1
|
Manntschke A, Hempel L, Temme A, Reumann M, Chen TW. Breeding in winter wheat ( Triticum aestivum L.) can be further progressed by targeting previously neglected competitive traits. FRONTIERS IN PLANT SCIENCE 2025; 16:1490483. [PMID: 40177013 PMCID: PMC11961425 DOI: 10.3389/fpls.2025.1490483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
Breeders work to adapt winter wheat genotypes for high planting densities to pursue sustainable intensification and maximize canopy productivity. Although the effects of plant-plant competition at high planting density have been extensively reported, the quantitative relationship between competitiveness and plant performance remains unclear. In this study, we introduced a shoot competitiveness index (SCI) to quantify the competitiveness of genotypes and examined the dynamics of nine competitiveness-related traits in 200 winter wheat genotypes grown in heterogeneous canopies at two planting densities. Higher planting densities increased shoot length but reduced biomass, tiller numbers, and leaf mass per area (LMA), with trait plasticity showing at least 41% variation between genotypes. Surprisingly, genotypes with higher LMA at low density exhibited greater decreases under high density, challenging expectations from game theory. Regression analysis identified tiller number, LMA, and shoot length as key traits influencing performance under high density. Contrary to our hypothesis, early competitiveness did not guarantee sustained performance, revealing the dynamic nature of plant-plant competition. Our evaluation of breeding progress across the panel revealed a declining trend in SCI (R² = 0.61), aligning with the breeding objective of reducing plant height to reduce individual competitiveness and increase the plant-plant cooperation. The absence of historical trends in functional traits and their plasticities, such as tiller number and LMA, suggests their potential for designing ideal trait-plasticity for plant-plant cooperation and further crop improvement.
Collapse
Affiliation(s)
- Annette Manntschke
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Lina Hempel
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andries Temme
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Marcin Reumann
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Tsu-Wei Chen
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
3
|
Chhabra V, Sreethu S, Kaur G, Singh A, Kaur M, Siddiqui MH, Gupta RK. Response of wheat crop to water-logged conditions under different land configurations and nutrient management. Sci Rep 2025; 15:7168. [PMID: 40021710 PMCID: PMC11871076 DOI: 10.1038/s41598-024-83752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/17/2024] [Indexed: 03/03/2025] Open
Abstract
By 2050, the global population is expected to increase from 7.7 billion to 9.7 billion, and wheat will remain crucial for ensuring food security worldwide. It supplies food for more than 4.5 billion individuals in 94 countries and constitutes 40% of the primary diet for the global population. It also has 20% protein and 21% calories. An important concern for wheat cultivation is waterlogging stress, which may escalate in occurrence and intensity due to climate change. The raised bed planting pattern was created to reduce the negative impact of waterlogging stress on wheat productivity. The study was conducted during the rabi seasons of 2017-2018 and 2018-2019 to assess the impact of various nutrient management practices on the growth, yield, and yield characteristics of wheat using flat and raised bed planting methods at the crop research farm in Punjab. The study found that wheat cultivated using a raised bed system with recommended nitrogen, phosphorus, and potassium showed significantly improved plant height (105.28 cm), number of effective tillers per plant (25.08), spike length (11.67 cm), number of grains per spike (72.50), grain yield (6.97 t/ha), and straw yield (9.39 t/ha) compared to traditional planting techniques. Furthermore, these investigations need to be repeated at various locations with various agro-climatic circumstances.
Collapse
Affiliation(s)
- Vandna Chhabra
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - S Sreethu
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gurleen Kaur
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Amritpal Singh
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manpreet Kaur
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rajeev Kumar Gupta
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
4
|
Shahi D, Guo J, Babar MA, Pradhan S, Avci M, McBreen J, Liu Z, Bai G, Amand PS, Bernardo A, Reynolds M, Molero G, Sukumaran S, Foulkes J, Khan J. Dissecting the genetic basis of fruiting efficiency for genetic enhancement of harvest index, grain number, and yield in wheat. BMC PLANT BIOLOGY 2025; 25:101. [PMID: 39856566 PMCID: PMC11760100 DOI: 10.1186/s12870-025-06072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Grain number (GN) is one of the key yield contributing factors in modern wheat (Triticum aestivum) varieties. Fruiting efficiency (FE) is a key trait for increasing GN by making more spike assimilates available to reproductive structures. Thousand grain weight (TGW) is also an important component of grain yield. To understand the genetic architecture of FE and TGW, we performed a genome-wide association study (GWAS) in a panel of 236 US soft facultative wheats that were phenotyped in three experiments at two locations in Florida and genotyped with 20,706 single nucleotide polymorphisms (SNPs) generated from genotyping-by-sequencing (GBS). RESULTS FE showed significant positive associations with GN, grain yield (GY), and harvest index (HI). Likewise, TGW mostly had a positive correlation with GY and HI, but a negative correlation with GN. Eighteen marker-trait associations (MTAs) for FE and TGW were identified on 11 chromosomes, with nine MTAs within genes. Several MTAs associated with other traits were found within genes with different biological and metabolic functions including nuclear pore complex protein, F-box protein, oligopeptide transporter, and glycoside vacuolar protein. Two KASP markers showed significant mean differences for FE and TGW traits in a validation population. CONCLUSIONS KASP marker development and validation demonstrated the utility of these markers for improving FE and TGW in breeding programs. The results suggest that optimizing intra-spike partitioning and utilizing marker-assisted selection (MAS) can enhance GY and HI.
Collapse
Affiliation(s)
- Dipendra Shahi
- School of Plant, Environmental and Soil Sciences, Louisiana State Agricultural Center, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jia Guo
- Inari Agriculture, 1281 Win Hentschel Blvd w1108, West Lafayette, IN, 47906, USA
| | - Md Ali Babar
- Department of Agronomy, University of Florida, 3105 McCarty Hall B, Gainesville, FL, 32611, USA.
| | - Sumit Pradhan
- Department of Agronomy, University of Florida, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Muhsin Avci
- Department of Agronomy, University of Florida, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Jordan McBreen
- Department of Agronomy, University of Florida, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Zhao Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Paul St Amand
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, México
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, México
| | - Sivakumar Sukumaran
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, México
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, Queensland, 4370, Australia
- Department of Plant & Environmental Sciences & Advanced Plant Technology Program, Clemson University, Clemson, SC, 29634, USA
| | - John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Jahangir Khan
- PARC-Balochistan Agricultural Research and Development Center, Quetta, 87300, Pakistan
| |
Collapse
|
5
|
Schmidt C, Hinterberger V, Philipp N, Reif JC, Schnurbusch T. Hybrid grain production in wheat benefits from synchronized flowering and high female flower receptivity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:445-460. [PMID: 39441002 DOI: 10.1093/jxb/erae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The performance of plant hybrids relative to line breeding types is generally associated with higher yields, better adaptation, and improved yield stability. In bread wheat (Triticum aestivum L.), however, a broad commercial success for hybrids has not been accomplished until now largely due to the low efficiency of hybrid grain production, which is highly attributable to its self-pollinating nature. To better understand how hybrid wheat grains can be produced more effectively, we investigated the influence of synchronized flowering between female (i.e. male-sterile) lines and their male cross-pollinator lines as well as of the duration of flowering on hybrid grain production. We found that synchronization of flowering in combination with the longest possible temporal overlap had the largest positive effect on hybrid grain production. However, despite sufficient spatial and temporal synchronization of flowering, we also found that some female lines had lower hybrid grain set than others, suggesting genetic differences in female floral receptivity. To better assess female receptivity, we established a new phenotyping scale of male-sterile wheat flowers that provides the floral basics for effective cross-pollination. Applying this scale in our field and greenhouse trials revealed that better performing female lines remained longer in the pollen-receptive phase.
Collapse
Affiliation(s)
- Constanze Schmidt
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Valentin Hinterberger
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Norman Philipp
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, D-06120 Halle, Germany
| |
Collapse
|
6
|
Yadav SK, Khatri K, Rathore MS, Jha B. Ectopic Expression of a Transmembrane Protein KaCyt b 6 from a Red Seaweed Kappaphycus alvarezii in Transgenic Tobacco Augmented the Photosynthesis and Growth. DNA Cell Biol 2024; 43:e630-e644. [PMID: 32865429 DOI: 10.1089/dna.2020.5479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytochrome b6f complex is a thylakoid membrane-localized protein and catalyses the transfer of electrons from plastoquinol to plastocyanin in photosynthetic electron transport chain. In the present study, Cytochrome b6 (KaCyt b6) gene from Kappaphycus alvarezii (a red seaweed) was overexpressed in tobacco. A 935 base pair (bp) long KaCyt b6 cDNA contained an open reading frame of 648 bp encoding a protein of 215 amino acids with an expected isoelectric point of 8.67 and a molecular mass of 24.37 kDa. The KaCyt b6 gene was overexpressed in tobacco under control of CaMV35S promoter. The transgenic tobacco had higher electron transfer rate and photosynthetic yield over wild-type and vector control tobacco. The KaCyt b6 tobacco also exhibited significantly higher photosynthetic gas exchange (PN) and improved water use efficiency. The transgenic plants had higher ratio of PN and intercellular CO2. The KaCyt b6 transgenic tobacco showed higher estimates of photosystem II quantum yield, higher activity of the water-splitting complex, PSII photochemistry, and photochemical quenching. The basal quantum yield of nonphotochemical processes in PSII was recorded lower in KaCyt b6 tobacco. Transgenic tobacco contained higher contents of carotenoids and total chlorophyll and also had better ratios of chlorophyll a and b, and carotenoids and total chlorophyll contents hence improved photosynthetic efficiency and production of sugar and starch. The KaCyt b6 transgenic plants performed superior under control and greenhouse conditions. To the best of our knowledge through literature survey, this is the first report on characterization of KaCyt b6 gene from K. alvarezii for enhanced photosynthetic efficiency and growth in tobacco.
Collapse
Affiliation(s)
- Sweta K Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kusum Khatri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
| | - Mangal S Rathore
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
| | - Bhavanath Jha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Cakmak I, Rengel Z. Humboldt Review: Potassium may mitigate drought stress by increasing stem carbohydrates and their mobilization into grains. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154325. [PMID: 39142140 DOI: 10.1016/j.jplph.2024.154325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Potassium (K) deficiency occurs commonly in crop plants. Optimal K nutrition is particularly important when plants are exposed to stress conditions (especially drought and heat) because a cellular demand for K increases. Low K in plant tissues is known to aggravate the effects of drought stress by impairing the osmoregulation process and the photosynthetic carbon metabolism. However, despite numerous publications about the role of K in enhancing tolerance to drought stress in crop plants, our understanding of the major mechanisms underlying the stress-mitigating effects of K is still limited. This paper summarizes and appraises the current knowledge on the major protective effects of K under drought stress, and then proposes a new K-related drought stress-mitigating mechanism, whereby optimal K nutrition may promote partitioning of carbohydrates in stem tissues and subsequent mobilization of these carbohydrates into developing grain under drought stress. The importance of stem reserves of carbohydrates is based on limited photosynthetic capacity during the grain-filling period under drought conditions due to premature leaf senescence as well as due to impaired assimilate transport from leaves to the developing grains. Plants with a high capacity to store large amounts of soluble carbohydrates in stems before anthesis and mobilize them into grain post-anthesis have a high potential to yield well in dry and hot environments. In practice, particular attention needs to be paid to the K nutritional status of plants grown with limited water supply, especially during grain filling. Because K is the mineral nutrient deposited mainly in stem, a special consideration should be given to stems of crop plants in research dealing with the effects of K on yield formation and stress mitigation.
Collapse
Affiliation(s)
- Ismail Cakmak
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956 Istanbul, Turkey.
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| |
Collapse
|
8
|
Shahi D, Guo J, Babar MA, Pradhan S, Avci M, Khan N, McBreen J, Rayamajhi S, Liu Z, Bai G, Amand PS, Bernardo A, Reynolds M, Molero G, Sukumaran S, Foulkes J, Khan J. Deciphering the genetic basis of novel traits that discriminate useful and non-useful biomass to enhance harvest index in wheat. THE PLANT GENOME 2024; 17:e20512. [PMID: 39295194 PMCID: PMC11628932 DOI: 10.1002/tpg2.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
Wheat (Triticum aestivum L.) production must be doubled in the next 25 years to meet the global food demand. Harvest index (HI) is an important indicator of efficient partitioning of photosynthetic assimilates to grains. Reducing competition from alternative sinks, such as stems, and deviating assimilates toward grain increase grain number (GN), HI, and grain yield (GY). Novel partitioning traits have great potential to be utilized in wheat breeding programs to increase HI. In this study, we evaluated 236 US facultative soft wheat genotypes for multiple stem and spike partitioning traits at 7 days after anthesis, and for GN, HI, and GY in two locations of Florida in 2016-2017 and 2017-2018 wheat growing seasons. The panel was genotyped with 20,706 single nucleotide polymorphisms generated by genotype-by-sequencing approach. Spike partitioning index (SPI) showed negative significant correlations with lamina partitioning index and true stem partitioning index. Internode 2 and 3 lengths and partitioning indices had significant negative correlations with SPI and HI. The results indicate enhanced competition for assimilates between spikes and second and third internodes during stem elongation. Genome-wide association study (GWAS) identified 114 unique significant marker-trait associations (MTAs) for 12 traits, and 58 MTAs were found within genes that encode different proteins related to biotic/abiotic stress tolerance and other functions. Significant MTAs identified in the GWAS were converted into kompetitive allele specific PCR markers. Some of the markers were validated and can be effectively employed in marker-assisted selection to improve HI, GY, and GN.
Collapse
Affiliation(s)
- Dipendra Shahi
- School of Plant, Environmental and Soil SciencesLouisiana State Agricultural CenterBaton RougeLouisianaUSA
| | - Jia Guo
- Inari AgricultureWest LafayetteIndianaUSA
| | - Md Ali Babar
- Department of AgronomyUniversity of FloridaGainesvilleFloridaUSA
| | - Sumit Pradhan
- Department of AgronomyUniversity of FloridaGainesvilleFloridaUSA
| | - Muhsin Avci
- Department of AgronomyUniversity of FloridaGainesvilleFloridaUSA
| | - Naeem Khan
- Department of AgronomyUniversity of FloridaGainesvilleFloridaUSA
| | - Jordan McBreen
- Department of AgronomyUniversity of FloridaGainesvilleFloridaUSA
| | - Smita Rayamajhi
- Department of AgronomyUniversity of FloridaGainesvilleFloridaUSA
| | - Zhao Liu
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Guihua Bai
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- USDA‐ARS, Hard Winter Wheat Genetics Research UnitManhattanKansasUSA
| | - Paul St. Amand
- USDA‐ARS, Hard Winter Wheat Genetics Research UnitManhattanKansasUSA
| | - Amy Bernardo
- USDA‐ARS, Hard Winter Wheat Genetics Research UnitManhattanKansasUSA
| | - Matthew Reynolds
- CIMMYT International Maize and Wheat Improvement Center (CIMMYT)El Batan TexcocoMexico
| | - Gemma Molero
- CIMMYT International Maize and Wheat Improvement Center (CIMMYT)El Batan TexcocoMexico
| | - Sivakumar Sukumaran
- Plant & Environmental Sciences & Advanced Plant Technology ProgramClemson UniversityClemsonSouth CarolinaUSA
| | - John Foulkes
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLeicestershireUK
| | - Jahangir Khan
- PARC‐Balochistan Agricultural Research and Development CenterQuettaPakistan
| |
Collapse
|
9
|
Khalid MA, Ali Z, Husnain LA, Fiaz S, Saddique MAB, Merrium S, Attia KA, Ercisli S, Iqbal R. GA-sensitive Rht13 gene improves root architecture and osmotic stress tolerance in bread wheat. BMC Genom Data 2024; 25:90. [PMID: 39449141 PMCID: PMC11515344 DOI: 10.1186/s12863-024-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The root architecture, more seminal roots, and Deeper roots help the plants to uptake the resources from the deeper soil layer to ensure better growth. The Gibberellic acid-sensitive (GA-sensitive) Rht genes are well known for increasing drought tolerance in wheat. Much work has been performed on the effect of these genes on the plant agronomic traits and little work has been done on the effect of Rht genes on seminal roots and root architecture. This study was designed to evaluate 200 wheat genotypes under normal and osmotic stress. The genotypes were sown in the solution culture and laid under CRD factorial arrangement with three replications and two factors i.e., genotypes and treatments viz. normal and osmotic stress (20% PEG-6000) applied one week after germination. The data was recorded for the root traits. Results demonstrated that out of 200 genotypes, the GA-sensitive Rht13 gene was amplified in 21 genotypes with a fragment length of 1089 bp. In comparison, the GA-insensitive Rht1 gene was amplified in 24 genotypes with a band size of 228 bp. From 200 wheat genotypes, 122 genotypes produced 5 seminal roots, 4 genotypes 4 seminal roots, and 74 genotypes 3 seminal roots. The genotypes G-3 (EBW11TALL#1/WESTONIA-Rht5//QUAIU#1), G-6 (EBW01TALL#1/SILVERSTAR-Rht13B//ROLF07) and G-8 (EBW01TALL#1/SILVERSTAR-Rht13B//NAVJ07) produced 5 seminal roots and have longer coleoptile (> 4.0 cm), root (> 11.0 cm) and shoot (> 17 cm) under normal and osmotic stress. Furthermore, Ujala 16, Galaxy-13, and Fareed-06 produced 3 seminal roots and have short coleoptile (< 3 cm), root (< 9.0 cm) and shoot (< 10.0 cm). These results showed that the genotypes showing the presence of GA-sensitive Rht genes produced a greater number of seminal roots, increased root/shoot growth, and osmotic stress tolerance compared to the genotypes having GA-insensitive Rht genes. Thus, the Rht13 gene improved the root architecture which will help to uptake the nutrients from deeper soil layers. Utilization of Rht13 in wheat breeding has the potential to improve osmotic stress tolerance in wheat.
Collapse
Affiliation(s)
- Muhammad Arslan Khalid
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Zulfiqar Ali
- Programs and Projects Department, Islamic Organization for Food Security, Astana, 019900, Kazakhstan.
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Latifa Al Husnain
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | | | - Sabah Merrium
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Turkey
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
10
|
Alam Z, Khan MAH, Hossain MI, Karim MR, Saif HB, Mustakim AM, Molla MMH, Islam MM, Akhter S, Akter S. Genetic variability and diversity analysis for some agronomic traits of a sweet potato ( Ipomoea batatas L.) collection: Insights for breeding superior genotypes. Heliyon 2024; 10:e38616. [PMID: 39398031 PMCID: PMC11470407 DOI: 10.1016/j.heliyon.2024.e38616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
A study was conducted during the 2017 cropping season to assess the genetic variability of selected agronomic traits in sweet potato. A total of 355 sweet potato genotypes (351 from different countries of the world and four check varieties) were evaluated at Tuber Crops Research Sub Centre, Bangladesh Agricultural Research Institution, Bogura, Bangladesh. The experiment was conducted using an augmented randomized complete block design. Findings revealed positive correlations among five agronomic traits, namely the weight of marketable storage root per plant (MRW), weight of storage root per plant (RW), fresh weight of foliage per plant (FW), number of marketable storage root per plant (MRN) and number of storage root per plant (RN) suggesting their suitability for phenotypic selection. There was a positive skewness in most studied traits (FW, MRW, MRW and RW), indicating the presence of a few genotypes with exceptionally high values for those traits. By employing principal component analysis, the most influential traits in sweet potato genotypes were identified for first two components (Dim) showing significant contributions to Dim-1 and Dim-2 collectively accounting for 84.7 % of the total variance. Through cluster analysis, two main clusters (Cluster I and Cluster II) were identified among the studied genotypes, each characterized by distinct trait patterns. Cluster I demonstrated superior performance in all traits, while Cluster II exhibited lower values for all traits. Further sub-clustering within Cluster II (sub-clusters IIA and IIB) revealed additional variations of the collection. The Euclidean distance for inter-cluster (ranging from 7.94 to 11.39) and intra-cluster (ranging from 3.17 to 10.38) were determined utilizing the complete distance method. In restricted maximum likelihood (REML) model, all the traits were significantly influenced by genetic effects, with broad-sense heritability ranging from 32 % to 70 %. The REML displayed high selection accuracy, with values exceeding 91 % for studied traits. The Multi-Trait Genotype-Ideotype Distance Index (MGIDI) identified 18 genotypes, with Moz1.15 emerging as the best-performing genotype under a 5 % selection pressure. Among the selected genotypes, trait uniqueness was highest for FW (54 %), followed by RN (50 %), MRN (18 %), MRW (14 %), and RW (5 %). The selection gain for these top-ranked genotypes varied between 23.2 % and 69.2 %. Findings established the existence of useful genetic variability for selected agronomic traits of sweet potato that could be exploited for breeding, genetics study and conservation.
Collapse
Affiliation(s)
- Zakaria Alam
- Tuber Crops Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Md Anwar Hossain Khan
- Tuber Crops Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Md Iqbal Hossain
- Tuber Crops Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Md Rezaul Karim
- Horticulture Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Hasib-Bin Saif
- Planning and evaluation wing, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - A.A.M. Mohammad Mustakim
- Plant Physiology Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Md Mosharraf Hossain Molla
- Tuber Crops Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Md Monirul Islam
- Tuber Crops Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Sohela Akhter
- Tuber Crops Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Sanjida Akter
- Entomology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| |
Collapse
|
11
|
Ntawuguranayo S, Zilberberg M, Nashef K, Bonfil DJ, Bainsla NK, Piñera-Chavez FJ, Reynolds MP, Peleg Z, Ben-David R. Stem traits promote wheat climate-resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1388881. [PMID: 39119506 PMCID: PMC11308436 DOI: 10.3389/fpls.2024.1388881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Introduction Wheat grain filling processes under post-anthesis stress scenarios depend mainly on stem traits and remobilization of stem water-soluble carbohydrates (WSC). Methods A diverse panel of advanced semi-dwarf spring wheat lines, representing a natural variation in stem traits (WSC content, stem diameter, peduncle length, and stem wall width), was used to identify specific traits that reliably reflect the relationship between WSC and grain yield. The panel was phenotyped under various environmental conditions: well-watered, water-limited, and heat stress in Mexico, and terminal-drought in Israel. Results Environmental stresses reduced grain yield (from 626 g m-2 under well-watered to 213 g m-2 under heat), lower internode diameter, and peduncle length. However, stem-WSC generally peaked 3-4 weeks after heading under all environmental conditions except heat (where it peaked earlier) and expressed the highest values under water-limited and terminal-drought environments. Increased investment in internode diameter and peduncle length was associated with a higher accumulation of stem WSC, which showed a positive association with yield and kernel weight. Across all environments, there were no apparent trade-offs between increased crop investment in internode diameter, peduncle length, and grain yield. Discussion Our results showed that selecting for genotypes with higher resource investment in stem structural biomass, WSC accumulation, and remobilization could be a valuable strategy to ameliorate grain size reduction under stress without compromising grain yield potential. Furthermore, easy-to-measure proxies for WSC (stem diameter at specific internodes and length of the last internode, i.e., the peduncle) could significantly increase throughput, potentially at the breeding scale.
Collapse
Affiliation(s)
- Simeon Ntawuguranayo
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Michael Zilberberg
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Kamal Nashef
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - David J. Bonfil
- The institute of plant sciences, Agricultural Research Organization, Gilat Research Center, Gilat, Israel
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | - Zvi Peleg
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roi Ben-David
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
12
|
Han H, Yang J, Qi K, Zhu H, Wu P, Zhou S, Zhang J, Guo B, Liu W, Guo X, Lu Y, Yang X, Li X, Li L. Introgression of chromosome 5P from Agropyron cristatum enhances grain weight in a wheat background. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:165. [PMID: 38904787 DOI: 10.1007/s00122-024-04670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
KEY MESSAGE A grain weight locus from Agropyron cristatum chromosome 5P increases grain weight in different wheat backgrounds and is localized to 5PL (bin 7-12). Thousand-grain weight is an important trait in wheat breeding, with a narrow genetic basis being the main factor limiting improvement. Agropyron cristatum, a wild relative of wheat, harbors many desirable genes for wheat improvement. Here, we found that the introduction of the 5P chromosome from A. cristatum into wheat significantly increased the thousand-grain weight by 2.55-7.10 g, and grain length was the main contributor to grain weight. An increase in grain weight was demonstrated in two commercial wheat varieties, indicating that the grain weight locus was not affected by the wheat background. To identify the chromosome segment harboring the grain weight locus, three A. cristatum 5P deletion lines, two wheat-A. cristatum 5P translocation lines and genetic populations of these lines were used to evaluate agronomic traits. We found that the translocation lines harboring the long arm of A. cristatum chromosome 5P (5PL) exhibited high grain weight and grain length, and the genetic locus associated with increased grain weight was mapped to 5PL (bin 7-12). An increase in grain weight did not adversely affect other agronomic traits in translocation line 5PT2, which is a valuable germplasm resource. Overall, we identified a grain weight locus from chromosome 5PL and provided valuable germplasm for improving wheat grain weight.
Collapse
Affiliation(s)
- Haiming Han
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| | - Junli Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kai Qi
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Haoyu Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Panqiang Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Shenghui Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Jinpeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Baojin Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Weihua Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Xiaomin Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Yuqing Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Xinming Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Xiuquan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China
| | - Lihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| |
Collapse
|
13
|
Vicentin L, Canales J, Calderini DF. The trade-off between grain weight and grain number in wheat is explained by the overlapping of the key phases determining these major yield components. FRONTIERS IN PLANT SCIENCE 2024; 15:1380429. [PMID: 38919825 PMCID: PMC11196766 DOI: 10.3389/fpls.2024.1380429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Enhancing grain yield is a primary goal in the cultivation of major staple crops, including wheat. Recent research has focused on identifying the physiological and molecular factors that influence grain weight, a critical determinant of crop yield. However, a bottleneck has arisen due to the trade-off between grain weight and grain number, whose underlying causes remain elusive. In a novel approach, a wheat expansin gene, TaExpA6, known for its expression in root tissues, was engineered to express in the grains of the spring wheat cultivar Fielder. This modification led to increases in both grain weight and yield without adversely affecting grain number. Conversely, a triple mutant line targeting the gene TaGW2, a known negative regulator of grain weight, resulted in increased grain weight but decreased grain number, potentially offsetting yield gains. This study aimed to evaluate the two aforementioned modified wheat genotypes (TaExpA6 and TaGW2) alongside their respective wild-type counterparts. Conducted in southern Chile, the study employed a Complete Randomized Block Design with four replications, under well-managed field conditions. The primary metrics assessed were grain yield, grain number, and average grain weight per spike, along with detailed measurements of grain weight and dimensions across the spike, ovary weight at pollination (Waddington's scale 10), and post-anthesis expression levels of TaExpA6 and TaGW2. Results indicated that both the TaExpA6 and the triple mutant lines achieved significantly higher average grain weights compared to their respective wild types. Notably, the TaExpA6 line did not exhibit a reduction in grain number, thereby enhancing grain yield per spike. By contrast, the triple mutant line showed a reduced grain number per spike, with no significant change in overall yield. TaExpA6 expression peaked at 10 days after anthesis (DAA), and its effect on grain weight over the WT became apparent after 15 DAA. In contrast, TaGW2 gene disruption in the triple mutant line increased ovary size at anthesis, leading to improved grain weight above the WT from the onset of grain filling. These findings suggest that the trade-off between grain weight and number could be attributed to the overlapping of the critical periods for the determination of these traits.
Collapse
Affiliation(s)
- Lucas Vicentin
- Graduate School, Faculty of Agricultural Science, Universidad Austral de Chile, Valdivia, Chile
- Institute of Plant Production and Protection, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
- National Agency for Research and Development of Chile-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Daniel F. Calderini
- Institute of Plant Production and Protection, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
14
|
Zhang Y, Wang N, He C, Gao Z, Chen G. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application. BMC PLANT BIOLOGY 2024; 24:419. [PMID: 38760728 PMCID: PMC11102181 DOI: 10.1186/s12870-024-05129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.
Collapse
Affiliation(s)
- Yafang Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ning Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chenggong He
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Baek S, Lee G, Park CG. Damage analysis of Pochazia shantungensis (Hemiptera: Ricaniidae) in persimmons. PLoS One 2024; 19:e0301471. [PMID: 38625892 PMCID: PMC11020831 DOI: 10.1371/journal.pone.0301471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
An invasive species, Pochazia shantungensis (Hemiptera: Ricaniidae), causes serious economic damage to fruit trees. In Korea, this pest is mainly managed using chemical insecticides. However, the management timing and insecticides for P. shantungensis negatively affect honeybee populations. Thus, this study estimated the decision-making level for P. shantungensis in persimmons to decrease insecticide application and increase management efficiency. We determined which developmental stage (i.e., egg, nymph, and adult) affected the damage-related factors (numbers of new shoots and fruit formations, and harvest amount) of persimmons using both spatial analyses and linear relationships. The distribution of P. shantungensis eggs was spatially correlated with the one of persimmon fruit number. However, we did not find any linear relationships between the densities of P. shantungensis eggs and damage-related factors of persimmons. Instead, we found that the density of P. shantungensis correlated with the death of oviposited branches. From the developed model of branch death possibility based on egg mass density, 5.75 egg masses per newly developed branch were proposed as the decision-making level. The findings would help increase the efficiency of P. shantungensis management in persimmon orchards and develop decision-making levels for other insects.
Collapse
Affiliation(s)
- Sunghoon Baek
- Department of Agriculture and Fisheries Convergence, Korea National University of Agriculture and Fisheries, Jeonju-Si, Republic of Korea
| | - Geonu Lee
- Department of Environmentally Friendly Agriculture, Chungnam Agricultural Research and Extension Services, Yesan-Si, Republic of Korea
| | - Chang-Gyu Park
- Department of Agriculture and Fisheries Convergence, Korea National University of Agriculture and Fisheries, Jeonju-Si, Republic of Korea
| |
Collapse
|
16
|
Wang J, Wang E, Cheng S, Ma A. Genetic insights into superior grain number traits: a QTL analysis of wheat-Agropyron cristatum derivative pubing3228. BMC PLANT BIOLOGY 2024; 24:271. [PMID: 38605289 PMCID: PMC11008026 DOI: 10.1186/s12870-024-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.
Collapse
Affiliation(s)
- Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, North to Weilailu road, New district, Pingdingshan, Henan, 467000, China.
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China.
| | - Erwei Wang
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, 467001, China
| | - Shiping Cheng
- College of Chemistry and Environment Engineering, Pingdingshan University, North to Weilailu road, New district, Pingdingshan, Henan, 467000, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Aichu Ma
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, 467001, China
| |
Collapse
|
17
|
Li W, Xiong Y, Tong J, Lin W, Xue J, Wang Y, Gao Z. Higher Seed Rates Enlarge Effects of Wide-Belt Sowing on Canopy Radiation Capture, Distribution, and Use Efficiency in Winter Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:986. [PMID: 38611515 PMCID: PMC11013843 DOI: 10.3390/plants13070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
The optimized winter wheat sowing method comprising wide-belt sowing (WBS) can improve the ears number and biomass to increase the grain yield, compared with conventional narrow-drill sowing (NDS). The seed rate and the interaction between the sowing method and seed rate also affect yield formation. However, the effects of the sowing method and seed rate, as well as their interaction on biomass production, particularly the interception of solar radiation (ISR) and radiation use efficiency (RUE), are unclear. A field experiment was conducted for two seasons in southern Shanxi province, China, using a split-plot design with sowing method as the main plot (WBS and NDS) and seed rate as the sub-plot (100-700 m-2). Our results showed that while WBS had a significant and positive effect, increasing the yield by 4.7-15.4%, the mechanism differed between seed rates. Yield increase by WBS was mainly attributed to the increase in total biomass resulting from both the promoted pre- and post-anthesis biomass production, except that only the increase in post-anthesis biomass mattered at the lowest seed rate (100 m-2). The higher biomass was attributed to the increased ISR before anthesis. After anthesis, the increased ISR contributed mainly to the increased biomass at low seed rates (100 and 200 m-2). In contrast, the increased RUE, resulting from the enhanced radiation distribution within canopy and LAI, contributed to the higher post-anthesis biomass at medium and high seed rates (400 to 700 m-2). The greatest increases in total biomass, pre-anthesis ISR, and post-anthesis RUE by WBS were all achieved at 500 seed m-2, thereby obtaining the highest yield. In summary, WBS enhanced grain yield by increasing ISR before anthesis and improving RUE after anthesis, and adopting relatively higher seed rates (400-500 m-2) was necessary for maximizing the positive effect of WBS, and thus the higher wheat yield.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuechao Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
18
|
Sun W, Lu C, Wen L, Liu Y, Zhou X, Xiao X, Guo X, Wang Z, Sun Z, Zhang Z, Zhang Y. Low sucrose availability reduces basal spikelet fertility by inducing abscisic acid and jasmonic acid synthesis in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1967-1981. [PMID: 38069503 DOI: 10.1093/jxb/erad484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/02/2023] [Indexed: 03/28/2024]
Abstract
Within a spike of wheat, the central spikelets usually generate three to four fertile florets, while the basal spikelets generate zero to one fertile floret. The physiological and transcriptional mechanism behind the difference in fertility between the basal and central spikelets is unclear. This study reports a high temporal resolution investigation of transcriptomes, number and morphology of floret primordia, and physiological traits. The W6.5-W7.5 stage was regarded as the boundary to distinguish between fertile and abortive floret primordia; those floret primordia reaching the W6.5-W7.5 stage during the differentiation phase (3-9 d after terminal spikelet stage) usually developed into fertile florets in the next dimorphism phase (12-27 d after terminal spikelet stage), whereas the others aborted. The central spikelets had a greater number of fertile florets than the basal spikelets, which was associated with more floret primordia reaching the W6.5-W7.5 stage. Physiological and transcriptional results demonstrated that the central spikelets had a higher sucrose content and lower abscisic acid (ABA) and jasmonic acid (JA) accumulation than the basal spikelets due to down-regulation of genes involved in ABA and JA synthesis. Collectively, we propose a model in which ABA and JA accumulation is induced under limiting sucrose availability (basal spikelet) through the up-regulation of genes involved in ABA and JA synthesis; this leads to floret primordia in the basal spikelets failing to reach their fertile potential (W6.5-W7.5 stage) during the differentiation phase and then aborting. This fertility repression model may also regulate spikelet fertility in other cereal crops and potentially provides genetic resources to improve spikelet fertility.
Collapse
Affiliation(s)
- Wan Sun
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chongjing Lu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Liangyun Wen
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaqun Liu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuechen Xiao
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaolei Guo
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, 061800, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, 061800, China
| | - Zhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, 061800, China
| |
Collapse
|
19
|
He Y, Xiong W, Hu P, Huang D, Feurtado JA, Zhang T, Hao C, DePauw R, Zheng B, Hoogenboom G, Dixon LE, Wang H, Challinor AJ. Climate change enhances stability of wheat-flowering-date. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170305. [PMID: 38278227 DOI: 10.1016/j.scitotenv.2024.170305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.
Collapse
Affiliation(s)
- Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wei Xiong
- Sustainable Agrifood System, International Maize and Wheat Improvement Center, Texcoco 56237, Mexico.
| | - Pengcheng Hu
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Daiqing Huang
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - J Allan Feurtado
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - Tianyi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Chenyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Ron DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, Alberta T3H 1P3, Canada
| | - Bangyou Zheng
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia.
| | - Gerrit Hoogenboom
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 110570, USA.
| | - Laura E Dixon
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Hong Wang
- HW Eco Research Group, Fleetwood Postal Outlet, Surrey V4N 9E9, Canada
| | - Andrew Juan Challinor
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
20
|
Zhang S, Sun J, Lu Y, Yang S, Zhang Y, Chai H, Jiang D, Dai T, Tian Z. Rubisco and sucrose synthesis and translocation are involved in the regulation of photosynthesis in wheat with different source-sink relationships. PHYSIOLOGIA PLANTARUM 2024; 176:e14196. [PMID: 38433117 DOI: 10.1111/ppl.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Source-sink relationships influence photosynthesis. So far, the limiting factors for photosynthesis of wheat cultivars with different source-sink relationships have not been determined. We aimed to determine the variation patterns of photosynthetic characteristics of wheat cultivars with different source-sink relationships. In this study, two wheat cultivars with different source-sink relationships were selected for photosynthetic physiological analyses. The results showed that YM25 (source-limited cultivar) had higher photosynthetic efficiency compared to YM1 (sink-limited cultivar). This is mainly due to a stronger photochemical efficiency, electron transfer capacity, and Rubisco carboxylation capacity of YM25. YM25 accumulated less soluble carbohydrates in flag leaves than YM1. This is mainly due to the stronger sucrose synthesis and transport capacity of YM25 by presenting higher sucrose-related enzyme activities and gene expression. A PCA analysis showed that Rubisco was the main factor limiting the photosynthetic capacity of YM25. The soluble sugar accumulation in flag leaves and sink limitation decreased the photosynthetic activity of YM1. Increased N application improved source-sink relationships and increased grain yield and source leaf photosynthetic capacity in both two wheat cultivars. Taken together, our findings suggest that Rubisco and sucrose synthesis and translocation are involved in the regulation of photosynthesis of wheat cultivars with different source-sink relationships and that source and sink limitation effects should be considered in photosynthesis.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Jiawei Sun
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Yanhua Lu
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shuke Yang
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Yafang Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Huimin Chai
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing, P.R.China
| |
Collapse
|
21
|
Thakur V, Rane J, Pandey GC, Yadav S. Image facilitated assessment of intra-spike variation in grain size in wheat under high temperature and drought stress. Sci Rep 2023; 13:19850. [PMID: 37963937 PMCID: PMC10645968 DOI: 10.1038/s41598-023-44503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
In wheat (Triticum aestivum L.), the grain size varies according to position within the spike. Exposure to drought and high temperature stress during grain development in wheat reduces grain size, and this reduction also varies across the length of the spike. We developed the phenomics approach involving image-based tools to assess the intra-spike variation in grain size. The grains were arranged corresponding to the spikelet position and the camera of smart phone was used to acquire 333 images. The open-source software ImageJ was used to analyze features of each grain and the image-derived parameters were used to calculate intra-spike variation as standard deviation (ISVAD). The effect of genotype and environment were highly significant on the ISVAD of grain area. Sunstar and Raj 4079 contrasted in the ISVAD of grain area under late sown environment, and RNA sequencing of the spike was done at 25 days after anthesis. The genes for carbohydrate transport and stress response were upregulated in Sunstar as compared to Raj 4079, suggesting that these play a role in intra-spike assimilate distribution. The phenomics method developed may be useful for grain phenotyping and identifying germplasm with low intra-spike variation in grain size for their further validation as parental material in breeding.
Collapse
Affiliation(s)
- Vidisha Thakur
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan, 334006, India.
| | - Girish Chandra Pandey
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Satish Yadav
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, India
| |
Collapse
|
22
|
Sabir K, Rose T, Wittkop B, Stahl A, Snowdon RJ, Ballvora A, Friedt W, Kage H, Léon J, Ordon F, Stützel H, Zetzsche H, Chen TW. Stage-specific genotype-by-environment interactions determine yield components in wheat. NATURE PLANTS 2023; 9:1688-1696. [PMID: 37735253 DOI: 10.1038/s41477-023-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
In cereal crops, environmental fluctuations affect different physiological processes during various developmental phases associated with the formation of yield components. Because these effects are coupled with cultivar-specific phenology, studies investigating environmental responses in different cultivars can give contradictory results regarding key phases impacting yield performance. To dissect how genotype-by-environment interactions affect grain yield in winter wheat, we estimated the sensitivities of yield components to variation in global radiation, temperature and precipitation in 220 cultivars across 81 time-windows ranging from double ridge to seed desiccation. Environmental sensitivity responses were prominent in the short-term physiological subphases of spike and kernel development, causing phenologically dependent, stage-specific genotype-by-environment interactions. Here we reconcile contradicting findings from previous studies and show previously undetected effects; for example, the positive impact of global radiation on kernel weight during canopy senescence. This deep insight into the three-way interactions between phenology, yield formation and environmental fluctuations provides comprehensive new information for breeding and modelling cereal crops.
Collapse
Affiliation(s)
- Khadija Sabir
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Till Rose
- Department of Agronomy and Crop Science, Christian Albrechts University of Kiel, Kiel, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Wolfgang Friedt
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Henning Kage
- Department of Agronomy and Crop Science, Christian Albrechts University of Kiel, Kiel, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Frank Ordon
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Zetzsche
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Tsu-Wei Chen
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer Institut of Agricultural and Horticultural Science, Humboldt University Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Backhaus AE, Griffiths C, Vergara-Cruces A, Simmonds J, Lee R, Morris RJ, Uauy C. Delayed development of basal spikelets in wheat explains their increased floret abortion and rudimentary nature. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5088-5103. [PMID: 37338600 PMCID: PMC10498016 DOI: 10.1093/jxb/erad233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Large differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form. Basal spikelets are delayed in initiation, yet they continue to develop and produce florets. The precise timing or the cause of their abortion remains largely unknown. Here, we investigated the underlying causes of basal spikelet abortion using shading applications in the field. We found that basal spikelet abortion is likely to be the consequence of complete floret abortion, as both occur concurrently and have the same response to shading treatments. We detected no differences in assimilate availability across the spike. Instead, we show that the reduced developmental age of basal florets pre-anthesis is strongly associated with their increased abortion. Using the developmental age pre-abortion, we were able to predict final grain set per spikelet across the spike, alongside the characteristic gradient in the number of grains from basal to central spikelets. Future efforts to improve spikelet homogeneity across the spike could thus focus on improving basal spikelet establishment and increasing floret development rates pre-abortion.
Collapse
Affiliation(s)
| | - Cara Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Rebecca Lee
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Richard J Morris
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
24
|
Mroz T, Dieseth JA, Lillemo M. Grain yield and adaptation of spring wheat to Norwegian growing conditions is driven by allele frequency changes at key adaptive loci discovered by genome-wide association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:191. [PMID: 37589760 PMCID: PMC10435424 DOI: 10.1007/s00122-023-04424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
KEY MESSAGE Adaptation to the Norwegian environment is associated with polymorphisms in the Vrn-A1 locus. Historical selection for grain yield in Nordic wheat is associated with TaGS5-3A and TaCol-5 loci. Grain yields in Norwegian spring wheat increased by 18 kg ha-1 per year between 1972 and 2019 due to introduction of new varieties. These gains were associated with increments in the number of grains per spike and extended length of the vegetative period. However, little is known about the genetic background of this progress. To fill this gap, we conducted genome-wide association study on a panel consisting of both adapted (historical and current varieties and lines in the Nordics) and important not adapted accessions used as parents in the Norwegian wheat breeding program. The study concerned grain yield, plant height, and heading and maturity dates, and detected 12 associated loci, later validated using independent sets of recent breeding lines. Adaptation to the Norwegian cropping conditions was found to be associated with the Vrn-A1 locus, and a previously undescribed locus on chromosome 1B associated with heading date. Two loci associated with grain yield, corresponding to the TaGS5-3A and TaCol-5 loci, indicated historical selection pressure for high grain yield. A locus on chromosome 2A explained the tallness of the oldest accessions. We investigated the origins of the beneficial alleles associated with the wheat breeding progress in the Norwegian material, tracing them back to crosses with Swedish, German, or CIMMYT lines. This study contributes to the understanding of wheat adaptation to the Norwegian growing conditions, sheds light on the genetic basis of historical wheat improvement and aids future breeding efforts by discovering loci associated with important agronomic traits in wheat.
Collapse
Affiliation(s)
- Tomasz Mroz
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Jon Arne Dieseth
- Graminor, AS, Bjørke Gård, Hommelstadvegen 60, 2322, Ridabu, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
25
|
Afsharyan NP, Sannemann W, Ballvora A, Léon J. Identifying developmental QTL alleles with favorable effect on grain yield components under late-terminal drought in spring barley MAGIC population. PLANT DIRECT 2023; 7:e516. [PMID: 37538189 PMCID: PMC10394678 DOI: 10.1002/pld3.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Barley is the fourth most cultivated cereal worldwide, and drought is a major cause of its yield loss by negatively affecting its development. Hence, better understanding developmental mechanisms that control complex polygenic yield-related traits under drought is essential to uncover favorable yield regulators. This study evaluated seven above-ground yield-related traits under well-watered (WW) and late-terminal drought (TD) treatment using 534 spring barley multiparent advanced generation intercross double haploid (DH) lines. The analysis of quantitative trait loci (QTL) for WW, TD, marker by treatment interaction, and drought stress tolerance identified 69, 64, 25, and 25 loci, respectively, for seven traits from which 15 loci were common for at least three traits and 17 were shared by TD and drought stress tolerance. Evaluation of allelic effects for a QTL revealed varying effect of parental alleles. Results showed prominent QTL located on major flowering time gene Ppd-H1 with favorable effects for grain weight under TD when flowering time was not significantly affected, suggesting that this gene might be linked with increasing grain weight by ways other than timing of flowering under late-terminal drought stress. Furthermore, a desirable novel QTL allele was identified on chromosome 5H for grain number under TD nearby sucrose transporter gene HvSUT2. The findings indicated that spring barley multiparent advanced generation intercross population can provide insights to improve yield under complex condition of drought.
Collapse
Affiliation(s)
- Nazanin P. Afsharyan
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
- Department of Plant BreedingJustus Liebig University GiessenGiessenGermany
| | - Wiebke Sannemann
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
- KWS Saat SE & Co. KGaAEinbeckGermany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
| |
Collapse
|
26
|
Squire GR, Young MW, Banks G. Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act. PLANTS (BASEL, SWITZERLAND) 2023; 12:2742. [PMID: 37514356 PMCID: PMC10384148 DOI: 10.3390/plants12142742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The status and sustainability of Poaceae crops, wheat and barley, were examined in an Atlantic zone climate. Intensification had caused yield to rise 3-fold over the last 50 years but had also degraded soil and biodiversity. Soil carbon and nitrogen were compared with current growth and yield of crops. The yield gap was estimated and options considered for raising yield. Organic carbon stores in the soil (C-soil) ranged from <2% in intensified systems growing long-season wheat to >4% in low-input, short-season barley and grass. Carbon acquisition by crops (C-crop) was driven mainly by length of season and nitrogen input. The highest C-crop was 8320 kg ha-1 C in long-season wheat supported by >250 kg ha-1 mineral N fertiliser and the lowest 1420 kg ha-1 in short-season barley fertilised by livestock grazing. Sites were quantified in terms of the ratio C-crop to C-soil, the latter estimated as the mass of carbon in the upper 0.25 m of soil. C-crop/C-soil was <1% for barley in low-input systems, indicating the potential of the region for long-term carbon sequestration. In contrast, C-crop/C-soil was >10% in high-input wheat, indicating vulnerability of the soil to continued severe annual disturbance. The yield gap between the current average and the highest attainable yield was quantified in terms of the proportion of grain sink that was unfilled. Intensification had raised yield through a 3- to 4-fold increase in grain number per unit field area, but the potential grain sink was still much higher than the current average yield. Filling the yield gap may be possible but could only be achieved with a major rise in applied nitrogen. Sustainability in Poaceae cropping now faces conflicting demands: (a) conserving and regenerating soil carbon stores in high-input systems, (b) reducing GHG emissions and other pollution from N fertiliser, (c) maintaining the yield or closing the yield gap, and (d) readjusting production among food, feed, and alcohol markets. Current cropping systems are unlikely to satisfy these demands. Transitions are needed to alternative systems based on agroecological management and biological nitrogen fixation.
Collapse
|
27
|
Yeshitila M, Gedebo A, Tesfaye B, Demissie H, Olango TM. Multivariate analysis for yield and yield-related traits of amaranth genotypes from Ethiopia. Heliyon 2023; 9:e18207. [PMID: 37501986 PMCID: PMC10368846 DOI: 10.1016/j.heliyon.2023.e18207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The genus Amaranthus is one of the few dicotyledonous, non-grass mesophytes that use specialized C4 annuals or short-lived perennials to produce significant amounts of edible small-seeded pseudo cereals. In this study, we characterized the genetic diversity of 120 genotypes of amaranths collected from diverse amaranth-growing regions of Ethiopia using multivariate analysis of yield and yield-related traits. The experiments were carried out at Hawassa University, in the years 2020 and 2021. The experimental design was set up using an alpha lattice design and replicated two times. The collected data were examined for 24 descriptors. Principal component analysis showed that the first six principal components with eigenvalues greater than one contributed 80.41% of the variability. However, the first two principal components explained 52.42% of the total variation. The highest contributing traits in the first component were days to flowering, basal stem diameter, plant height at flowering, plant height at maturity, auxiliary inflorescence length, number of branches, terminal inflorescence lateral length, days to maturity, terminal inflorescence stalk length, leaf number, leaf length, top lateral branch length. The traits with the greatest weight on the second component were leaf area, basal lateral branch length, leaf length, and leaf width, grain filling period, grain sinking filling rate, and grain yield. Therefore, selection based on these traits would be effective for yield improvement in amaranth genotypes. Additionally, the hierarchical clustering grouped all the genotypes into five clusters. The pairwise generalized squared distance (D2) among the five clusters based on Mahalanobis's D2 statistics revealed the maximum and highly significant genetic distance was observed between II and III (277.79), while the minimum inter-cluster distance observed between clusters I and II (39.50). The findings suggest that amaranth genotypes in Ethiopia have a lot of genetic variation, which might be used for future breeding and ought to be conserved.
Collapse
Affiliation(s)
- Mekonnen Yeshitila
- Dilla College of Education, P. O. Box 334, Dilla, Ethiopia
- Schools of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia
| | - Andargachew Gedebo
- Schools of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia
| | - Bizuayehu Tesfaye
- Schools of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia
| | - Hewan Demissie
- Schools of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia
| | | |
Collapse
|
28
|
Huang N, Dang H, Mu W, Ma J, Ma Y, Wang L, Shi M, Tian H, Liu J, Chen Y, Wang Z. High yield with efficient nutrient use: Opportunities and challenges for wheat. iScience 2023; 26:106135. [PMID: 36994185 PMCID: PMC10040891 DOI: 10.1016/j.isci.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding yield formation and nutrient use are essential for wheat breeding and management. This study combined 76 field trials and literature data with scenario analysis to explore the potential of high yield, nutritional quality, and nutrient efficiency in wheat production in China. Currently, the high yield is achieved with high grain N and S but low Zn concentration, and low N efficiency. To improve the grain yield by 10% in 2035, the grain number needs to increase from 31.8 to 38.5 grain spike-1, and the harvest index from 46.6% to 48.6%, with a reduction in spike number by 10%, when the grain N, Fe, Zn, and S, the nutrient removal efficiency, and the fertilizer efficiency of N, P, and K could all be increased. Our study provides strategies and ideas for promoting wheat production with high nutritional quality and high nutrient efficiency in China and other countries.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Haiyan Dang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Wenyan Mu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Jianxiong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Yue Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Mei Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Hui Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Jinshan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | - Yinglong Chen
- School of Agriculture and Environment, and UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zhaohui Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Liu Z, Zhao P, Lai X, Wang X, Ji W, Xu S. The selection and application of peduncle length QTL QPL_6D.1 in modern wheat (Triticum aestivum L.) breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:32. [PMID: 36897424 DOI: 10.1007/s00122-023-04274-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
QPL_6D.1b displayed an additive effect with Rht-B1b and Rht-D1b in reducing wheat plant height and peduncle length, which confers shorter peduncle length and more kernels per spike, and had been broadly selected by Chinese modern wheat cultivars. Peduncle length (PL), as the key component of wheat plant height (PH), plays critical role in determining wheat lodging resistance and wheat pathogen resistance; then, its breeding selection and genetic basis remain largely unclear. Here the PH and PL were investigated in 406 wheat accessions in eight environments. In this study, a PL preferentially QTL QPL_6D.1 was identified in six environments by GWAS, which explained 13.6-24.2% of wheat PL variations in natural population. The allele QPL_6D.1b displayed a significantly additive effect with Rht-B1b and Rht-D1b in controlling PH and PL and could freely combined with Rht-B1b and Rht-D1b in current wheat cultivars. Haplotypic analysis demonstrates the QPL_6D.1b has been selected by Chinese modern wheat cultivar and confers shorter PL and more kernels per spike, highlighting its potentials in wheat breeding.
Collapse
Affiliation(s)
- Zihui Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiangjun Lai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
30
|
Sanchez-Bragado R, Molero G, Araus JL, Slafer GA. Awned versus awnless wheat spikes: does it matter? TRENDS IN PLANT SCIENCE 2023; 28:330-343. [PMID: 36494304 DOI: 10.1016/j.tplants.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Awnless and awned wheat is found across the globe. Archeological and historical records show that the wheat spike was predominantly awned across the many millennia following domestication. Thus, ancient farmers did not select against awns at least until the last millennium. Here, we describe the evolution and domestication of wheat awns, quantifying their role in spike photosynthesis and yield under contrasting environments. Awns increase grain weight directly (increasing the size of all grains) or indirectly (increasing the failure of distal grains), but not as a consequence of additional spike photosynthesis. However, a trade-off is produced through decreasing grain number. Thus, favorable effects of awns on yield are not consistently found across environments.
Collapse
Affiliation(s)
- Rut Sanchez-Bragado
- Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico; Current affiliation: WS Momont Recherche, 59246 Mons-en-Pévèle, Hauts-de-France, France
| | - José L Araus
- Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida - AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
31
|
Li Y, Tao F, Hao Y, Tong J, Xiao Y, Zhang H, He Z, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. PLANT, CELL & ENVIRONMENT 2023; 46:780-795. [PMID: 36517924 DOI: 10.1111/pce.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Genetic markers can be linked with eco-physiological crop models to accurately predict genotype performance and individual markers' contributions in target environments, exploring interactions between genotype and environment. Here, wheat (Triticum aestivum L.) yield was dissected into seven traits corresponding to cultivar genetic coefficients in an eco-physiological model. Loci for these traits were discovered through the genome-wide association studies (GWAS). The cultivar genetic coefficients were derived from the loci using multiple linear regression or random forest, building a marker-based eco-physiological model. It is then applied to simulate wheat yields and design virtual ideotypes. The results indicated that the loci identified through GWAS explained 46%-75% variations in cultivar genetic coefficients. Using the marker-based model, the normalized root mean square error (nRMSE) between the simulated yield and observed yield was 13.95% by multiple linear regression and 13.62% by random forest. The nRMSE between the simulated and observed maturity dates was 1.24% by multiple linear regression and 1.11% by random forest, respectively. Structural equation modelling indicated that variations in grain yield could be well explained by cultivar genetic coefficients and phenological data. In addition, 24 pleiotropic loci in this study were detected on 15 chromosomes. More significant loci were detected by the model-based dissection method than considering yield per se. Ideotypes were identified by higher yield and more favourable alleles of cultivar genetic traits. This study proposes a genotype-to-phenotype approach and demonstrates novel ideas and tools to support the effective breeding of new cultivars with high yield through pyramiding favourable alleles and designing crop ideotypes.
Collapse
Affiliation(s)
- Yibo Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fulu Tao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonggui Xiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
32
|
Lian H, Qin C, Yan M, He Z, Begum N, Zhang S. Genetic variation in nitrogen-use efficiency and its associated traits in dryland winter wheat (Triticum aestivum L.) cultivars released from the 1940s to the 2010s in Shaanxi Province, China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1366-1376. [PMID: 36131517 DOI: 10.1002/jsfa.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Improving the nitrogen-use efficiency (NUE) of wheat can help mitigate the problems of poor soil fertility under dryland conditions. We conducted field experiments using three nitrogen (N) fertilization levels (0, 120, and 180 kg ha-1 ) applied to eight dryland wheat cultivars to assess NUE and its associated traits. RESULTS The grain yield significantly increased with the improvement in variety, mainly as a result of a substantial increase in 1000-grain weight and harvest index. Modern wheat varieties have stabilized at an optimal plant height and exhibited improved performance in terms of NUE, partial N productivity, N harvest index, and grain protein content compared to older varieties. The NUE of wheat gradually increased with variety replacement. The net photosynthesis rate of the flag leaves in the filling stage improved with the year of cultivar release; Increasing soil-plant analysis development (SPAD) values of flag leaves in the flowering and filling stages were observed over time, with the flag leaves of modern varieties showing a high chlorophyll content in the filling stage. Additionally, the principal component analysis showed that the SPAD value, grain number per unit area, transpiration rate, leaf area, and grain protein content positively contributed to the clustering of the N180 and modern cultivars (from the 2000s to 2010s). CONCLUSION Overall, high levels of N application did not significantly improve the NUE of wheat. However, modern wheat varieties can optimize N distribution, increase flag leaf photosynthetic capacity, and improve photosynthesis ability, thus enhancing NUE to achieve high yields under a suitable level of N supply. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huida Lian
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Cheng Qin
- Changzhi University, Changzhi, China
| | - Minfei Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Zhan He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| |
Collapse
|
33
|
Molero G, Coombes B, Joynson R, Pinto F, Piñera-Chávez FJ, Rivera-Amado C, Hall A, Reynolds MP. Exotic alleles contribute to heat tolerance in wheat under field conditions. Commun Biol 2023; 6:21. [PMID: 36624201 PMCID: PMC9829678 DOI: 10.1038/s42003-022-04325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Global warming poses a major threat to food security and necessitates the development of crop varieties that are resilient to future climatic instability. By evaluating 149 spring wheat lines in the field under yield potential and heat stressed conditions, we demonstrate how strategic integration of exotic material significantly increases yield under heat stress compared to elite lines, with no significant yield penalty under favourable conditions. Genetic analyses reveal three exotic-derived genetic loci underlying this heat tolerance which together increase yield by over 50% and reduce canopy temperature by approximately 2 °C. We identified an Ae. tauschii introgression underlying the most significant of these associations and extracted the introgressed Ae. tauschii genes, revealing candidates for further dissection. Incorporating these exotic alleles into breeding programmes could serve as a pre-emptive strategy to produce high yielding wheat cultivars that are resilient to the effects of future climatic uncertainty.
Collapse
Affiliation(s)
- Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
- KWS Momont Recherche, 59246 Mons-en-Pévèle, Hauts-de-France, France
| | | | - Ryan Joynson
- The Earlham Institute, Norwich, NR4 7UZ, UK
- Limagrain Europe, Clermont-Ferrand, France
| | - Francisco Pinto
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
| | | | | | | | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico.
| |
Collapse
|
34
|
Murchie EH, Reynolds M, Slafer GA, Foulkes MJ, Acevedo-Siaca L, McAusland L, Sharwood R, Griffiths S, Flavell RB, Gwyn J, Sawkins M, Carmo-Silva E. A 'wiring diagram' for source strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:72-90. [PMID: 36264277 PMCID: PMC9786870 DOI: 10.1093/jxb/erac415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 05/06/2023]
Abstract
Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Liana Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Robert Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | | |
Collapse
|
35
|
Lisker A, Maurer A, Schmutzer T, Kazman E, Cöster H, Holzapfel J, Ebmeyer E, Alqudah AM, Sannemann W, Pillen K. A Haplotype-Based GWAS Identified Trait-Improving QTL Alleles Controlling Agronomic Traits under Contrasting Nitrogen Fertilization Treatments in the MAGIC Wheat Population WM-800. PLANTS (BASEL, SWITZERLAND) 2022; 11:3508. [PMID: 36559621 PMCID: PMC9784842 DOI: 10.3390/plants11243508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The multi-parent-advanced-generation-intercross (MAGIC) population WM-800 was developed by intercrossing eight modern winter wheat cultivars to enhance the genetic diversity present in breeding populations. We cultivated WM-800 during two seasons in seven environments under two contrasting nitrogen fertilization treatments. WM-800 lines exhibited highly significant differences between treatments, as well as high heritabilities among the seven agronomic traits studied. The highest-yielding WM-line achieved an average yield increase of 4.40 dt/ha (5.2%) compared to the best founder cultivar Tobak. The subsequent genome-wide-association-study (GWAS), which was based on haplotypes, located QTL for seven agronomic traits including grain yield. In total, 40, 51, and 46 QTL were detected under low, high, and across nitrogen treatments, respectively. For example, the effect of QYLD_3A could be associated with the haplotype allele of cultivar Julius increasing yield by an average of 4.47 dt/ha (5.2%). A novel QTL on chromosome 2B exhibited pleiotropic effects, acting simultaneously on three-grain yield components (ears-per-square-meter, grains-per-ear, and thousand-grain-weight) and plant-height. These effects may be explained by a member of the nitrate-transporter-1 (NRT1)/peptide-family, TaNPF5.34, located 1.05 Mb apart. The WM-800 lines and favorable QTL haplotypes, associated with yield improvements, are currently implemented in wheat breeding programs to develop advanced nitrogen-use efficient wheat cultivars.
Collapse
Affiliation(s)
- Antonia Lisker
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Ebrahim Kazman
- Syngenta Seeds GmbH, Kroppenstedter Str. 4, 39387 Oschersleben, Germany
| | | | - Josef Holzapfel
- Secobra Saatzucht GmbH, Feldkirchen 3, 85368 Moosburg an der Isar, Germany
| | - Erhard Ebmeyer
- KWS Lochow GMBH, Ferdinand-Lochow-Str. 5, 29303 Bergen, Germany
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wiebke Sannemann
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| |
Collapse
|
36
|
Rodrigues O, Minella E, Costenaro ER, Scariotto S, Marchese JA. Improvement in Brazilian barley breeding: Changes in developmental phases and ecophysiological traits. FRONTIERS IN PLANT SCIENCE 2022; 13:1032243. [PMID: 36507370 PMCID: PMC9733424 DOI: 10.3389/fpls.2022.1032243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Despite recognizing the importance of genetic improvement in the production of barley grains, little information is available on the contribution of phenological development to the genetic improvement of Brazilian barley. Field experiments were carried out between 2011 to 2013, in the absence of biotic and abiotic stresses and with preventive lodging control. Five two-rowed spring barley cultivars, released between 1968 and 2008, were evaluated. Although there was no significant association in the cycle length (Emergence - Anthesis) of the cultivars with the year of release, the genetic improvement increased the proportion of the Doble ridge - Maximum number of spikelet primordia/Maximum number of spikelet primordia - anthesis period to the total time to anthesis. The period between DR-MNP was increased in modern cultivars, to the detriment of the Doble ridge - Maximum number of spikelet primordia period. However, the duration of the period between emergences to the double ridge (vegetative phase) was not altered in the analyzed period. Barley breeding in Brazil did not change the total number of leaves on the main stem but caused an increase in the number of leaves earlier in the development, favoring the high level of tillering. The leaf architecture of modern barley was altered towards a more vertical inclination (erectophilic canopy), allowing the penetration of photosynthetically active radiation into the crop canopy.
Collapse
Affiliation(s)
- Osmar Rodrigues
- Brazilian Agricultural Research Corporation, Embrapa Wheat, Passo Fundo, RS, Brazil
| | - Euclydes Minella
- Brazilian Agricultural Research Corporation, Embrapa Wheat, Passo Fundo, RS, Brazil
| | | | - Silvia Scariotto
- Department of Agronomy, Federal University of Technology – Parana (UTFPR), Pato Branco, PR, Brazil
| | - José Abramo Marchese
- Department of Agronomy, Federal University of Technology – Parana (UTFPR), Pato Branco, PR, Brazil
| |
Collapse
|
37
|
Ukozehasi C, Ober ES, Griffiths H. The Other Mechanisms by Which the Rht Genes Improve the Harvest Index of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2837. [PMID: 36365291 PMCID: PMC9658701 DOI: 10.3390/plants11212837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Uncovering the mechanism that underlies the relationship between crop height and grain yield would potentially inform the strategies for improving wheat with optimal height. The aim of the research reported here was to identify the attributes able to produce wheat yield increases in Rht genotypes without further straw-shortening. Attention was given to examination in a controlled environment the question of the mechanistic foundation that determined the relationship between wheat height and yield in lines (Rht-B1b, Rht-D1b, Rht-B1c, Rht-D1c) compared to wild types in Mercia background. In addition to height reduction, this research revealed three other mechanisms by which the Rht genes may also improve the Harvest Index (HI) of wheat: (i) low Specific Leaf Area (SLA), (ii) increased Mean Residence Time (MRT) of Nitrogen (N), and (iii) increased grain number on spike.
Collapse
Affiliation(s)
- Celestin Ukozehasi
- School of Agriculture and Food Sciences, University of Rwanda, Kigali 6605, Rwanda
| | - Eric S. Ober
- Department of Genetics and Breeding, National Institute of Agricultural Botany, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
38
|
Gohar S, Sajjad M, Zulfiqar S, Liu J, Wu J, Rahman MU. Domestication of newly evolved hexaploid wheat—A journey of wild grass to cultivated wheat. Front Genet 2022; 13:1022931. [PMID: 36263418 PMCID: PMC9574122 DOI: 10.3389/fgene.2022.1022931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestication of wheat started with the dawn of human civilization. Since then, improvement in various traits including resistance to diseases, insect pests, saline and drought stresses, grain yield, and quality were improved through selections by early farmers and then planned hybridization after the discovery of Mendel’s laws. In the 1950s, genetic variability was created using mutagens followed by the selection of superior mutants. Over the last 3 decades, research was focused on developing superior hybrids, initiating marker-assisted selection and targeted breeding, and developing genetically modified wheat to improve the grain yield, tolerance to drought, salinity, terminal heat and herbicide, and nutritive quality. Acceptability of genetically modified wheat by the end-user remained a major hurdle in releasing into the environment. Since the beginning of the 21st century, changing environmental conditions proved detrimental to achieving sustainability in wheat production particularly in developing countries. It is suggested that high-tech phenotyping assays and genomic procedures together with speed breeding procedures will be instrumental in achieving food security beyond 2050.
Collapse
Affiliation(s)
- Sasha Gohar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jiajun Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| | - Mehboob-ur- Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| |
Collapse
|
39
|
Li Y, Tao F, Hao Y, Tong J, Xiao Y, He Z, Reynolds M. Wheat traits and the associated loci conferring radiation use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:565-582. [PMID: 36004546 DOI: 10.1111/tpj.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum L.) radiation use efficiency (RUE) must be raised through crop breeding to further increase the yield potential, as the harvest index is now close to its theoretical limit. Field experiments including 209 wheat cultivars which have been widely cultivated in China since the 1940s were conducted in two growing seasons (2018-2019 and 2019-2020) to evaluate the variations of phenological, physiological, plant architectural, and yield-related traits and their contributions to RUE and to identify limiting factors for wheat yield potential. The average annual genetic gain in grain yield was 0.60% (or 45.32 kg ha-1 year-1 ; R2 = 0.44, P < 0.01), mainly attributed to the gain in RUE (r = 0.85, P < 0.01). The net photosynthetic rates were positively and closely correlated with grain RUE and grain yield, suggesting source as a limiting factor to future yield gains. Thirty-four cultivars were identified, exhibiting not only high RUE, but also traits contributing to high RUE and 11 other critical traits - of known genetic basis - as potential parents for breeding to improve yield and RUE. Our findings reveal wheat traits and the associated loci conferring RUE, which are valuable for facilitating marker-assisted breeding to improve wheat RUE and yield potential.
Collapse
Affiliation(s)
- Yibo Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fulu Tao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yonggui Xiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
40
|
Zhu Y, Zhang X, Xiao Y, Chu J, Dai Z. Variation of floret development and grain setting characteristics in winter wheat responses to delayed sowing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4892-4908. [PMID: 35246843 DOI: 10.1002/jsfa.11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wheat floret development has been a focus of research due to a desire to improve spike fertility, which majorly influences grain yield. Sowing date plays a vital role on grain yield in wheat, and increase in the grain number per spike of winter wheat (Triticum aestivum L.) has been obtained by delayed sowing. During the 2014-2015 and 2015-2016 growing seasons, variation in these developmental patterns was explored involving two winter wheat cultivars (Jimai 22 and Tainong 18) and five sowing dates (24 September; 1, 8, 15 and 22 October). RESULTS We noticed clear differences in the grain number per spikelet; delayed sowing had a greater impact on the number of fertile florets at anthesis than grain set. Significant differences in the developmental patterns of florets among spikelet positions corresponded to variations in the floret developmental rate, with faster floret development associated with higher floret fertility. Delayed sowing did not affect the grain number near the rachis, but significantly promoted grain set on distal florets. Increased spike dry weight (SDW) did not compensate for floret size or grain weight, mainly due to enhanced assimilate partitioning to florets. CONCLUSION Delayed sowing significantly affects floret developmental dynamics, causing differences in winter wheat floret fertility. An increased SDW concomitant with improved intra-spike partitioning before anthesis contributes to increase the distal floret numbers per spike and then optimize winter wheat spike fertility. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuangang Zhu
- Shandong Key Lab. of Biophysics, College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Xiu Zhang
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Agronomy College of Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanyan Xiao
- Dezhou Experimental Middle School, Dezhou, Shandong, China
| | - Jinpeng Chu
- National Key Laboratory of Crop Biology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Agronomy College of Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhongmin Dai
- Shandong Key Lab. of Biophysics, College of Life Science, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
41
|
Silva-Perez V, Shunmugam ASK, Rao S, Cossani CM, Tefera AT, Fitzgerald GJ, Armstrong R, Rosewarne GM. Breeding has selected for architectural and photosynthetic traits in lentils. FRONTIERS IN PLANT SCIENCE 2022; 13:925987. [PMID: 36092438 PMCID: PMC9453451 DOI: 10.3389/fpls.2022.925987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Genetic progress in seed yield in lentils (Lens culinaris Medik) has increased by 1.1% per year in Australia over the past 27 years. Knowing which plant traits have changed through breeding during this time can give important insights as to how lentil yield has increased. This study aims to identify morphological and physiological traits that were directly or indirectly selected between 1993 and 2020 in the Australian lentil breeding program using 2 years of experimental data. Major changes occurred in plant architecture during this period. Divergent selection has seen the release of varieties that have sprawling to very upright types of canopies. Despite this genetic diversity in recently released varieties, there is an overall tendency of recently released varieties having increased plant height and leaf size with reduced number of branches. Increased light interception was positively correlated with year of release (YOR) and yield, and likely results from indirect selection of yield and taller plant types. There is an indication that recently released varieties have lower CO2 assimilation rate, stomatal conductance and canopy temperature depression (CTD) at high ambient temperatures (~30°C). Understanding lentil physiology will assist in identifying traits to increase yield in a changing climate with extreme weather events.
Collapse
Affiliation(s)
| | | | | | - C. Mariano Cossani
- School of Agriculture, Food and Wine, South Australian Research and Development Institute, The University of Adelaide, Urrbrae, SA, Australia
| | | | - Glenn J. Fitzgerald
- Agriculture Victoria, Horsham, VIC, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Roger Armstrong
- Agriculture Victoria, Horsham, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia
| | | |
Collapse
|
42
|
Senapati N, Semenov MA, Halford NG, Hawkesford MJ, Asseng S, Cooper M, Ewert F, van Ittersum MK, Martre P, Olesen JE, Reynolds M, Rötter RP, Webber H. Global wheat production could benefit from closing the genetic yield gap. NATURE FOOD 2022; 3:532-541. [PMID: 37117937 DOI: 10.1038/s43016-022-00540-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/20/2022] [Indexed: 04/30/2023]
Abstract
Global food security requires food production to be increased in the coming decades. The closure of any existing genetic yield gap (Yig) by genetic improvement could increase crop yield potential and global production. Here we estimated present global wheat Yig, covering all wheat-growing environments and major producers, by optimizing local wheat cultivars using the wheat model Sirius. The estimated mean global Yig was 51%, implying that global wheat production could benefit greatly from exploiting the untapped global Yig through the use of optimal cultivar designs, utilization of the vast variation available in wheat genetic resources, application of modern advanced breeding tools, and continuous improvements of crop and soil management.
Collapse
Affiliation(s)
- Nimai Senapati
- Plant Sciences Department, Rothamsted Research, Harpenden, UK.
| | | | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, UK
| | | | - Senthold Asseng
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark Cooper
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, Queensland, Australia
| | - Frank Ewert
- Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn, Germany
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Pierre Martre
- LEPSE, Université Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jørgen E Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Reimund P Rötter
- Tropical Plant Production & Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Heidi Webber
- Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn, Germany
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
43
|
Hu P, Chapman SC, Sukumaran S, Reynolds M, Zheng B. Phenological optimization of late reproductive phase for raising wheat yield potential in irrigated mega-environments. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4236-4249. [PMID: 35383843 PMCID: PMC9232205 DOI: 10.1093/jxb/erac144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Increasing grain number through fine-tuning duration of the late reproductive phase (LRP; terminal spikelet to anthesis) without altering anthesis time has been proposed as a genetic strategy to increase yield potential (YP) of wheat. Here we conducted a modelling analysis to evaluate the potential of fine-tuning LRP in raising YP in irrigated mega-environments. Using the known optimal anthesis and sowing date of current elite benchmark genotypes, we applied a gene-based phenology model for long-term simulations of phenological stages and yield-related variables of all potential germplasm with the same duration to anthesis as the benchmark genotypes. These diverse genotypes had the same duration to anthesis but varying LRP duration. Lengthening LRP increased YP and harvest index by increasing grain number to some extent and an excessively long LRP reduced YP due to reduced time for canopy construction for high biomass production of pre-anthesis phase. The current elite genotypes could have their LRP extended for higher YP in most sites. Genotypes with a ratio of the duration of LRP to pre-anthesis phase of about 0.42 ensured high yields (≥95% of YP) with their optimal sowing and anthesis dates. Optimization of intermediate growth stages could be further evaluated in breeding programmes to improve YP.
Collapse
Affiliation(s)
- Pengcheng Hu
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4067, Australia
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Scott C Chapman
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Sivakumar Sukumaran
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz Km 45, El Batán, Texcoco, México, CP 56237, Mexico
| | - Matthew Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz Km 45, El Batán, Texcoco, México, CP 56237, Mexico
| | | |
Collapse
|
44
|
Tantray AY, Hazzazi Y, Ahmad A. Physiological, Agronomical, and Proteomic Studies Reveal Crucial Players in Rice Nitrogen Use Efficiency under Low Nitrogen Supply. Int J Mol Sci 2022; 23:6410. [PMID: 35742855 PMCID: PMC9224494 DOI: 10.3390/ijms23126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Excessive use of nitrogenous fertilizers to enhance rice productivity has become a significant source of nitrogen (N) pollution and reduced sustainable agriculture. However, little information about the physiology of different growth stages, agronomic traits, and associated genetic bases of N use efficiency (NUE) are available at low-N supply. Two rice (Oryza sativa L.) cultivars were grown with optimum N (120 kg ha-1) and low N (60 kg ha-1) supply. Six growth stages were analyzed to measure the growth and physiological traits, as well as the differential proteomic profiles, of the rice cultivars. Cultivar Panvel outclassed Nagina 22 at low-N supply and exhibited improved growth and physiology at most of the growth stages and agronomic efficiency due to higher N uptake and utilization at low-N supply. On average, photosynthetic rate, chlorophyll content, plant biomass, leaf N content, and grain yield were decreased in cultivar Nagina 22 than Panvel was 8%, 11%, 21%, 19%, and 22%, respectively, under low-N supply. Furthermore, proteome analyses revealed that many proteins were upregulated and downregulated at the different growth stages under low-N supply. These proteins are associated with N and carbon metabolism and other physiological processes. This supports the genotypic differences in photosynthesis, N assimilation, energy stabilization, and rice-protein yield. Our study suggests that enhancing NUE at low-N supply demands distinct modifications in N metabolism and physiological assimilation. The NUE may be regulated by key identified differentially expressed proteins. These proteins might be the targets for improving crop NUE at low-N supply.
Collapse
Affiliation(s)
- Aadil Yousuf Tantray
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Yehia Hazzazi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK;
- Biology Department, Faculty of Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| |
Collapse
|
45
|
Dixon LE, Pasquariello M, Badgami R, Levin KA, Poschet G, Ng PQ, Orford S, Chayut N, Adamski NM, Brinton J, Simmonds J, Steuernagel B, Searle IR, Uauy C, Boden SA. MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat. SCIENCE ADVANCES 2022; 8:eabn5907. [PMID: 35544571 PMCID: PMC9094671 DOI: 10.1126/sciadv.abn5907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 05/26/2023]
Abstract
Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.
Collapse
Affiliation(s)
- Laura E. Dixon
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marianna Pasquariello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Roshani Badgami
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gernot Poschet
- Centre of Organismal Studies (COS), University of Heidelberg, Heidelberg 69120, Germany
| | - Pei Qin Ng
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Simon Orford
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Noam Chayut
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nikolai M. Adamski
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jemima Brinton
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Burkhard Steuernagel
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain R. Searle
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott A. Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
46
|
Reynolds MP, Slafer GA, Foulkes JM, Griffiths S, Murchie EH, Carmo-Silva E, Asseng S, Chapman SC, Sawkins M, Gwyn J, Flavell RB. A wiring diagram to integrate physiological traits of wheat yield potential. NATURE FOOD 2022; 3:318-324. [PMID: 37117579 DOI: 10.1038/s43016-022-00512-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 04/30/2023]
Abstract
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.
Collapse
Affiliation(s)
| | - Gustavo Ariel Slafer
- Catalonian Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Center for Research in Agrotechnology (AGROTECNIO), Lleida, Spain.
- University of Lleida, Lleida, Spain.
| | | | | | | | | | | | | | - Mark Sawkins
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
- Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
| | | |
Collapse
|
47
|
Leigh FJ, Wright TIC, Horsnell RA, Dyer S, Bentley AR. Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement. Heredity (Edinb) 2022; 128:291-303. [PMID: 35383318 PMCID: PMC9076643 DOI: 10.1038/s41437-022-00527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change will have numerous impacts on crop production worldwide necessitating a broadening of the germplasm base required to source and incorporate novel traits. Major variation exists in crop progenitor species for seasonal adaptation, photosynthetic characteristics, and root system architecture. Wheat is crucial for securing future food and nutrition security and its evolutionary history and progenitor diversity offer opportunities to mine favourable functional variation in the primary gene pool. Here we provide a review of the status of characterisation of wheat progenitor variation and the potential to use this knowledge to inform the use of variation in other cereal crops. Although significant knowledge of progenitor variation has been generated, we make recommendations for further work required to systematically characterise underlying genetics and physiological mechanisms and propose steps for effective use in breeding. This will enable targeted exploitation of useful variation, supported by the growing portfolio of genomics and accelerated breeding approaches. The knowledge and approaches generated are also likely to be useful across wider crop improvement.
Collapse
Affiliation(s)
- Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Richard A Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Sarah Dyer
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
48
|
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. PHOTOSYNTHESIS RESEARCH 2022; 152:23-42. [PMID: 35064531 DOI: 10.1007/s11120-021-00892-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 05/06/2023]
Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Tanja A Hofmann
- OSFC, Scrivener Drive, Pinewood, Ipswich, IP8 3SU, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
49
|
Griffiths M, Delory BM, Jawahir V, Wong KM, Bagnall GC, Dowd TG, Nusinow DA, Miller AJ, Topp CN. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. PLANT, CELL & ENVIRONMENT 2022; 45:751-770. [PMID: 34914117 PMCID: PMC9306666 DOI: 10.1111/pce.14247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Roots are the interface between the plant and the soil and play a central role in multiple ecosystem processes. With intensification of agricultural practices, rhizosphere processes are being disrupted and are causing degradation of the physical, chemical and biotic properties of soil. However, cover crops, a group of plants that provide ecosystem services, can be utilised during fallow periods or used as an intercrop to restore soil health. The effectiveness of ecosystem services provided by cover crops varies widely as very little breeding has occurred in these species. Improvement of ecosystem service performance is rarely considered as a breeding trait due to the complexities and challenges of belowground evaluation. Advancements in root phenotyping and genetic tools are critical in accelerating ecosystem service improvement in cover crops. In this study, we provide an overview of the range of belowground ecosystem services provided by cover crop roots: (1) soil structural remediation, (2) capture of soil resources and (3) maintenance of the rhizosphere and building of organic matter content. Based on the ecosystem services described, we outline current and promising phenotyping technologies and breeding strategies in cover crops that can enhance agricultural sustainability through improvement of root traits.
Collapse
Affiliation(s)
| | | | | | - Kong M. Wong
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | - Tyler G. Dowd
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | - Allison J. Miller
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
| | | |
Collapse
|
50
|
Four-Dimensional Plant Phenotyping Model Integrating Low-Density LiDAR Data and Multispectral Images. REMOTE SENSING 2022. [DOI: 10.3390/rs14020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
High-throughput platforms for plant phenotyping usually demand expensive high-density LiDAR devices with computational intense methods for characterizing several morphological variables. In fact, most platforms require offline processing to achieve a comprehensive plant architecture model. In this paper, we propose a low-cost plant phenotyping system based on the sensory fusion of low-density LiDAR data with multispectral imagery. Our contribution is twofold: (i) an integrated phenotyping platform with embedded processing methods capable of providing real-time morphological data, and (ii) a multi-sensor fusion algorithm that precisely match the 3D LiDAR point-cloud data with the corresponding multispectral information, aiming for the consolidation of four-dimensional plant models. We conducted extensive experimental tests over two plants with different morphological structures, demonstrating the potential of the proposed solution for enabling real-time plant architecture modeling in the field, based on low-density LiDARs.
Collapse
|