1
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
Min JH, Park CR, Gong Y, Chung MS, Nam SH, Yun HS, Kim CS. Rhamnogalacturonan lyase 1 (RGL1), as a suppressor of E3 ubiquitin ligase Arabidopsis thaliana ring zinc finger 1 (AtRZF1), is involved in dehydration response to mediate proline synthesis and pectin rhamnogalacturonan-I composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:942-959. [PMID: 38743860 DOI: 10.1111/tpj.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Proline metabolism plays a crucial role in both environmental stress responses and plant growth. However, the specific mechanism by which proline contributes to abiotic stress processes remains to be elucidated. In this study, we utilized atrzf1 (Arabidopsis thaliana ring zinc finger 1) as a parental line for T-DNA tagging mutagenesis and identified a suppressor mutant of atrzf1, designated proline content alterative 31 (pca31). The pca31 mutant suppressed the insensitivity of atrzf1 to dehydration stress during early seedling growth. Using Thermal Asymmetric Interlaced-PCR, we found that the T-DNA of pca31 was inserted into the promoter region of the At2g22620 gene, which encodes the cell wall enzyme rhamnogalacturonan lyase 1 (RGL1). Enzymatic assays indicated that RGL1 exhibited rhamnogalacturonan lyase activity, influencing cell wall pectin composition. The decrease in RGL1 gene expression suppressed the transcriptomic perturbation of the atrzf1 mutant. Silencing of the RGL1 gene in atrzf1 resulted in a sensitive phenotype similar to pca31 under osmotic stress conditions. Treatment with mannitol, salt, hydrogen peroxide, and abscisic acid induced RGL1 expression. Furthermore, we uncovered that RGL1 plays a role in modulating root growth and vascular tissue development. Molecular, physiological, and genetic experiments revealed that the positive modulation of RGL1 during abiotic stress was linked to the AtRZF1 pathway. Taken together, these findings establish that pca31 acts as a suppressor of atrzf1 in abiotic stress responses through proline and cell wall metabolisms.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas, 77843-2128, USA
| | - Cho-Rong Park
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ying Gong
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Moon-Soo Chung
- Research Division for Radiation Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeonlabuk-do, 56212, Republic of Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
3
|
Zhao Y, Wang H, Xu Y, Wang K, Huang C, Deng Y, Huang J, Li Y. Characteristic analysis of BZR genes family and their responses to hormone treatments and abiotic stresses in Carya illinoinensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111990. [PMID: 38253206 DOI: 10.1016/j.plantsci.2024.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
As the core of Brassinosteroids (BR) signaling pathway, BR-resistant (BZR) transcription factor regulates thousands of targeted genes mediating photomophogenesis, pollen sterility, cell expansion and stress response. Pecan (Carya illinoinensis) is a famous trees species of Carya, and its nut has high nutritional and economic values. However, there has no report on BZR genes family in pecan yet. Herein, totals of seven CiBZR members were identified in pecan genome, which were predicted to be hydrophilic unstable proteins and located in the nucleus. CiBZR genes had close evolutionary relationships with CcBZRs and JrBZRs in both Carya cathayensis and Juglans regia. These seven CiBZR genes were located independently on 7 chromosomes without doubling or tandem duplication. Based on the analysis of conserved motifs and gene structures, CiBZR genes were divided into three categories. More than 40 cis-acting elements were found in the 2 kb promoter regions of CiBZRs, which were mainly involved in hormone, light, and stress response, and plant growth and development. Notably, some of these CiBZR proteins were mainly located in the nucleus, had the self-activation ability and interaction relationship with BIN2 kinase, and negatively regulated the expression of CiCPD and CiDWF4. Gene expressions analysis further showed that CiBZR genes could express in many tissues and shared similar expression trends during embryo development. Moreover, most CiBZR genes responded to BR, Gibberellin (GA), Strigolactone (SL), salt, acid and osmotic stress. This study provides theoretical basis for the subsequent study on the role of CiBZR family genes in plant growth, development and stress responses.
Collapse
Affiliation(s)
- Yirui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Haoyu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yifan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | | | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
4
|
Zhang W, Wu M, Zhong X, Liu Y, Yang X, Cai W, Zhu K, Zhang H, Gu J, Wang Z, Liu L, Zhang J, Yang J. Involvement of brassinosteroids and abscisic acid in spikelet degeneration in rice under soil drying during meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1580-1600. [PMID: 38035729 DOI: 10.1093/jxb/erad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mengyin Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Zhong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ying Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wei Cai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Park CR, Min JH, Gong Y, Sang H, Lee KH, Kim CS. Arabidopsis thaliana ubiquitin-associated protein 2 (AtUAP2) functions as an E4 ubiquitin factor and negatively modulates dehydration stress response. PLANT MOLECULAR BIOLOGY 2024; 114:13. [PMID: 38324104 DOI: 10.1007/s11103-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
E4, a ubiquitin (Ub) chain assembly factor and post-translational modification protein, plays a key role in the regulation of multiple cellular functions in plants during biotic or abiotic stress. We have more recently reported that E4 factor AtUAP1 is a negative regulator of the osmotic stress response and enhances the multi-Ub chain assembly of E3 ligase Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1). To further investigate the function of other E4 Ub factors in osmotic stress, we isolated AtUAP2, an AtUAP1 homolog, which interacted with AtRZF1, using pull-down assay and bimolecular fluorescence complementation analysis. AtUAP2, a Ub-associated motif-containing protein, interacts with oligo-Ub5, -Ub6, and -Ub7 chains. The yeast functional complementation experiment revealed that AtUAP2 functions as an E4 Ub factor. In addition, AtUAP2 is localized in the cytoplasm, different from AtUAP1. The activity of AtUAP2 was relatively strongly induced in the leaf tissue of AtUAP2 promoter-β-glucuronidase transgenic plants by abscisic acid, dehydration, and oxidative stress. atuap2 RNAi lines were more insensitive to osmotic stress condition than wild-type during the early growth of seedlings, whereas the AtUAP2-overexpressing line exhibited relatively more sensitive responses. Analyses of molecular and physiological experiments showed that AtUAP2 could negatively mediate the osmotic stress-induced signaling. Genetic studies showed that AtRZF1 mutation could suppress the dehydration-induced sensitive phenotype of the AtUAP2-overexpressing line, suggesting that AtRZF1 acts genetically downstream of AtUAP2 during osmotic stress. Taken together, our findings show that the AtRZF1-AtUAP2 complex may play important roles in the ubiquitination pathway, which controls the osmotic stress response in Arabidopsis.
Collapse
Affiliation(s)
- Cho-Rong Park
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Ji-Hee Min
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, 77843-2128, College Station, TX, USA
| | - Ying Gong
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea.
| |
Collapse
|
6
|
Wang L, Lin M, Zou L, Zhang S, Lan Y, Yan H, Xiang Y. Comprehensive investigation of BZR gene family in four dicots and the function of PtBZR9 and PtBZR12 under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108360. [PMID: 38266559 DOI: 10.1016/j.plaphy.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Brassinazole-resistant (BZR) transcription factor plays an important role in plant growth and stress resistance through brassinosteroid (BR) signal transduction. However, systematic analysis of the BZR family in dicots remains limited. In this study, we conducted a genome-wide study of four typical dicots: Arabidopsis thaliana, Carica papaya, Vitis vinifera and Populus trichocarpa. Thirty-four BZR gene family members were identified and classified them into three subfamilies. Analysis of promoter and expression patterns revealed crucial role of a pair of homologous BZR genes, PtBZR9 and PtBZR12, in poplar may play a critical role under abiotic stress. PtBZR9 and PtBZR12 were localised in the nucleus and exhibited mutual interactions. Moreover, transient overexpression (OE) of PtBZR9 and PtBZR12 in poplar enhanced tolerance to drought stress. The phenotypic and physiological characteristics of PtBZR9 and PtBZR12 OE in Arabidopsis mirrored those of transient OE in the poplar. Additionally, PtBZR9 and PtBZR12 can bind to the E-box element. Under exogenous BR treatment, transgenic lines displayed a greater decrease in root length than the wild type. Thus, these findings provide a solid foundation for future research on the complex regulatory mechanisms of BZR genes.
Collapse
Affiliation(s)
- Linna Wang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Miao Lin
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Lina Zou
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Shunran Zhang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yangang Lan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Furuya T, Kondo Y. Comprehensive analysis of downstream transcriptomic features in the competitive relationships between BEH3 and other BES/BZR transcription factors. Genes Genet Syst 2023; 98:89-92. [PMID: 37331806 DOI: 10.1266/ggs.23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Members of a plant-specific BES/BZR transcription factor (TF) family including BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1) regulate various developmental processes and environmental responses. Recently, we reported that BES1/BZR1 Homolog 3 (BEH3) exhibited a competitive effect toward other BES/BZR TFs. In this study, we analyzed transcriptome profiles in BEH3-overexpressing plants and compared them with those of BES1 and BZR1 double gain-of-function mutants. We identified 46 differentially expressed genes (DEGs), which were downregulated in the gain-of-function mutants of BES1 and BZR1 but upregulated upon BEH3 overexpression. In these DEGs, putative BES1 and BZR1 direct-targeted genes were highly enriched. In addition, these DEGs contained not only known brassinosteroid biosynthetic enzymes, but also some NAC TFs, which negatively regulate brassinosteroid-inactivating enzymes. Moreover, the iron sensor and the iron-deficient response-related bHLH TFs were also included. Taken together, our findings indicate that a competitive relationship between BEH3 and other BES/BZR TFs exists in various BES/BZR binding target genes.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University
- Graduate School of Science, Kobe University
| | - Yuki Kondo
- Graduate School of Science, Kobe University
| |
Collapse
|
8
|
Liu Y, Zhang H, Feng W, Lin X, Gao A, Cao Y, Yang Q, Wang Y, Li W, Fu F, Yu H. The Maize ZmBES1/BZR1-9 Transcription Factor Accelerates Flowering in Transgenic Arabidopsis and Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2995. [PMID: 37631206 PMCID: PMC10459471 DOI: 10.3390/plants12162995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed control under long-day conditions. In addition, there was no difference in the rosette leaf number between all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56, AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and development in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region; Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Wang D, Zuo J, Liu S, Wang W, Lu Q, Hao X, Fang Z, Liang T, Sun Y, Guo C, Zhao C, Tang Y. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1219856. [PMID: 37621887 PMCID: PMC10446898 DOI: 10.3389/fpls.2023.1219856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
BRI1 EMS SUPPRESSOR1 (BES1) family members are crucial downstream regulators that positively mediate brassinosteroid signaling, playing vital roles in the regulation of plant stress responses and anther development in Arabidopsis. Importantly, the expression profiles of wheat (Triticum aestivum L.) BES1 genes have not been analyzed comprehensively and systematically in response to abiotic stress or during anther development. In this study, we identified 23 BES1-like genes in common wheat, which were unevenly distributed on 17 out of 21 wheat chromosomes. Phylogenetic analysis clustered the BES1 genes into four major clades; moreover, TaBES1-3A2, TaBES1-3B2 and TaBES1-3D2 belonged to the same clade as Arabidopsis BES1/BZR1 HOMOLOG3 (BEH3) and BEH4, which participate in anther development. The expression levels of 23 wheat BES1 genes were assessed using real-time quantitative PCR under various abiotic stress conditions (drought, salt, heat, and cold), and we found that most TaBES1-like genes were downregulated under abiotic stress, particularly during drought stress. We therefore used drought-tolerant and drought-sensitive wheat cultivars to explore TaBES1 expression patterns under drought stress. TaBES1-3B2 and TaBES1-3D2 expression was high in drought-tolerant cultivars but substantially repressed in drought-sensitive cultivars, while TaBES1-6D presented an opposite pattern. Among genes preferentially expressed in anthers, TaBES1-3B2 and TaBES1-3D2 expression was substantially downregulated in thermosensitive genic male-sterile wheat lines compared to common wheat cultivar under sterile conditions, while we detected no obvious differences under fertile conditions. This result suggests that TaBES1-3B2 and TaBES1-3D2 might not only play roles in regulating drought tolerance, but also participate in low temperature-induced male sterility.
Collapse
Affiliation(s)
- Dezhou Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Jinghong Zuo
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Shan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Weiwei Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Qing Lu
- Agriculture College, Yangtze University, Jingzhou, China
| | - Xiaocong Hao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Zhaofeng Fang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Ting Liang
- Agriculture College, Yangtze University, Jingzhou, China
| | - Yue Sun
- Agriculture College, Yangtze University, Jingzhou, China
| | - Chunman Guo
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| |
Collapse
|
10
|
Zhang W, Huang H, Zhou Y, Zhu K, Wu Y, Xu Y, Wang W, Zhang H, Gu J, Xiong F, Wang Z, Liu L, Yang J. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. PLANT, CELL & ENVIRONMENT 2023; 46:1340-1362. [PMID: 36097648 DOI: 10.1111/pce.14436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanghang Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yujiao Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Otani Y, Kawanishi M, Kamimura M, Sasaki A, Nakamura Y, Nakamura T, Okamoto S. Behavior and possible function of Arabidopsis BES1/BZR1 homolog 2 in brassinosteroid signaling. PLANT SIGNALING & BEHAVIOR 2022; 17:2084277. [PMID: 35695417 PMCID: PMC9196799 DOI: 10.1080/15592324.2022.2084277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Yui Otani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Mika Kawanishi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Miyu Kamimura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Azusa Sasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasushi Nakamura
- Department of Japanese Food Culture, Faculty of Letters, Kyoto Prefectural University, Kyoto, Japan
| | - Takako Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shigehisa Okamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Tang B, Yang G, Du J, Xie L, Wang J, Pan L, Luo Y, Shan Q, Zou X, Xiong C, Liu F. Analysis of the response regulatory network of pepper genes under hydrogen peroxide stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1018991. [PMID: 36570911 PMCID: PMC9772053 DOI: 10.3389/fpls.2022.1018991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen peroxide (H2O2) is a regulatory component related to plant signal transduction. To better understand the genome-wide gene expression response to H2O2 stress in pepper plants, a regulatory network of H2O2 stress-gene expression in pepper leaves and roots was constructed in the present study. We collected the normal tissues of leaves and roots of pepper plants after 40 days of H2O2 treatment and obtained the RNA-seq data of leaves and roots exposed to H2O2 for 0.5-24 h. By comparing the gene responses of pepper leaves and roots exposed to H2O2 stress for different time periods, we found that the response in roots reached the peak at 3 h, whereas the response in leaves reached the peak at 24 h after treatment, and the response degree in the roots was higher than that in the leaves. We used all datasets for K-means analysis and network analysis identified the clusters related to stress response and related genes. In addition, CaEBS1, CaRAP2, and CabHLH029 were identified through a co-expression analysis and were found to be strongly related to several reactive oxygen species-scavenging enzyme genes; their homologous genes in Arabidopsis showed important functions in response to hypoxia or iron uptake. This study provides a theoretical basis for determining the dynamic response process of pepper plants to H2O2 stress in leaves and roots, as well as for determining the critical time and the molecular mechanism of H2O2 stress response in leaves and roots. The candidate transcription factors identified in this study can be used as a reference for further experimental verification.
Collapse
Affiliation(s)
- Bingqian Tang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan, China
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Guangbin Yang
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Juan Du
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Lingling Xie
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Luzhao Pan
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Yin Luo
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Qingyun Shan
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan, China
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Laboratory of Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Cheng Xiong
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan, China
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Laboratory of Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Park CR, Nguyen VT, Min JH, Sang H, Lim GH, Kim CS. Isolation and Functional Characterization of Soybean BES1/BZR1 Homolog 3-Like 1 (GmBEH3L1) Associated with Dehydration Sensitivity and Brassinosteroid Signaling in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2022; 11:2565. [PMID: 36235431 PMCID: PMC9573144 DOI: 10.3390/plants11192565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroid (BR) is an important steroid hormone that regulates plant development, abscisic acid (ABA) signaling, and responses to abiotic stress. We previously demonstrated that BEH3 (BES1/BZR1 Homolog 3) of Arabidopsis thaliana regulates dehydration and ABA responses by mediating proline metabolism. Furthermore, BEH3 negatively regulates BR-mediated hypocotyl elongation in dark-grown seedlings. However, the roles of BEH3 ortholog genes in the osmotic stress response of plants have remained largely unknown. Here, GmBEH3L1 (Glycine max BEH3-Like 1), a soybean (G. max) ortholog of the BEH3 gene of A. thaliana, was isolated and functionally characterized. GmBEH3L1 is induced by ABA, dehydration, and drought conditions. The GmBEH3L1-overexpressing transgenic lines (GmBEH3L1-OE/beh3) with the beh3 mutant background have ABA- and dehydration-sensitive phenotypes during early seedling growth, implying that GmBEH3L1 is involved in both osmotic stress and ABA sensitivity as a negative regulator in A. thaliana. Consistent with these results, GmBEH3L1-OE/beh3 complemental lines exhibit decreased expression levels of ABA- or dehydration-inducible genes. Under darkness, GmBEH3L1-OE/beh3 complemental lines display a short hypocotyl length compared to the beh3 mutant, indicating that GmBEH3L1 is linked to BR signaling. Together, our data suggest that GmBEH3L1 participates negatively in ABA and dehydration responses through BR signaling.
Collapse
Affiliation(s)
- Cho-Rong Park
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
| | - Van Tinh Nguyen
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
- Department of Basic Science, Buon Ma Thuot University of Medicine and Pharmacy, Buon Ma Thuot 630000, Vietnam
| | - Ji-Hee Min
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843-2128, USA
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
14
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
15
|
Coordinative regulation of ERAD and selective autophagy in plants. Essays Biochem 2022; 66:179-188. [PMID: 35612379 DOI: 10.1042/ebc20210099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays important roles in plant development, hormone signaling, and plant-environment stress interactions by promoting the clearance of certain proteins or soluble misfolded proteins through the ubiquitin-proteasome system. Selective autophagy is involved in the autophagic degradation of protein aggregates mediated by specific selective autophagy receptors. These two major degradation routes co-operate with each other to relieve the cytotoxicity caused by ER stress. In this review, we analyze ERAD and different types of autophagy, including nonselective macroautophagy and ubiquitin-dependent and ubiquitin-independent selective autophagy in plants, and specifically summarize the selective autophagy receptors characterized in plants. In addition to being a part of selective autophagy, ERAD components also serve as their cargos. Moreover, an ubiquitinated substrate can be delivered to two distinguishable degradation systems, while the underlying determinants remain elusive. These excellent findings suggest an interdependent but complicated relationship between ERAD and selective autophagy. According to this point, we propose several key issues that need to be addressed in the future.
Collapse
|
16
|
Han G, Qiao Z, Li Y, Yang Z, Wang C, Zhang Y, Liu L, Wang B. RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:877011. [PMID: 35498666 PMCID: PMC9047180 DOI: 10.3389/fpls.2022.877011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Lili Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Yang J, Wu Y, Li L, Li C. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:1-13. [PMID: 35085861 DOI: 10.1016/j.plaphy.2022.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The BRI1 EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1 (BES1/BZR1) plays a vital role in plant growth and development and stress responses, but there are few studies on poplar BES1 genes. In this study, we identified 14 BES1 genes in the Populus trichocarpa genome and analyzed the expression under hormone treatment and abiotic stress. The PtrBES1 genes were classified into seven subgroups (I-VII) through phylogenetic analysis. All the paralogous gene pairs were shown to be subjected to expansion by segment duplication and purification selection during the PtrBES1 family evolution. Promoter cis-element analysis showed that the PtrBES1 promoter contains stress related cis-elements including ABRE-motif, MBS and TC-rich elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the PtrBES1 genes were upregulated upon NaCl, Polyethylene glycol 6000 (PEG6000) stress as well as the major stress hormone abscisic acid (ABA) treatment. Under the three treatments, PtrBES1-7 showed high expression levels in leaves and roots. Physiological experiments showed that the overexpression PtrBES1-7 line could enhance tolerance to drought stress in P. trichocarpa by improving the ability to scavenge ROS (reactive oxygen species). This is specifically reflected in the fact that the overexpression line contains less ROS (O2- and H2O2) and more antioxidant enzymes (1.42 times SOD and 1.5 times POD) than the control line. The preliminary results of this study provided a solid basis for the future functional studies of the BES1 gene family in P. trichocarpa.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Ye Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Lu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
18
|
Furuya T, Saito M, Uchimura H, Satake A, Nosaki S, Miyakawa T, Shimadzu S, Yamori W, Tanokura M, Fukuda H, Kondo Y. Gene co-expression network analysis identifies BEH3 as a stabilizer of secondary vascular development in Arabidopsis. THE PLANT CELL 2021; 33:2618-2636. [PMID: 34059919 PMCID: PMC8408481 DOI: 10.1093/plcell/koab151] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 05/02/2023]
Abstract
In plants, vascular stem cells located in the cambium continuously undergo self-renewal and differentiation during secondary growth. Recent advancements in cell sorting techniques have enabled access to the transcriptional regulatory framework of cambial cells. However, mechanisms underlying the robust control of vascular stem cells remain unclear. Here, we identified a new cambium-related regulatory module through co-expression network analysis using multiple transcriptome datasets obtained from an ectopic vascular cell transdifferentiation system using Arabidopsis cotyledons, Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL). The cambium gene list included a gene encoding the transcription factor BES1/BZR1 Homolog 3 (BEH3), whose homolog BES1 negatively affects vascular stem cell maintenance. Interestingly, null beh3 mutant alleles showed a large variation in their vascular size, indicating that BEH3 functions as a stabilizer of vascular stem cells. Genetic analysis revealed that BEH3 and BES1 perform opposite functions in the regulation of vascular stem cells and the differentiation of vascular cells in the context of the VISUAL system. At the biochemical level, BEH3 showed weak transcriptional repressor activity and functioned antagonistically to other BES/BZR members by competing for binding to the brassinosteroid response element. Furthermore, mathematical modeling suggested that the competitive relationship between BES/BZR homologs leads to the robust regulation of vascular stem cells.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masato Saito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Uchimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shohei Nosaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shunji Shimadzu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | | |
Collapse
|