunoblot data shows the photosystem II proteins D1 and D2 accumulated more in pgrl1 and pgr5 than WT under high light. In high light, CP43 and CP47 showed a reduced amount in pgr5 under high light due to changes in chlorophyll and carotenoid content around the PSII protein, which coordinates as a cofactor for efficient energy transfer from the light-harvesting antenna to the photosystem core. BN-PAGE and circular dichroism studies indicate changes in macromolecular assembly and thylakoid super-complexes destacking in pgrl1 and pgr5 due to changes in the pigment-protein complexes under high light. Based on this study, we emphasize that this is an excellent aid in understanding the role of CET mutants in thylakoid protein abundances and super-complex organization under high light.
Collapse
|
13
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR, Petroutsos D. Light-independent regulation of algal photoprotection by CO 2 availability. Nat Commun 2023; 14:1977. [PMID: 37031262 PMCID: PMC10082802 DOI: 10.1038/s41467-023-37800-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Collapse
Affiliation(s)
- M Águila Ruiz-Sola
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Serena Flori
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Yizhong Yuan
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Gaelle Villain
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Emanuel Sanz-Luque
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- University of Cordoba, Department of Biochemistry and Molecular Biology, Cordoba, Spain
| | - Petra Redekop
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Ryutaro Tokutsu
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Anika Küken
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Angeliki Tsichla
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Georgios Kepesidis
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Guillaume Allorent
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Fabrizio Iacono
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universität, 48143, Münster, Germany
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Jun Minagawa
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | |
Collapse
|
15
|
Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DVN, Bui XD, Vithanage M, Show PL. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. ENVIRONMENTAL RESEARCH 2023; 218:114948. [PMID: 36455634 DOI: 10.1016/j.envres.2022.114948] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
Collapse
Affiliation(s)
- Azalea Dyah Maysarah Satya
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Sara Kazemi Yazdi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yu-Shen Cheng
- College of Future, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan; Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Xuan Dong Bui
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang st., 550 000, Danang, Viet Nam
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
16
|
Santana LR, da Silva LN, Tavares GG, Batista PF, Cabral JSR, Souchie EL. Arbuscular mycorrhizal fungi associated with maize plants during hydric deficit. Sci Rep 2023; 13:1519. [PMID: 36707548 PMCID: PMC9883248 DOI: 10.1038/s41598-023-28744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to verify the physiological behavior and development of maize plants under hydric deficit inoculated with the AMF Rhizophagus clarus and Claroideoglomus etunicatum and the commercial inoculant ROOTELLA BR in nonsterilized soil as a strategy to mitigate the effects of drought in the crop. Corn seeds were grown and inoculated with R. clarus, C. etunicatum and the commercial inoculant ROOTELLA BR separately at sowing. The plants were grown in a greenhouse and submitted to water deficit in stage V3, keeping the pots at 20% field capacity for 10 days. The first analyses were performed, followed by reirrigation for 2 days, and the analyses were performed again. The experiment was a double factorial, with 2 water treatments (irrigated and water deficit) × 4 inoculation treatments (control, ROOTELLA BR, R. clarus, C. etunicatum) × 5 replicates per treatment, totaling 40 vessels. The results indicate that the plants were able to recover favorably according to the physiological data presented. It is noted that in inoculated plants, there was no damage to the photosynthetic apparatus. These data demonstrate that AMF contribute greatly to better plant recovery after a dry period and a new irrigation period. Inoculation with AMF favors postwater stress recovery in plants.
Collapse
Affiliation(s)
- Letícia Rezende Santana
- Instituto Federal Goiano, Campus Rio Verde, Rodovia Sul Goiana km 01, Cx. P. 66., Rio Verde, GO, CEP 75901-970, Brazil
| | - Lais Noamy da Silva
- Instituto Federal Goiano, Campus Rio Verde, Rodovia Sul Goiana km 01, Cx. P. 66., Rio Verde, GO, CEP 75901-970, Brazil
| | - Germanna Gouveia Tavares
- Instituto Federal Goiano, Campus Rio Verde, Rodovia Sul Goiana km 01, Cx. P. 66., Rio Verde, GO, CEP 75901-970, Brazil
| | - Priscila Ferreira Batista
- Instituto Federal Goiano, Campus Rio Verde, Rodovia Sul Goiana km 01, Cx. P. 66., Rio Verde, GO, CEP 75901-970, Brazil
| | - Juliana Silva Rodrigues Cabral
- Faculdade de Agronomia, Universidade de Rio Verde, Fazenda Fontes do Saber - Campus Universitário, Cx Postal: 104, Rio Verde Goiás, CEP 75901-970, Brazil.
| | - Edson Luiz Souchie
- Instituto Federal Goiano, Campus Rio Verde, Rodovia Sul Goiana km 01, Cx. P. 66., Rio Verde, GO, CEP 75901-970, Brazil
| |
Collapse
|
17
|
Böhmer S, Marx C, Goss R, Gilbert M, Sasso S, Happe T, Hemschemeier A. Chlamydomonas reinhardtii mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress. PLANT DIRECT 2023; 7:e480. [PMID: 36685735 PMCID: PMC9840898 DOI: 10.1002/pld3.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 05/12/2023]
Abstract
Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.
Collapse
Affiliation(s)
- Stefanie Böhmer
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Christina Marx
- SolarBioproducts RuhrBusiness Development Agency HerneHerneGermany
| | - Reimund Goss
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Matthias Gilbert
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
18
|
Shimakawa G, Krieger‐Liszkay A, Roach T. ROS-derived lipid peroxidation is prevented in barley leaves during senescence. PHYSIOLOGIA PLANTARUM 2022; 174:e13769. [PMID: 36018559 PMCID: PMC9544269 DOI: 10.1111/ppl.13769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Senescence in plants enables resource recycling from senescent leaves to sink organs. Under stress, increased production of reactive oxygen species (ROS) and associated signalling activates senescence. However, senescence is not always associated with stress since it has a prominent role in plant development, in which the role of ROS signalling is less clear. To address this, we investigated lipid metabolism and patterns of lipid peroxidation related to signalling during sequential senescence in first-emerging barley leaves grown under natural light conditions. Leaf fatty acid compositions were dominated by linolenic acid (75% of total), the major polyunsaturated fatty acid (PUFA) in galactolipids of thylakoid membranes, known to be highly sensitive to peroxidation. Lipid catabolism during senescence, including increased lipoxygenase activity, led to decreased levels of PUFA and increased levels of short-chain saturated fatty acids. When normalised to leaf area, only concentrations of hexanal, a product from the 13-lipoxygenase pathway, increased early upon senescence, whereas reactive electrophile species (RES) from ROS-associated lipid peroxidation, such as 4-hydroxynonenal, 4-hydroxyhexenal and acrolein, as well as β-cyclocitral derived from oxidation of β-carotene, decreased. However, relative to total chlorophyll, amounts of most RES increased at late-senescence stages, alongside increased levels of α-tocopherol, zeaxanthin and non-photochemical quenching, an energy dissipative pathway that prevents ROS production. Overall, our results indicate that lipid peroxidation derived from enzymatic oxidation occurs early during senescence in first barley leaves, while ROS-derived lipid peroxidation associates weaker with senescence.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental SciencesKwansei‐Gakuin UniversitySandaJapan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Anja Krieger‐Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thomas Roach
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
19
|
β-Cyclocitral Does Not Contribute to Singlet Oxygen-Signalling in Algae, but May Down-Regulate Chlorophyll Synthesis. PLANTS 2022; 11:plants11162155. [PMID: 36015457 PMCID: PMC9415740 DOI: 10.3390/plants11162155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Light stress signalling in algae and plants is partially orchestrated by singlet oxygen (1O2), a reactive oxygen species (ROS) that causes significant damage within the chloroplast, such as lipid peroxidation. In the vicinity of the photosystem II reaction centre, a major source of 1O2, are two β-carotene molecules that quench 1O2 to ground-state oxygen. 1O2 can oxidise β-carotene to release β-cyclocitral, which has emerged as a 1O2-mediated stress signal in the plant Arabidopsis thaliana. We investigated if β-cyclocitral can have similar retrograde signalling properties in the unicellular alga Chlamydomonas reinhardtii. Using RNA-Seq, we show that genes up-regulated in response to exogenous β-cyclocitral included CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8), while down-regulated genes included those associated with porphyrin and chlorophyll anabolism, such as tetrapyrrole-binding protein (GUN4), magnesium chelatases (CHLI1, CHLI2, CHLD, CHLH1), light-dependent protochlorophyllide reductase (POR1), copper target 1 protein (CTH1), and coproporphyrinogen III oxidase (CPX1). Down-regulation of this pathway has also been shown in β-cyclocitral-treated A. thaliana, indicating conservation of this signalling mechanism in plants. However, in contrast to A. thaliana, a very limited overlap in differential gene expression was found in β-cyclocitral-treated and 1O2-treated C. reinhardtii. Furthermore, exogenous treatment with β-cyclocitral did not induce tolerance to 1O2. We conclude that while β-cyclocitral may down-regulate chlorophyll synthesis, it does not seem to contribute to 1O2-mediated high light stress signalling in algae.
Collapse
|
20
|
Steen CJ, Burlacot A, Short AH, Niyogi KK, Fleming GR. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. PLANT, CELL & ENVIRONMENT 2022; 45:2428-2445. [PMID: 35678230 PMCID: PMC9540987 DOI: 10.1111/pce.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.
Collapse
Affiliation(s)
- Collin J. Steen
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
| | - Adrien Burlacot
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Audrey H. Short
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Graham R. Fleming
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
21
|
Redekop P, Sanz-Luque E, Yuan Y, Villain G, Petroutsos D, Grossman AR. Transcriptional regulation of photoprotection in dark-to-light transition-More than just a matter of excess light energy. SCIENCE ADVANCES 2022; 8:eabn1832. [PMID: 35658034 PMCID: PMC9166400 DOI: 10.1126/sciadv.abn1832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/18/2022] [Indexed: 05/22/2023]
Abstract
In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of "photoprotective" genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes (LHCSR1, LHCSR3, and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
Collapse
Affiliation(s)
- Petra Redekop
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Corresponding author. (E.S.-L.); (P.R.)
| | - Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14071 Cordoba, Spain
- Corresponding author. (E.S.-L.); (P.R.)
| | - Yizhong Yuan
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Gaelle Villain
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Dimitris Petroutsos
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Kono M, Matsuzawa S, Noguchi T, Miyata K, Oguchi R, Terashima I. A new method for separate evaluation of PSII with inactive oxygen evolving complex and active D1 by the pulse-amplitude modulated chlorophyll fluorometry. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:542-553. [PMID: 34511179 DOI: 10.1071/fp21073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
A method that separately quantifies the PSII with inactive oxygen-evolving complex (OEC) and active D1 retaining the primary quinone acceptor (QA )-reducing activity from the PSII with damaged D1 in the leaf was developed using PAM fluorometry. It is necessary to fully reduce QA to obtain F m , the maximum fluorescence. However, QA in PSII with inactive OEC and active D1 would not be fully reduced by a saturating flash. We used the acceptor-side inhibitor DCMU to fully reduce QA . Leaves of cucumber (Cucumis sativus L.) were chilled at 4°C in dark or illuminated with UV-A to selectively inactivate OEC. After these treatments, F v /F m , the maximum quantum yield, in the leaves vacuum-infiltrated with DCMU were greater than those in water-infiltrated leaves. In contrast, when the leaves were illuminated by red light to photodamage D1, F v /F m did not differ between DCMU- and water-infiltrated leaves. These results indicate relevance of the present evaluation of the fraction of PSII with inactive OEC and active D1. Several examinations in the laboratory and glasshouse showed that PSII with inactive OEC and active D1 was only rarely observed. The present simple method would serve as a useful tool to clarify the details of the PSII photoinhibition.
Collapse
Affiliation(s)
- Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; and Corresponding author
| | - Sae Matsuzawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takaya Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Riichi Oguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|
25
|
Perin G, Gambaro F, Morosinotto T. Knowledge of Regulation of Photosynthesis in Outdoor Microalgae Cultures Is Essential for the Optimization of Biomass Productivity. FRONTIERS IN PLANT SCIENCE 2022; 13:846496. [PMID: 35444673 PMCID: PMC9014180 DOI: 10.3389/fpls.2022.846496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Microalgae represent a sustainable source of biomass that can be exploited for pharmaceutical, nutraceutical, cosmetic applications, as well as for food, feed, chemicals, and energy. To make microalgae applications economically competitive and maximize their positive environmental impact, it is however necessary to optimize productivity when cultivated at a large scale. Independently from the final product, this objective requires the optimization of biomass productivity and thus of microalgae ability to exploit light for CO2 fixation. Light is a highly variable environmental parameter, continuously changing depending on seasons, time of the day, and weather conditions. In microalgae large scale cultures, cell self-shading causes inhomogeneity in light distribution and, because of mixing, cells move between different parts of the culture, experiencing abrupt changes in light exposure. Microalgae evolved multiple regulatory mechanisms to deal with dynamic light conditions that, however, are not adapted to respond to the complex mixture of natural and artificial fluctuations found in large-scale cultures, which can thus drive to oversaturation of the photosynthetic machinery, leading to consequent oxidative stress. In this work, the present knowledge on the regulation of photosynthesis and its implications for the maximization of microalgae biomass productivity are discussed. Fast mechanisms of regulations, such as Non-Photochemical-Quenching and cyclic electron flow, are seminal to respond to sudden fluctuations of light intensity. However, they are less effective especially in the 1-100 s time range, where light fluctuations were shown to have the strongest negative impact on biomass productivity. On the longer term, microalgae modulate the composition and activity of the photosynthetic apparatus to environmental conditions, an acclimation response activated also in cultures outdoors. While regulation of photosynthesis has been investigated mainly in controlled lab-scale conditions so far, these mechanisms are highly impactful also in cultures outdoors, suggesting that the integration of detailed knowledge from microalgae large-scale cultivation is essential to drive more effective efforts to optimize biomass productivity.
Collapse
|
26
|
Buck JM, Wünsch M, Schober AF, Kroth PG, Lepetit B. Impact of Lhcx2 on Acclimation to Low Iron Conditions in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2022; 13:841058. [PMID: 35371185 PMCID: PMC8967352 DOI: 10.3389/fpls.2022.841058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Iron is a cofactor of photosystems and electron carriers in the photosynthetic electron transport chain. Low concentrations of dissolved iron are, therefore, the predominant factor that limits the growth of phototrophs in large parts of the open sea like the Southern Ocean and the North Pacific, resulting in "high nutrient-low chlorophyll" (HNLC) areas. Diatoms are among the most abundant microalgae in HNLC zones. Besides efficient iron uptake mechanisms, efficient photoprotection might be one of the key traits enabling them to outcompete other algae in HNLC regions. In diatoms, Lhcx proteins play a crucial role in one of the main photoprotective mechanisms, the energy-dependent fluorescence quenching (qE). The expression of Lhcx proteins is strongly influenced by various environmental triggers. We show that Lhcx2 responds specifically and in a very sensitive manner to iron limitation in the diatom Phaeodactylum tricornutum on the same timescale as the known iron-regulated genes ISIP1 and CCHH11. By comparing Lhcx2 knockout lines with wild type cells, we reveal that a strongly increased qE under iron limitation is based on the upregulation of Lhcx2. Other observed iron acclimation phenotypes in P. tricornutum include a massively reduced chlorophyll a content/cell, a changed ratio of light harvesting and photoprotective pigments per chlorophyll a, a decreased amount of photosystem II and photosystem I cores, an increased functional photosystem II absorption cross section, and decoupled antenna complexes. H2O2 formation at photosystem I induced by high light is lowered in iron-limited cells, while the amount of total reactive oxygen species is rather increased. Our data indicate a possible reduction in singlet oxygen by Lhcx2-based qE, while the other iron acclimation phenotype parameters monitored are not affected by the amount of Lhcx2 and qE.
Collapse
|
27
|
Nawrocki WJ, Liu X, Raber B, Hu C, de Vitry C, Bennett DIG, Croce R. Molecular origins of induction and loss of photoinhibition-related energy dissipation q I. SCIENCE ADVANCES 2021; 7:eabj0055. [PMID: 34936440 PMCID: PMC8694598 DOI: 10.1126/sciadv.abj0055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
Photosynthesis fuels life on Earth using sunlight as energy source. However, light has a simultaneous detrimental effect on the enzyme triggering photosynthesis and producing oxygen, photosystem II (PSII). Photoinhibition, the light-dependent decrease of PSII activity, results in a major limitation to aquatic and land photosynthesis and occurs upon all environmental stress conditions. In this work, we investigated the molecular origins of photoinhibition focusing on the paradoxical energy dissipation process of unknown nature coinciding with PSII damage. Integrating spectroscopic, biochemical, and computational approaches, we demonstrate that the site of this quenching process is the PSII reaction center. We propose that the formation of quenching and the closure of PSII stem from the same event. We lastly reveal the heterogeneity of PSII upon photoinhibition using structure-function modeling of excitation energy transfer. This work unravels the functional details of the damage-induced energy dissipation at the heart of photosynthesis.
Collapse
Affiliation(s)
- Wojciech J. Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Bailey Raber
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR 7141, CNRS-Sorbonne Université, 75005 Paris, France
| | - Doran I. G. Bennett
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
28
|
Mogany T, Bhola V, Ramanna L, Bux F. Photosynthesis and pigment production: elucidation of the interactive effects of nutrients and light on Chlamydomonas reinhardtii. Bioprocess Biosyst Eng 2021; 45:187-201. [PMID: 34668053 DOI: 10.1007/s00449-021-02651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023]
Abstract
Chlamydomonas reinhardtii produces a variety of compounds that can be beneficial to human and animal health. Among these compounds, application of photosynthetic pigments, such as chlorophylls and carotenoids, has gained considerable interest in numerous industries. A better understanding on the interactive effects of essential nutrients and light on microalgal physiology and pigment production would be beneficial in improving cultivation strategies. Therefore, this study evaluated biomass, carotenoid and chlorophyll yield and the following fluorescence parameters: quantum yield in PS II [Y(II)] and electron transport rate (ETR) using response surface methodology (RSM). The Fv/Fm, Y(NO) and Y(NPQ) were also monitored; however, no significant relationship was observed. From the investigation it was apparent that nitrogen and carbon; as well as the interactive effects of (nitrogen and carbon) and (carbon and light irradiance) were significant factors. The model predicted the optimum conditions for maximum carotenoids (8.15 ± 0.389 mg g-1) were 08.7 mol l-1 of nitrogen, 0.2 mol l-1 and 50 μmol photon m-2 s-1 of light irradiance. While maximum chlorophyll (33.6 ± 0.854 mg g-1) required a higher nitrogen (11.21 mol l-1). The photosynthetic parameters [Y(II), ETR] was correlated with the primary pigments and biomass production. Increased photosynthetic activity was associated with high carbon and light. The Y(II)and ETR of PSII under these conditions were 0.2 and ~ 14, respectively. This approach was accurate in developing the model, optimizing factors and analysing interaction effects. This study served to provide a better understanding on the interactions between factors influencing pigment biosynthesis and photosynthetic performance of Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Trisha Mogany
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Virthie Bhola
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Luveshan Ramanna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
29
|
Nogueira ML, Carvalho MEA, Ferreira JMM, Bressanin LA, Piotto KDB, Piotto FA, Marques DN, Barbosa S, Azevedo RA. Cadmium-induced transgenerational effects on tomato plants: A gift from parents to progenies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147885. [PMID: 34323842 DOI: 10.1016/j.scitotenv.2021.147885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 05/22/2023]
Abstract
The present study aimed to investigate the Cd-induced transgenerational effects on plants. Grafted tomato plants, which exhibited the same cultivar as scion and distinct cultivars with contrasting Cd-tolerance as rootstocks, were grown in soil without and with artificial addition of Cd (less than 2.0, and 6.9 mg kg-1 of Cd, respectively) in a pot experiment carried out in a greenhouse. Their fruits were harvested to extract seeds (i.e., the progenies), which were sown over either Cd-free (control) or Cd-containing germitest paper (germination testing paper with 0 and 35 μM of CdCl2, respectively) and grown in a growth chamber. The immediate progeny of all grafting combinations from stressed plants presented an elevated germinability, despite high internal Cd concentration. When sown in Cd-containing germitest paper, the immediate progeny of plants grown in soil with no Cd addition was generally able to maintain or even increase the content of carotenoids and chlorophylls a and b (up to 93.3, 62.8 and 76.1%, respectively), indicating a Cd-induced hormetic effect on photosynthetic pigments. Two of the grafting combinations from stressed plants yielded seeds that generated seedlings with enhanced dry mass when they were sown in Cd-free media (~41%), suggesting a Cd-induced transgenerational enhancement of biomass production. Because only one tomato cultivar was used as scion, data indicated that type and degree of Cd-induced transgenerational effects depend strongly on signals generated and/or processed in roots of the parental plants. When sown in Cd-contaminated germitest paper, the immediate progeny of Cd-treated plants presented major reductions in the leaf area (35-69%) and content of photosynthetic pigments (57-93%) in comparison to the progeny from control plants. However, one of the grafting combinations exhibited satisfactory performance after "double" exposure to Cd, showing 91% of the biomass that was produced in the seedlings of control seeds from control plants. Further investigation indicated that adjustments in the chlorophyll fluorescence behavior might counterbalance losses in leaf pigments and area. Taken together, our data provide new insights on the origin, outcomes and mode of action of the Cd-induced transgenerational effects.
Collapse
Affiliation(s)
- Marina Lima Nogueira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - João Marcos Martins Ferreira
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Rua Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Leticia Aparecida Bressanin
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Rua Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Katherine Derlene Batagin Piotto
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Deyvid Novaes Marques
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Sandro Barbosa
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Rua Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
30
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
31
|
Dobrikova AG, Apostolova EL, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IDS, Moustakas M. Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111851. [PMID: 33421673 DOI: 10.1016/j.ecoenv.2020.111851] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 05/03/2023]
Abstract
The herbal plant Salvia sclarea L. (clary sage) is classified to cadmium (Cd) accumulators and considered as a potential plant for phytoremediation of heavy metal polluted soil. However, the effect of Cd only treatment on the function of the photosynthetic apparatus of S. sclarea, as well as the mechanisms involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of S. sclarea plants exposed to a high Cd supply (100 µM) for 3 and 8 days by investigating element nutrient uptake, oxidative stress markers, pigment composition, photosynthetic performance and leaf structure. Measurements of the functional activities of photosystem I (PSI, by P700 photooxidation), photosystem II (PSII, by chlorophyll fluorescence parameters), the oxygen-evolving complex (oxygen evolution by Joliot- and Clark-type electrodes), as well as the leaf pigment and phenolic contents, were used to evaluate the protective mechanisms of the photosynthetic apparatus under Cd stress. Data suggested that the molecular mechanisms included in the photosynthetic tolerance to Cd toxicity involve strongly increased phenolic and anthocyanin contents, as well as an increased non-photochemical quenching and accelerated cyclic electron transport around PSI up to 61%, which protect the function of the photosynthetic apparatus under stress. Furthermore, the tolerance of S. sclarea to Cd stress is also associated with increased accumulation of Fe in leaves by 25%. All the above, clearly suggest that S. sclarea plants employ several different mechanisms to protect the function of the photosynthetic apparatus against Cd stress, which are discussed here.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, 57001 Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. Int J Mol Sci 2020; 22:E41. [PMID: 33375193 PMCID: PMC7793146 DOI: 10.3390/ijms22010041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.
Collapse
Affiliation(s)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
33
|
Roach T. LHCSR3-Type NPQ Prevents Photoinhibition and Slowed Growth under Fluctuating Light in Chlamydomonas reinhardtii. PLANTS 2020; 9:plants9111604. [PMID: 33218177 PMCID: PMC7698959 DOI: 10.3390/plants9111604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023]
Abstract
Natural light intensities can rise several orders of magnitude over subsecond time spans, posing a major challenge for photosynthesis. Fluctuating light tolerance in the green alga Chlamydomonas reinhardtii requires alternative electron pathways, but the role of nonphotochemical quenching (NPQ) is not known. Here, fluctuating light (10 min actinic light followed by 10 min darkness) led to significant increase in NPQ/qE-related proteins, LHCSR1 and LHCSR3, relative to constant light of the same subsaturating or saturating intensity. Elevated levels of LHCSR1/3 increased the ability of cells to safely dissipate excess light energy to heat (i.e., qE-type NPQ) during dark to light transition, as measured with chlorophyll fluorescence. The low qE phenotype of the npq4 mutant, which is unable to produce LHCSR3, was abolished under fluctuating light, showing that LHCSR1 alone enables very high levels of qE. Photosystem (PS) levels were also affected by light treatments; constant light led to lower PsbA levels and Fv/Fm values, while fluctuating light led to lower PsaA and maximum P700+ levels, indicating that constant and fluctuating light induced PSII and PSI photoinhibition, respectively. Under fluctuating light, npq4 suffered more PSI photoinhibition and significantly slower growth rates than parental wild type, whereas npq1 and npq2 mutants affected in xanthophyll carotenoid compositions had identical growth under fluctuating and constant light. Overall, LHCSR3 rather than total qE capacity or zeaxanthin is shown to be important in C. reinhardtii in tolerating fluctuating light, potentially via preventing PSI photoinhibition.
Collapse
Affiliation(s)
- Thomas Roach
- Department of Botany and Centre for Molecular Biosciences Innsbruck, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Muñoz P, Munné-Bosch S. Oxylipins in plastidial retrograde signaling. Redox Biol 2020; 37:101717. [PMID: 32979794 PMCID: PMC7511966 DOI: 10.1016/j.redox.2020.101717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxylipins (compounds derived from the oxidation of polyunsaturated fatty acids) are essential in retrograde signaling emanating from plastids to the nucleus during plant developmental and stress responses. In this graphical review, we provide an overview of the chemical structure, biosynthesis and role of oxylipins, as both redox and hormonal signals, in controlling plant development and stress responses. We also briefly summarize current gaps in the understanding of the involvement of oxylipins in plastidial retrograde signaling to highlight future avenues for research.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
Lee JW, Lee SH, Han JW, Kim GH. Early Light-Inducible Protein (ELIP) Can Enhance Resistance to Cold-Induced Photooxidative Stress in Chlamydomonas reinhardtii. Front Physiol 2020; 11:1083. [PMID: 32982798 PMCID: PMC7478268 DOI: 10.3389/fphys.2020.01083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cold weather is one of the biggest challenges in establishing a large-scale microalgae culture facility in temperate regions. In order to develop a strain that is resistant to low temperatures and still maintains high photosynthetic efficiency, transgenic studies have been conducted targeting many genes. Early light-inducible proteins (ELIPs) located in thylakoid membranes are known to protect photosynthetic machinery from various environmental stresses in higher plants. An ELIP homolog was identified from Chlamydomonas reinhardtii and named ELIP3. The role of the gene was analyzed in terms of photosynthetic CO2 assimilation under cold stress. Western blot results showed a significant accumulation of ELIP3 when the cells were exposed to cold stress (4°C). High light stress alone did not induce the accumulation of the protein. Enhanced expression of ELIP3 helped survival of the cell under photo-oxidative stress. The influx of CO2 to the photobioreactor induced strong accumulation of ELIP3, and enhanced survival of the cell under high light and cold stress. When the oxidative stress was reduced by adding a ROS quencher, TEMPOL, to the media the expression of ELIP3 was reduced. A knockdown mutant showed much lower photosynthetic efficiency than wild type in low temperature, and died rapidly when it was exposed to high light and cold stress. The overexpression mutant survived significantly longer in the same conditions. Interestingly, knockdown mutants showed negative phototaxis, while the overexpression mutant showed positive phototaxis. These results suggest that ELIP3 may be involved in the regulation of the redox state of the cell and takes important role in protecting the photosystem under photooxidative stress in low temperatures.
Collapse
Affiliation(s)
- Ji Woong Lee
- Department of Biological Sciences, Kongju National University, Kongju, South Korea
| | - Seung Hi Lee
- Department of Biological Sciences, Kongju National University, Kongju, South Korea
| | - Jong Won Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Gwang Hoon Kim
- Department of Biological Sciences, Kongju National University, Kongju, South Korea
| |
Collapse
|
36
|
Moustakas M, Bayçu G, Sperdouli I, Eroğlu H, Eleftheriou EP. Arbuscular Mycorrhizal Symbiosis Enhances Photosynthesis in the Medicinal Herb Salvia fruticosa by Improving Photosystem II Photochemistry. PLANTS 2020; 9:plants9080962. [PMID: 32751534 PMCID: PMC7463761 DOI: 10.3390/plants9080962] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
We investigated the influence of Salvia fruticosa colonization by the arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis on photosynthetic function by using chlorophyll fluorescence imaging analysis to evaluate the light energy use in photosystem II (PSII) of inoculated and non-inoculated plants. We observed that inoculated plants used significantly higher absorbed energy in photochemistry (ΦPSII) than non-inoculated and exhibited significant lower excess excitation energy (EXC). However, the increased ΦPSII in inoculated plants did not result in a reduced non-regulated energy loss in PSII (ΦNO), suggesting the same singlet oxygen (1O2) formation between inoculated and non-inoculated plants. The increased ΦPSII in inoculated plants was due to an increased efficiency of open PSII centers to utilize the absorbed light (Fv'/Fm') due to a decreased non-photochemical quenching (NPQ) since there was no difference in the fraction of open reaction centers (qp). The decreased NPQ in inoculated plants resulted in an increased electron-transport rate (ETR) compared to non-inoculated. Yet, inoculated plants exhibited a higher efficiency of the water-splitting complex on the donor side of PSII as revealed by the increased Fv/Fo ratio. A spatial heterogeneity between the leaf tip and the leaf base for the parameters ΦPSII and ΦNPQ was observed in both inoculated and non-inoculated plants, reflecting different developmental zones. Overall, our findings suggest that the increased ETR of inoculated S. fruticosa contributes to increased photosynthetic performance, providing growth advantages to inoculated plants by increasing their aboveground biomass, mainly by increasing leaf biomass.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Hilal Eroğlu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Biology Division, Institute of Graduate Studies in Science, Istanbul University, 34134 Istanbul, Turkey
| | - Eleftherios P. Eleftheriou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| |
Collapse
|