1
|
de Vries S, Melkonian K, Pfeifer L. A multidisciplinary view on plant terrestrialization and the evolution of land plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14264. [PMID: 38527937 DOI: 10.1111/ppl.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Katharina Melkonian
- Laboratoire De Recherche En Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Evolution of Plant-Microbe Interactions, Pôle de Biotechnologies Végétales, Castanet-Tolosan, France
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, CAU Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Carrillo-Carrasco VP, Hernández-García J, Weijers D. Electroporation-based delivery of proteins in Penium margaritaceum and other zygnematophycean algae. PHYSIOLOGIA PLANTARUM 2023; 175:e14121. [PMID: 38148204 DOI: 10.1111/ppl.14121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Zygnematophycean algae represent the streptophyte group identified as the closest sister clade to land plants. Their phylogenetic position and growing genomic resources make these freshwater algae attractive models for evolutionary studies in the context of plant terrestrialization. However, available genetic transformation protocols are limited and exclusively DNA-based. To expand the zygnematophycean toolkit, we developed a DNA-free method for protein delivery into intact cells using electroporation. We use confocal microscopy coupled with fluorescence lifetime imaging to assess the delivery of mNeonGreen into algal cells. We optimized the method to obtain high efficiency of delivery and cell recovery after electroporation in two strains of Penium margaritaceum and show that the experimental setup can also be used to deliver proteins in other zygnematophycean species such as Closterium peracerosum-strigosum-littorale complex and Mesotaenium endlicherianum. We discuss the possible applications of this proof-of-concept method.
Collapse
Affiliation(s)
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
3
|
Ušák D, Haluška S, Pleskot R. Callose synthesis at the center point of plant development-An evolutionary insight. PLANT PHYSIOLOGY 2023; 193:54-69. [PMID: 37165709 DOI: 10.1093/plphys/kiad274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.
Collapse
Affiliation(s)
- David Ušák
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Samuel Haluška
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Roman Pleskot
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
| |
Collapse
|
4
|
Powell AE, Heyl A. The origin and early evolution of cytokinin signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1142748. [PMID: 37457338 PMCID: PMC10338860 DOI: 10.3389/fpls.2023.1142748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Angiosperms, especially Arabidopsis and rice, have long been at the center of plant research. However, technological advances in sequencing have led to a dramatic increase in genome and transcriptome data availability across land plants and, more recently, among green algae. These data allowed for an in-depth study of the evolution of different protein families - including those involved in the metabolism and signaling of phytohormones. While most early studies on phytohormone evolution were phylogenetic, those studies have started to be complemented by genetic and biochemical studies in recent years. Examples of such functional analyses focused on ethylene, jasmonic acid, abscisic acid, and auxin. These data have been summarized recently. In this review, we will focus on the progress in our understanding of cytokinin biology. We will use these data to synthesize key points about the evolution of cytokinin metabolism and signaling, which might apply to the evolution of other phytohormones as well.
Collapse
Affiliation(s)
| | - Alexander Heyl
- Department of Research and Development, Garden City, NY, United States
| |
Collapse
|
5
|
Sanyal SK, Sharma K, Bisht D, Sharma S, Kateriya S, Pandey GK. Role of calcium sensor protein module CBL-CIPK in abiotic stress and light signaling responses in green algae. Int J Biol Macromol 2023; 237:124163. [PMID: 36965564 DOI: 10.1016/j.ijbiomac.2023.124163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Ca2+ signaling is an important biological process that enable to perceive and communicate information in the cell. Our current understanding of the signaling system suggests that plants and animals have certain differences in signal-sensing mechanisms. The Ca2+-mediated CBL-CIPK module has emerged as a major sensor responder network for Ca2+ signaling and has been speculated to be involved in plant terrestrial life adaptation. This module has previously been reported in Archaeplastids, Chromalveolates, and Excavates. In our experimental analysis of Chlamydomonas reinhardtii CBLs, we proved that the CrCBL1 protein interacts with Phototropin and Channelrhodopsin, and the expression of CrCBLs is modulated by light. Further analysis using chlorophyte and streptophyte algal sequences allowed us to identify the differences that have evolved in CBL and CIPK proteins since plants have progressed from aquatic to terrestrial habitats. Moreover, an investigation of Klebsormidium CBL and CIPK genes led us to know that they are abiotic stress stimuli-responsive, indicating that their role was defined very early during terrestrial adaptations. Structure-based prediction and Ca2+-binding assays indicated that the KnCBL1 protein in Klebsormidium showed a typical Ca2+-binding pocket. In summary, the results of this study suggest that these stress-responsive proteins enable crosstalk between Ca2+ and light signaling pathways very early during plant adaptation from aquatic to terrestrial habitats.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Komal Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diksha Bisht
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
6
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
7
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
8
|
Zygnematophycean algae: Possible models for cellular and evolutionary biology. Semin Cell Dev Biol 2023; 134:59-68. [PMID: 35430142 DOI: 10.1016/j.semcdb.2022.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022]
Abstract
Plant terrestrialization was a critical event for our planet. For the study of plant evolution, charophytes have received a great deal of attention because of their phylogenetic position. Among charophytes, the class Zygnematophyceae is the closest lineage to land plants. During sexual reproduction, they show isogamous conjugation by immotile gametes, which is characteristic of zygnematophycean algae. Here, we introduce the genera Mougeotia, Penium, and Closterium, which are representative model organisms of Zygnematophyceae in terms of chloroplast photorelocation movement, the cell wall, and sexual reproduction, respectively.
Collapse
|
9
|
Permann C, Gierlinger N, Holzinger A. Zygospores of the green alga Spirogyra: new insights from structural and chemical imaging. FRONTIERS IN PLANT SCIENCE 2022; 13:1080111. [PMID: 36561459 PMCID: PMC9763465 DOI: 10.3389/fpls.2022.1080111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Zygnematophyceae, a class of streptophyte green algae and sister group to land plants (Embryophytes) live in aquatic to semi-terrestrial habitats. The transition from aquatic to terrestrial environments requires adaptations in the physiology of vegetative cells and in the structural properties of their cell walls. Sexual reproduction occurs in Zygnematophyceae by conjugation and results in the formation of zygospores, possessing unique multi-layered cell walls, which might have been crucial in terrestrialization. We investigated the structure and chemical composition of field sampled Spirogyra sp. zygospore cell walls by multiple microscopical and spectral imaging techniques: light microscopy, confocal laser scanning microscopy, transmission electron microscopy following high pressure freeze fixation/freeze substitution, Raman spectroscopy and atomic force microscopy. This comprehensive analysis allowed the detection of the subcellular organization and showed three main layers of the zygospore wall, termed endo-, meso- and exospore. The endo- and exospore are composed of polysaccharides with different ultrastructural appearance, whereas the electron dense middle layer contains aromatic compounds as further characterized by Raman spectroscopy. The possible chemical composition remains elusive, but algaenan or a sporopollenin-like material is suggested. Similar compounds with a non-hydrolysable character can be found in moss spores and pollen of higher plants, suggesting a protective function against desiccation stress and high irradiation. While the tripartite differentiation of the zygospore wall is well established in Zygnematopyhceae, Spirogyra showed cellulose fibrils arranged in a helicoidal pattern in the endo- and exospore. Initial incorporation of lipid bodies during early zygospore wall formation was also observed, suggesting a key role of lipids in zygospore wall synthesis. Multimodal imaging revealed that the cell wall of the sexually formed zygospores possess a highly complex internal structure as well as aromatics, likely acting as protective compounds and leading to impregnation. Both, the newly discovered special three-dimensional arrangement of microfibrils and the integration of highly resistant components in the cell wall are not found in the vegetative state. The variety of methods gave a comprehensive view on the intricate zygospore cell wall and its potential key role in the terrestrial colonization and plant evolution is discussed.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| |
Collapse
|
10
|
Holzhausen A, Stingl N, Rieth S, Kühn C, Schubert H, Rensing SA. Establishment and optimization of a new model organism to study early land plant evolution: Germination, cultivation and oospore variation of Chara braunii Gmelin, 1826. FRONTIERS IN PLANT SCIENCE 2022; 13:987741. [PMID: 36438147 PMCID: PMC9691404 DOI: 10.3389/fpls.2022.987741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
For studying land plant evolution, the establishment and optimization of model organisms representing streptophytic algae, sister to land plants, is essential. Long-term cultivation experiments with Chara braunii S276 were performed over 8 years, since 4 years (Nov. 2018) under constant conditions. Additionally, short-term experiments for optimization of culture conditions were performed with three strains of C. braunii (S276, NIES-1604 and Lausiger Teiche, LaT-2708). Germination success after application of sterilization agents, addition of gibberellic acid and under different incubation conditions with respect to pre-treatment, irradiance regime and substrate was investigated in order to develop protocols for generative cultivation of at least unialgal cultures. The resulting cultivation protocols for C. braunii S276, allowing maintenance of vegetative as well as generative cultures are presented in detail, including protocols for germination induction and growth of sterilized and unsterilized oospores.
Collapse
Affiliation(s)
- Anja Holzhausen
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
- Institute for Biosciences, Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| | - Nora Stingl
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
| | - Sophie Rieth
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
| | - Christine Kühn
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
- Institute for Biosciences, Ecology, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Institute for Biosciences, Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| | - Stefan Andreas Rensing
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
12
|
Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J. A phylogenomically informed five-order system for the closest relatives of land plants. Curr Biol 2022; 32:4473-4482.e7. [PMID: 36055238 PMCID: PMC9632326 DOI: 10.1016/j.cub.2022.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.
Collapse
Affiliation(s)
- Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Shelby K Williams
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - Anna Busch
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD, USA
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
13
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
14
|
Pfeifer L, Utermöhlen J, Happ K, Permann C, Holzinger A, von Schwartzenberg K, Classen B. Search for evolutionary roots of land plant arabinogalactan-proteins in charophytes: presence of a rhamnogalactan-protein in Spirogyra pratensis (Zygnematophyceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:568-584. [PMID: 34767672 PMCID: PMC7612518 DOI: 10.1111/tpj.15577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 05/31/2023]
Abstract
Charophyte green algae (CGA) are assigned to be the closest relatives of land plants and therefore enlighten processes in the colonization of terrestrial habitats. For the transition from water to land, plants needed significant physiological and structural changes, as well as with regard to cell wall composition. Sequential extraction of cell walls of Nitellopsis obtusa (Charophyceae) and Spirogyra pratensis (Zygnematophyceae) offered a comparative overview on cell wall composition of late branching CGA. Because arabinogalactan-proteins (AGPs) are considered common for all land plant cell walls, we were interested in whether these special glycoproteins are present in CGA. Therefore, we investigated both species with regard to characteristic features of AGPs. In the cell wall of Nitellopsis, no hydroxyproline was present and no AGP was precipitable with the β-glucosyl Yariv's reagent (βGlcY). By contrast, βGlcY precipitation of the water-soluble cell wall fraction of Spirogyra yielded a glycoprotein fraction rich in hydroxyproline, indicating the presence of AGPs. Putative AGPs in the cell walls of non-conjugating Spirogyra filaments, especially in the area of transverse walls, were detected by staining with βGlcY. Labelling increased strongly in generative growth stages, especially during zygospore development. Investigations of the fine structure of the glycan part of βGlcY-precipitated molecules revealed that the galactan backbone resembled that of AGPs with 1,3- 1,6- and 1,3,6-linked Galp moieties. Araf was present only in small amounts and the terminating sugars consisted predominantly of pyranosidic terminal and 1,3-linked rhamnose residues. We introduce the term 'rhamnogalactan-protein' for this special AGP-modification present in S. pratensis.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Jon Utermöhlen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Kathrin Happ
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| |
Collapse
|
15
|
Abstract
There can be no doubt that early land plant evolution transformed the planet but, until recently, how and when this was achieved was unclear. Coincidence in the first appearance of land plant fossils and formative shifts in atmospheric oxygen and CO2 are an artefact of the paucity of earlier terrestrial rocks. Disentangling the timing of land plant bodyplan assembly and its impact on global biogeochemical cycles has been precluded by uncertainty concerning the relationships of bryophytes to one another and to the tracheophytes, as well as the timescale over which these events unfolded. New genome and transcriptome sequencing projects, combined with the application of sophisticated phylogenomic modelling methods, have yielded increasing support for the Setaphyta clade of liverworts and mosses, within monophyletic bryophytes. We consider the evolution of anatomy, genes, genomes and of development within this phylogenetic context, concluding that many vascular plant (tracheophytes) novelties were already present in a comparatively complex last common ancestor of living land plants (embryophytes). Molecular clock analyses indicate that embryophytes emerged in a mid-Cambrian to early Ordovician interval, compatible with hypotheses on their role as geoengineers, precipitating early Palaeozoic glaciations.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| |
Collapse
|
16
|
Permann C, Herburger K, Felhofer M, Gierlinger N, Lewis LA, Holzinger A. Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? PLANTS (BASEL, SWITZERLAND) 2021; 10:1740. [PMID: 34451785 PMCID: PMC8402014 DOI: 10.3390/plants10081740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field sample of Spirogyra with numerous conjugating stages was isolated and characterized by molecular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a transfer to artificial pond water and increasing the light intensity to 184 µmol photons m-2 s-1. This, however was only possible in early spring, suggesting that the isolated cultures had an internal rhythm. The reproductive morphology was characterized by light- and transmission electron microscopy, and the latter allowed the detection of distinctly oriented microfibrils in the exo- and endospore, and an electron-dense mesospore. Glycan microarray profiling showed that Spirogyra cell walls are rich in major pectic and hemicellulosic polysaccharides, and immuno-fluorescence allowed the detection of arabinogalactan proteins (AGPs) and xyloglucan in the zygospore cell walls. Confocal RAMAN spectroscopy detected complex aromatic compounds, similar in their spectral signature to that of Lycopodium spores. These data support the idea that sexual reproduction in Zygnematophyceae, the sister lineage to land plants, might have played an important role in the process of terrestrialization.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Martin Felhofer
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (M.F.); (N.G.)
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (M.F.); (N.G.)
| | - Louise A. Lewis
- Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA;
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
17
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
18
|
Buschmann H, Holzinger A. Understanding the algae to land plant transition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3241-3246. [PMID: 32529251 DOI: 10.1093/jxb/eraa196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|