1
|
Zhu M, Tang Y, Xie Y, He B, Ding G, Zhou X. Research progress on differentiation and regulation of plant chromoplasts. Mol Biol Rep 2024; 51:810. [PMID: 39001942 DOI: 10.1007/s11033-024-09753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.
Collapse
Affiliation(s)
- Mengyao Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunxia Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China
| | - BingBing He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guochang Ding
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, 350118, China.
| |
Collapse
|
2
|
Liu Y, Ye J, Zhu M, Atkinson RG, Zhang Y, Zheng X, Lu J, Cao Z, Peng J, Shi C, Xie Z, Larkin RM, Nieuwenhuizen NJ, Ampomah-Dwamena C, Chen C, Wang R, Luo X, Cheng Y, Deng X, Zeng Y. Multi-omics analyses reveal the importance of chromoplast plastoglobules in carotenoid accumulation in citrus fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:924-943. [PMID: 37902994 DOI: 10.1111/tpj.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.
Collapse
Affiliation(s)
- Yun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiongjie Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhen Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jun Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, Guilin, 541004, P.R. China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, P.R. China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
3
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
4
|
Gong J, Zhang H, Zeng Y, Cheng Y, Sun X, Wang P. Combining BN-PAGE and microscopy techniques to investigate pigment-protein complexes and plastid transitions in citrus fruit. PLANT METHODS 2022; 18:124. [PMID: 36403000 PMCID: PMC9675244 DOI: 10.1186/s13007-022-00956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chlorophyll and carotenoids, the most widely distributed lipophilic pigments in plants, contribute to fruit coloration during development and ripening. These pigments are assembled with pigment-protein complexes localized at plastid membrane. Pigment-protein complexes are essential for multiple cellular processes, however, their identity and composition in fruit have yet to be characterized. RESULTS By using BN-PAGE technique in combination with microscopy, we studied pigment-protein complexes and plastid transformation in the purified plastids from the exocarp of citrus fruit. The discontinuous sucrose gradient centrifugation was used to isolate total plastids from kumquat fruit, and the purity of isolated plastids was assessed by microscopy observation and western blot analysis. The isolated plastids at different coloring stages were subjected to pigment autofluorescence observation, western blot, two-dimensional electrophoresis analysis and BN-PAGE assessment. Our results demonstrated that (i) chloroplasts differentiate into chromoplasts during fruit coloring, and this differentiation is accompanied with a decrease in the chlorophyll/carotenoid ratio; (ii) BN-PAGE analysis reveals the profiles of macromolecular protein complexes among different types of plastids in citrus fruit; and (iii) the degradation rate of chlorophyll-protein complexes varies during the transition from chloroplasts to chromoplasts, with the stability generally following the order of LHCII > PS II core > LHC I > PS I core. CONCLUSIONS Our optimized methods for both plastid separation and BN-PAGE assessment provide an opportunity for developing a better understanding of pigment-protein complexes and plastid transitions in plant fruit. These attempts also have the potential for expanding our knowledge on the sub-cellular level synchronism of protein changes and pigment metabolism during the transition from chloroplasts to chromoplasts.
Collapse
Affiliation(s)
- Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
5
|
Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms 2021; 9:microorganisms9051068. [PMID: 34063406 PMCID: PMC8156089 DOI: 10.3390/microorganisms9051068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Research on enhancing lutein content in microalgae has made significant progress in recent years. However, strategies are needed to address the possible limitations of microalgae as practical lutein producers. The capacity of lutein sequestration may determine the upper limit of cellular lutein content. The preliminary estimation presented in this work suggests that the lutein sequestration capacity of the light-harvesting complex (LHC) of microalgae is most likely below 2% on the basis of dry cell weight (DCW). Due to its nature as a structural pigment, higher lutein content might interfere with the LHC in fulfilling photosynthetic functions. Storing lutein in a lipophilic environment is a mechanism for achieving high lutein content but several critical barriers must be overcome such as lutein degradation and access to lipid droplet to be stored through esterification. Understanding the mechanisms underlying lipid droplet biogenesis in chloroplasts, as well as carotenoid trafficking through chloroplast membranes and carotenoid esterification, may provide insight for new approaches to achieve high lutein contents in algae. In the meantime, building the machinery for esterification and sequestration of lutein and other hydroxyl-carotenoids in model microorganisms, such as yeast, with synthetic biology technology provides a promising option.
Collapse
|
6
|
Li X, Chai Y, Yang H, Tian Z, Li C, Xu R, Shi C, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. HORTICULTURE RESEARCH 2021; 8:31. [PMID: 33518707 PMCID: PMC7848011 DOI: 10.1038/s41438-021-00470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.
Collapse
Affiliation(s)
- Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingfang Chai
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhen Tian
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengyang Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chunmei Shi
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunliu Zeng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuxin Deng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengwei Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Zhang H, Chen J, Peng Z, Shi M, Liu X, Wen H, Jiang Y, Cheng Y, Xu J, Zhang H. Integrated Transcriptomic and Metabolomic analysis reveals a transcriptional regulation network for the biosynthesis of carotenoids and flavonoids in 'Cara cara' navel Orange. BMC PLANT BIOLOGY 2021; 21:29. [PMID: 33413111 PMCID: PMC7792078 DOI: 10.1186/s12870-020-02808-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/20/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Carotenoids and flavonoids are important secondary metabolites in plants, which exert multiple bioactivities and benefits to human health. Although the genes that encode carotenogenesis and flavonoid biosynthetic enzymes are well characterized, the transcriptional regulatory mechanisms that are related to the pathway genes remain to be investigated. In this study, 'Cara cara' navel orange (CNO) fruit at four development stages were used to identify the key genes and TFs for carotenoids and flavonoids accumulation. RESULTS In this study, CNO was used to investigate the profiles of carotenoids and flavonoids by a combination of metabolomic and transcriptomic analyses. The important stage for the accumulation of the major carotenoid, lycopene was found to be at 120 days after florescence (DAF). The transcripts of five carotenogenesis genes were highly correlated with lycopene contents, and 16, 40, 48, 24 and 18 transcription factors (TFs) were predicted to potentially bind 1-deoxy-D-xylulose-5-phosphate synthase (DXS1), deoxyxylulose 5-phosphate reductoisomerase (DXR), geranylgeranyl diphosphate synthase (GGPPS2), phytoene synthase (PSY1) and lycopene β-cyclase (LCYB) promoters, respectively. Narirutin was the most abundant flavonoid in the flesh at the early stages, 60 DAF was the most important stage for the accumulation of flavonoids, and 17, 22, 14, 25, 24 and 16 TFs could potentially bind phenylalanine ammonia-lyase (PAL-1 and PAL-4), 4-Coumarate-CoA ligase (4CL-2 and 4CL-5), chalcone synthase (CHS-1) and chalcone isomerase (CHI) promoters, respectively. Furthermore, both sets of 15 candidate TFs might regulate at least three key genes and contribute to carotenoids/flavonoids accumulation in CNO fruit. Finally, a hierarchical model for the regulatory network among the pathway genes and TFs was proposed. CONCLUSIONS Collectively, our results suggest that DXS1, DXR, GGPPS2, PSY1 and LCYB genes were the most important genes for carotenoids accumulation, while PAL-1, PAL-4, 4CL-2, 4CL-5, CHS-1 and CHI for flavonoids biosynthesis. A total of 24 TFs were postulated as co-regulators in both pathways directly, which might play important roles in carotenoids and flavonoids accumulation in CNO fruit.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huan Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Youwu Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
8
|
Grabsztunowicz M, Rokka A, Farooq I, Aro EM, Mulo P. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria. BMC PLANT BIOLOGY 2020; 20:413. [PMID: 32887556 PMCID: PMC7650296 DOI: 10.1186/s12870-020-02635-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Non-photosynthetic plastids of plants are known to be involved in a range of metabolic and biosynthetic reactions, even if they have been difficult to study due to their small size and lack of color. The morphology of root plastids is heterogeneous and also the plastid size, density and subcellular distribution varies depending on the cell type and developmental stage, and therefore the functional features have remained obscure. Although the root plastid proteome is likely to reveal specific functional features, Arabidopsis thaliana root plastid proteome has not been studied to date. RESULTS In the present study, we separated Arabidopsis root protein fraction enriched with plastids and mitochondria by 2D-PAGE and identified 84 plastid-targeted and 77 mitochondrion-targeted proteins using LC-MS/MS. The most prevalent root plastid protein categories represented amino acid biosynthesis, carbohydrate metabolism and lipid biosynthesis pathways, while the enzymes involved in starch and sucrose metabolism were not detected. Mitochondrion-targeted proteins were classified mainly into the energetics category. CONCLUSIONS This is the first study presenting gel-based map of Arabidopsis thaliana root plastid and mitochondrial proteome. Our findings suggest that Arabidopsis root plastids have broad biosynthetic capacity, and that they do not play a major role in a long-term storage of carbohydrates. The proteomic map provides a tool for further studies to compare changes in the proteome, e.g. in response to environmental cues, and emphasizes the role of root plastids in nitrogen and sulfur metabolism as well as in amino acid and fatty acid biosynthesis. The results enable taking a first step towards an integrated view of root plastid/mitochondrial proteome and metabolic functions in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Irum Farooq
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Paula Mulo
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
9
|
Sun T, Yuan H, Chen C, Kadirjan-Kalbach DK, Mazourek M, Osteryoung KW, Li L. OR His, a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. MOLECULAR PLANT 2020; 13:864-878. [PMID: 32222485 DOI: 10.1016/j.molp.2020.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 05/19/2023]
Abstract
Chromoplasts are colored plastids that synthesize and store massive amounts of carotenoids. Chromoplast number and size define the sink strength for carotenoid accumulation in plants. However, nothing is known about the mechanisms controlling chromoplast number. Previously, a natural allele of Orange (OR), ORHis, was found to promote carotenoid accumulation by activating chromoplast differentiation and increasing carotenoid biosynthesis, but cells in orange tissues in melon fruit and cauliflower OR mutant have only one or two enlarged chromoplasts. In this study, we investigated an ORHis variant of Arabidopsis OR, genetically mimicking the melon ORHis allele, and found that it also constrains chromoplast number in Arabidopsis calli. Both in vitro and in vivo experiments demonstrate that ORHis specifically interacts with the Membrane Occupation and Recognition Nexus domain of ACCUMULATION AND REPLICATION OF CHLOROPLASTS 3 (ARC3), a crucial regulator of chloroplast division. We further showed that ORHis interferes with the interaction between ARC3 and PARALOG OF ARC6 (PARC6), another key regulator of chloroplast division, suggesting a role of ORHis in competing with PARC6 for binding to ARC3 to restrict chromoplast number. Overexpression or knockout of ARC3 in Arabidopsis ORHis plants significantly alters total carotenoid levels. Moreover, overexpression of the plastid division factor PLASTID DIVISION 1 greatly enhances carotenoid accumulation. These division factors likely alter carotenoid levels via their influence on chromoplast number and/or size. Taken together, our findings provide novel mechanistic insights into the machinery controlling chromoplast number and highlight a potential new strategy for enhancing carotenoid accumulation and nutritional value in food crops.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Christian RW, Hewitt SL, Roalson EH, Dhingra A. Genome-Scale Characterization of Predicted Plastid-Targeted Proteomes in Higher Plants. Sci Rep 2020; 10:8281. [PMID: 32427841 PMCID: PMC7237471 DOI: 10.1038/s41598-020-64670-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Plastids are morphologically and functionally diverse organelles that are dependent on nuclear-encoded, plastid-targeted proteins for all biochemical and regulatory functions. However, how plastid proteomes vary temporally, spatially, and taxonomically has been historically difficult to analyze at a genome-wide scale using experimental methods. A bioinformatics workflow was developed and evaluated using a combination of fast and user-friendly subcellular prediction programs to maximize performance and accuracy for chloroplast transit peptides and demonstrate this technique on the predicted proteomes of 15 sequenced plant genomes. Gene family grouping was then performed in parallel using modified approaches of reciprocal best BLAST hits (RBH) and UCLUST. A total of 628 protein families were found to have conserved plastid targeting across angiosperm species using RBH, and 828 using UCLUST. However, thousands of clusters were also detected where only one species had predicted plastid targeting, most notably in Panicum virgatum which had 1,458 proteins with species-unique targeting. An average of 45% overlap was found in plastid-targeted protein-coding gene families compared with Arabidopsis, but an additional 20% of proteins matched against the full Arabidopsis proteome, indicating a unique evolution of plastid targeting. Neofunctionalization through subcellular relocalization is known to impart novel biological functions but has not been described before on a genome-wide scale for the plastid proteome. Further work to correlate these predicted novel plastid-targeted proteins to transcript abundance and high-throughput proteomics will uncover unique aspects of plastid biology and shed light on how the plastid proteome has evolved to influence plastid morphology and biochemistry.
Collapse
Affiliation(s)
- Ryan W Christian
- Department of Horticulture, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Seanna L Hewitt
- Department of Horticulture, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Eric H Roalson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, USA.
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA.
| |
Collapse
|
11
|
Royer J, Shanklin J, Balch-Kenney N, Mayorga M, Houston P, de Jong RM, McMahon J, Laprade L, Blomquist P, Berry T, Cai Y, LoBuglio K, Trueheart J, Chevreux B. Rhodoxanthin synthase from honeysuckle; a membrane diiron enzyme catalyzes the multistep conversation of β-carotene to rhodoxanthin. SCIENCE ADVANCES 2020; 6:eaay9226. [PMID: 32426461 PMCID: PMC7176425 DOI: 10.1126/sciadv.aay9226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Rhodoxanthin is a vibrant red carotenoid found across the plant kingdom and in certain birds and fish. It is a member of the atypical retro class of carotenoids, which contain an additional double bond and a concerted shift of the conjugated double bonds relative to the more widely occurring carotenoid pigments, and whose biosynthetic origins have long remained elusive. Here, we identify LHRS (Lonicera hydroxylase rhodoxanthin synthase), a variant β-carotene hydroxylase (BCH)-type integral membrane diiron enzyme that mediates the conversion of β-carotene into rhodoxanthin. We identify residues that are critical to rhodoxanthin formation by LHRS. Substitution of only three residues converts a typical BCH into a multifunctional enzyme that mediates a multistep pathway from β-carotene to rhodoxanthin via a series of distinct oxidation steps in which the product of each step becomes the substrate for the next catalytic cycle. We propose a biosynthetic pathway from β-carotene to rhodoxanthin.
Collapse
Affiliation(s)
- John Royer
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Ave, Upton, NY 11973, USA
| | | | - Maria Mayorga
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Peter Houston
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - René M. de Jong
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, Netherlands
| | - Jenna McMahon
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Lisa Laprade
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Paul Blomquist
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Timothy Berry
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Yuanheng Cai
- Department of Biology, Brookhaven National Laboratory, 50 Bell Ave, Upton, NY 11973, USA
| | - Katherine LoBuglio
- Department of Organismic and Evolutionary Biology, Farlow Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Joshua Trueheart
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| | - Bastien Chevreux
- DSM Nutritional Products, 60 Westview St, Lexington, MA 02421, USA
| |
Collapse
|
12
|
Genome-wide characterization of the WRKY gene family in cultivated strawberry (Fragaria × ananassa Duch.) and the importance of several group III members in continuous cropping. Sci Rep 2019; 9:8423. [PMID: 31182725 PMCID: PMC6557897 DOI: 10.1038/s41598-019-44479-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/15/2019] [Indexed: 12/04/2022] Open
Abstract
WRKY transcription factors play important roles in many plant developmental processes and adaptation to the environment. However, little knowledge is available about the WRKY gene family in cultivated strawberry (Fragaria × ananassa Duch.), an important soft fruit worldwide. In this study, a total of 47 WRKY gene members were identified and renamed on the basis of their order on the chromosomes. According to their evolutionary events and conserved structure, the 47 FaWRKYs were divided into three major groups with several subgroups. A cis-element analysis showed that all FaWRKYs possessed at least one stress response-related cis-element. Comprehensive analysis, including phylogenetic analysis and expression profiling, based on real-time qPCR analysis in root, stem, leaf and fruit was performed on group III FaWRKY genes. The phylogenetic tree of the WRKY III genes in cultivated strawberry, wild Strawberry, Arabidopsis, tomato, and rice was divided into five clades. Additionally, the expression profiles of the FaWRKY genes in response to continuous cropping were further investigated based on RNA-seq data. FaWRKY25, FaWRKY32, and FaWRKY45, which are group III FaWRKY genes, were upregulated after continuous cropping. The level of reactive oxygen species (ROS) and the expression levels of PR1 and peroxidase were higher in continuous cropping (CC) than in non-continuous cropping (NCC). The results indicated that group III FaWRKYs might play an important role in continuous cropping. These results provide a foundation for genetic improvements for continuous cropping tolerance in cultivated strawberry.
Collapse
|
13
|
Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect 2018; 7:63. [PMID: 29636444 PMCID: PMC5893550 DOI: 10.1038/s41426-018-0066-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022]
Abstract
This study identified urinary biomarkers for tuberculosis (TB) diagnosis. The urine proteomic profiles of 45 pulmonary tuberculosis patients prior to anti-TB treatment and 45 healthy controls were analyzed and compared using two-dimensional electrophoresis with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Nineteen differentially expressed proteins were identified preliminarily, and western blotting and qRT-PCR were performed to confirm these changes at the translational and transcriptional levels, respectively, using samples from 122 additional pulmonary tuberculosis patients and 73 additional healthy controls. Two proteins, mannose-binding lectin 2 and a 35-kDa fragment of inter-α-trypsin inhibitor H4, exhibited the highest differential expression. We constructed a protein-microRNA interaction network that primarily involved complement and inflammatory responses. Eleven microRNAs from microRNA-target protein interactions were screened and validated using qRT-PCR with some of the above samples, including 97 pulmonary tuberculosis patients and 48 healthy controls. Only miR-625-3p exhibited significant differential expression (p < 0.05). miR-625-3p was increased to a greater extent in samples of smear-positive than smear-negative patients. miR-625-3p was predicted to target mannose-binding lectin 2 protein. A binary logistic regression model based on miR-625-3p, mannose-binding lectin 2, and inter-α-trypsin inhibitor H4 was further established. This three-biomarker combination exhibited better performance for tuberculosis diagnosis than individual biomarkers or any two-biomarker combination and generated a diagnostic sensitivity of 85.87% and a specificity of 87.50%. These novel urine biomarkers may significantly improve tuberculosis diagnosis.
Collapse
|
14
|
Zhu M, Lin J, Ye J, Wang R, Yang C, Gong J, Liu Y, Deng C, Liu P, Chen C, Cheng Y, Deng X, Zeng Y. A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. HORTICULTURE RESEARCH 2018; 5:6. [PMID: 29423236 PMCID: PMC5802726 DOI: 10.1038/s41438-017-0014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 05/02/2023]
Abstract
Elaioplasts of citrus peel are colorless plastids which accumulate significant amounts of terpenes. However, other functions of elaioplasts have not been fully characterized to date. Here, a LC-MS/MS shotgun technology was applied to identify the proteins from elaioplasts that were highly purified from young fruit peel of kumquat. A total of 655 putative plastid proteins were identified from elaioplasts according to sequence homology in silico and manual curation. Based on functional classification via Mapman, ~50% of the identified proteins fall into six categories, including protein metabolism, transport, and lipid metabolism. Of note, elaioplasts contained ATP synthase and ADP, ATP carrier proteins at high abundance, indicating important roles for ATP generation and transport in elaioplast biogenesis. Additionally, a comparison of proteins between citrus chromoplast and elaioplast proteomes suggest a high level of functional conservation. However, some distinctive protein profiles were also observed in both types of plastids notably for isoprene biosynthesis in elaioplasts, and carotenoid metabolism in chromoplasts. In conclusion, this comprehensive proteomic study provides new insights into the major metabolic pathways and unique characteristics of elaioplasts and chromoplasts in citrus fruit.
Collapse
Affiliation(s)
- Man Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiajia Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233 China
| | - Chao Yang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233 China
| | - Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chongling Deng
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Ping Liu
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Chuanwu Chen
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
15
|
Deng L, Yuan Z, Xie J, Yao S, Zeng K. Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6158-6168. [PMID: 28671844 DOI: 10.1021/acs.jafc.7b01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.
Collapse
Affiliation(s)
- Lili Deng
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Ziyi Yuan
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Jiao Xie
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Shixiang Yao
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Kaifang Zeng
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| |
Collapse
|
16
|
Chen R, Chen G, Huang J. Shot-gun proteome and transcriptome mapping of the jujube floral organ and identification of a pollen-specific S-locus F-box gene. PeerJ 2017; 5:e3588. [PMID: 28729959 PMCID: PMC5516771 DOI: 10.7717/peerj.3588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
The flower is a plant reproductive organ that forms part of the fruit produced as the flowering season ends. While the number and identity of proteins expressed in a jujube (Ziziphus jujuba Mill.) flower is currently unknown, integrative proteomic and transcriptomic analyses provide a systematic strategy of characterizing the floral biology of plants. We conducted a shotgun proteomic analysis on jujube flowers by using a filter-aided sample preparation tryptic digestion, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, transcriptomics analyses were performed on HiSeq2000 sequencers. In total, 7,853 proteins were identified accounting for nearly 30% of the ‘Junzao’ gene models (27,443). Genes identified in proteome generally showed higher RPKM (reads per kilobase per million mapped reads) values than undetected genes. Gene ontology categories showed that ribosomes and intracellular organelles were the most dominant classes and accounted for 17.0% and 14.0% of the proteome mass, respectively. The top-ranking proteins with iBAQ >1010 included non-specific lipid transfer proteins, histones, actin-related proteins, fructose-bisphosphate aldolase, Bet v I type allergens, etc. In addition, we identified one pollen-specificity S-locus F-box-like gene located on the same chromosome as the S-RNase gene. Both of these may activate the behaviour of gametophyte self-incompatibility in jujube. These results reflected the protein profile features of jujube flowers and contributes new information important to the jujube breeding system.
Collapse
Affiliation(s)
- Ruihong Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Guoliang Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Jian Huang
- College of Forestry, Northwest A & F University, Yangling, China
| |
Collapse
|
17
|
Carrillo C, Buvé C, Panozzo A, Grauwet T, Hendrickx M. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids. Food Chem 2017; 227:271-279. [PMID: 28274432 DOI: 10.1016/j.foodchem.2017.01.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/29/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
Abstract
Although natural structural barriers are factors limiting nutrient bioaccessibility, their specific role in anthocyanin bioaccessibility is still unknown. To better understand how natural barriers govern bioactive compound bioaccessibility, an experimental approach comparing anthocyanins and carotenoids was designed, using a single plant matrix. Initial results revealed increased anthocyanin bioaccessibility in masticated black carrot. To explain this observation, samples with increasing levels of bioencapsulation (free-compound, homogenized-puree, puree) were examined. While carotenoid bioaccessibility was inversely proportional to the level of bioencapsulation, barrier disruption did not increase anthocyanin bioaccessibility. This means that mechanical processing is of particular importance in the case of carotenoid bioaccessibility. While micelle incorporation is the limiting factor for carotenoid bioaccessibility, anthocyanin degradation under alkaline conditions in the gastrointestinal tract dominates. In the absence of structural barriers, anthocyanin bioaccessibility is greater than that of carotenoids.
Collapse
Affiliation(s)
- Celia Carrillo
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium; Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Carolien Buvé
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
| | - Agnese Panozzo
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium.
| |
Collapse
|
18
|
Isolation of Chromoplasts and Suborganellar Compartments from Tomato and Bell Pepper Fruit. Methods Mol Biol 2017; 1511:61-71. [PMID: 27730602 DOI: 10.1007/978-1-4939-6533-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tomato is a model for fruit development and ripening. The isolation of intact plastids from this organism is therefore important for metabolic and proteomic analyses. Pepper, a species from the same family, is also of interest since it allows isolation of intact chromoplasts in large amounts. Here, we provide a detailed protocol for the isolation of tomato plastids at three fruit developmental stages, namely, nascent chromoplasts from the mature green stage, chromoplasts from an intermediate stage, and fully differentiated red chromoplasts. The method relies on sucrose density gradient centrifugations. It yields high purity organelles suitable for proteome analyses. Enzymatic and microscopy assays are summarized to assess purity and intactness. A method is also described for subfractionation of pepper chromoplast lipoprotein structures.
Collapse
|
19
|
Daher Z, Recorbet G, Solymosi K, Wienkoop S, Mounier A, Morandi D, Lherminier J, Wipf D, Dumas-Gaudot E, Schoefs B. Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature. PHYSIOLOGIA PLANTARUM 2017; 159:13-29. [PMID: 27558913 DOI: 10.1111/ppl.12505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown.
Collapse
Affiliation(s)
- Zeina Daher
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Stefanie Wienkoop
- Department of Molecular System Biology, University of Vienna, Vienna 1090, Austria
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Dominique Morandi
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Jeannine Lherminier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Eliane Dumas-Gaudot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Benoît Schoefs
- MicroMar, Mer, Molécules, Santé, UBL, Université du Maine, Le Mans Cedex 9 72085, France
| |
Collapse
|
20
|
Shah M, Soares EL, Lima MLB, Pinheiro CB, Soares AA, Domont GB, Nogueira FCS, Campos FAP. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. J Proteomics 2016; 143:346-352. [PMID: 26924298 DOI: 10.1016/j.jprot.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/17/2023]
Abstract
UNLABELLED The inner integument of Jatropha curcas seeds is a non-photosynthetic tissue that acts primarily as a conduit for the delivery of nutrients to the embryo and endosperm. In this study we performed a histological and transmission electron microscopy analysis of the inner integument in stages prior to fertilization to 25days after pollination, to establish the structural changes associated with the plastid to gerontoplast transition. This study showed that plastids are subjected to progressive changes, which include the dismantling of the internal membrane system, matrix degradation and the formation of stromule-derived vesicles. A proteome analysis of gerontoplasts isolated from the inner integument at 25days after pollination, resulted in the identification of 1923 proteins, which were involved in a myriad of metabolic functions, such as synthesis of amino acids and fatty acids. Among the identified proteins, were also a number of hydrolases (peptidases, lipases and carbohydrases), which presumably are involved in the ordered dismantling of this organelle to provide additional sources of nutrients for the growing embryo and endosperm. The dataset we provide here may provide a foundation for the study of the proteome changes associated with the plastid to gerontoplast transition in non-photosynthetic tissues. SIGNIFICANCE We describe ultrastructural features of gerontoplasts isolated from the inner integument of developing seeds of Jatropha curcas, together with a deep proteome analysis of these gerontoplasts. This article explores a new aspect of the biology of plastids, namely the ultrastructural and proteome changes associated with the transition plastid to gerontoplast in a non-photosynthetic tissue.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Emanoella L Soares
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Magda L B Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Camila B Pinheiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Gilberto B Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil.
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil.
| |
Collapse
|
21
|
Abstract
Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|
23
|
Suzuki M, Takahashi S, Kondo T, Dohra H, Ito Y, Kiriiwa Y, Hayashi M, Kamiya S, Kato M, Fujiwara M, Fukao Y, Kobayashi M, Nagata N, Motohashi R. Plastid Proteomic Analysis in Tomato Fruit Development. PLoS One 2015; 10:e0137266. [PMID: 26371478 PMCID: PMC4570674 DOI: 10.1371/journal.pone.0137266] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/15/2015] [Indexed: 02/01/2023] Open
Abstract
To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein) and HrBP1 (harpin binding protein-1) in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin) in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.
Collapse
Affiliation(s)
- Miho Suzuki
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Sachiko Takahashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Takanori Kondo
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Yumihiko Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Yoshikazu Kiriiwa
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Marina Hayashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Shiori Kamiya
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Masaya Kato
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Masayuki Fujiwara
- The Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma city, Nara, Japan
| | - Yoichiro Fukao
- The Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma city, Nara, Japan
| | - Megumi Kobayashi
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo, Japan
| | - Noriko Nagata
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo, Japan
| | - Reiko Motohashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| |
Collapse
|
24
|
Lado J, Zacarías L, Gurrea A, Page A, Stead A, Rodrigo MJ. Exploring the diversity in Citrus fruit colouration to decipher the relationship between plastid ultrastructure and carotenoid composition. PLANTA 2015. [PMID: 26202736 DOI: 10.1007/s00425-015-2370-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Differentiation of new and characteristic plastid ultrastructures during ripening of citrus fruits in both peel and pulp appears to be strongly correlated with the content and complement of carotenoids. Most of the species of the Citrus genus display a wide range in fruit colouration due to differences in carotenoids; however, how this diversity is related and may contribute to plastid differentiation and ultrastructure is currently unknown. To that end, carotenoid profile and plastid ultrastructure were compared in peel and pulp of three sweet oranges: the ordinary orange-coloured Navel, rich in β,β-xanthophylls, the yellow Pinalate mutant with an elevated content of colourless carotenes and reduced β,β-xanthophylls, and the red-fleshed Cara Cara with high concentration of colourless carotenes and lycopene in the pulp; and two grapefruits: the white Marsh, with low carotenoid content, and the red Star Ruby, accumulating upstream carotenes and lycopene. The most remarkable differences in plastid ultrastructure among varieties were detected in the pulp at full colour, coinciding with major differences in carotenoid composition. Accumulation of lycopene in Cara Cara and Star Ruby pulp was associated with the presence of needle-like crystals in the plastids, while high content of upstream carotenes in Pinalate pulp was related to the development of a novel plastid type with numerous even and round vesicles. The presence of plastoglobuli was linked to phytoene and xanthophyll accumulation, suggesting these structures as the main sites for the accumulation of these pigments. Peel chromoplasts were richer in membranes compared to pulp chromoplasts, reflecting their different biogenesis. In summary, differences in carotenoid composition and accumulation of unusual carotenoids are mirrored by the development of diverse and novel chromoplast types, revealing the plasticity of these organelles to rearrange carotenoids inside different structures to allow massive accumulation and thus contributing to the chemical stability of the carotenoids.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. HORTICULTURE RESEARCH 2015; 2:15036. [PMID: 26504578 PMCID: PMC4591682 DOI: 10.1038/hortres.2015.36] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 05/05/2023]
Abstract
Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers.
Collapse
Affiliation(s)
- Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Junxiang Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Divyashree Nageswaran
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Lado J, Cronje P, Alquézar B, Page A, Manzi M, Gómez-Cadenas A, Stead AD, Zacarías L, Rodrigo MJ. Fruit shading enhances peel color, carotenes accumulation and chromoplast differentiation in red grapefruit. PHYSIOLOGIA PLANTARUM 2015; 154:469-84. [PMID: 25676857 DOI: 10.1111/ppl.12332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 05/06/2023]
Abstract
The distinctive color of red grapefruits is due to lycopene, an unusual carotene in citrus. It has been observed that red 'Star Ruby' (SR) grapefruits grown inside the tree canopy develop a more intense red coloration than those exposed to higher light intensities. To investigate the effect of light on SR peel pigmentation, fruit were bagged or exposed to normal photoperiodic conditions, and changes in carotenoids, expression of carotenoid biosynthetic genes and plastid ultrastructure in the peel were analyzed. Light avoidance accelerated chlorophyll breakdown and induced carotenoid accumulation, rendering fruits with an intense coloration. Remarkably, lycopene levels in the peel of shaded fruits were 49-fold higher than in light-exposed fruit while concentrations of downstream metabolites were notably reduced, suggesting a bottleneck at the lycopene cyclization in the biosynthetic pathway. Paradoxically, this increment in carotenoids in covered fruit was not mirrored by changes in mRNA levels of carotenogenic genes, which were mostly up-regulated by light. In addition, covered fruits experienced profound changes in chromoplast differentiation, and the relative expression of genes related to chromoplast development was enhanced. Ultrastructural analysis of plastids revealed an acceleration of chloroplasts to chromoplast transition in the peel of covered fruits concomitantly with development of lycopene crystals and plastoglobuli. In this sense, an accelerated differentiation of chromoplasts may provide biosynthetic capacity and a sink for carotenoids without involving major changes in transcript levels of carotenogenic genes. Light signals seem to regulate carotenoid accumulation at the molecular and structural level by influencing both biosynthetic capacity and sink strength.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Instituto Nacional de Investigación Agropecuaria (INIA), Salto, Uruguay
| | - Paul Cronje
- Citrus Research International (CRI), Department of Horticultural Science, Stellenbosch University, Stellenbosch, South Africa
| | - Berta Alquézar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-UPV, Valencia, Spain
| | - Anton Page
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Matías Manzi
- Ecofisiología y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I de Castellón, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecofisiología y Biotecnología, Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I de Castellón, Castellón de la Plana, Spain
| | | | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
27
|
Zeng Y, Du J, Wang L, Pan Z, Xu Q, Xiao S, Deng X. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh. PLANT PHYSIOLOGY 2015; 168:1648-65. [PMID: 26056088 PMCID: PMC4528763 DOI: 10.1104/pp.15.00645] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 05/04/2023]
Abstract
Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast biogenesis, differentiation, and senescence in sweet orange flesh.
Collapse
Affiliation(s)
- Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| | - Jiabin Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| | - Shunyuan Xiao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Y.Z., J.D., L.W., Z.P., Q.X., S.X., X.D.); andInstitute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 (S.X.)
| |
Collapse
|
28
|
Martínez-Esteso MJ, Martínez-Márquez A, Sellés-Marchart S, Morante-Carriel JA, Bru-Martínez R. The role of proteomics in progressing insights into plant secondary metabolism. FRONTIERS IN PLANT SCIENCE 2015; 6:504. [PMID: 26217358 PMCID: PMC4493368 DOI: 10.3389/fpls.2015.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/23/2015] [Indexed: 05/29/2023]
Abstract
The development of omics has enabled the genome-wide exploration of all kinds of biological processes at the molecular level. Almost every field of plant biology has been analyzed at the genomic, transcriptomic and proteomic level. Here we focus on the particular contribution that proteomic technologies have made in progressing knowledge and characterising plant secondary metabolism (SM) pathways since early expectations were created 15 years ago. We analyzed how three major issues in the proteomic analysis of plant SM have been implemented in various research studies. These issues are: (i) the selection of a suitable plant material rich in secondary metabolites of interest, such as specialized tissues and organs, and in vitro cell cultures; (ii) the proteomic strategy to access target proteins, either a comprehensive or a differential analysis; (iii) the proteomic approach, represented by the hypothesis-free discovery proteomics and the hypothesis-driven targeted proteomics. We also examine to what extent the most-advanced technologies have been incorporated into proteomic research in plant SM and highlight some cutting edge techniques that would strongly benefit the progress made in this field.
Collapse
Affiliation(s)
- María J. Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
- Biotechnology and Molecular Biology Group, Quevedo State Technical University, Quevedo, Ecuador
| | - Jaime A. Morante-Carriel
- Proteomics and Genomics Division, Research Technical Facility, University of Alicante, Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, Alicante, Spain
| |
Collapse
|
29
|
Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, Zhao F, Zhang J, Chen H, Xu Q, Xu J, Deng X. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC PLANT BIOLOGY 2015; 15:27. [PMID: 25644332 PMCID: PMC4323224 DOI: 10.1186/s12870-015-0426-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Carotenoids are indispensable plant secondary metabolites that are involved in photosynthesis, antioxidation, and phytohormone biosynthesis. Carotenoids are likely involved in other biological functions that have yet to be discovered. In this study, we integrated genomic, biochemical, and cellular studies to gain deep insight into carotenoid-related biological processes in citrus calli overexpressing CrtB (phytoene synthase from Pantoea agglomerans). Fortunella hindsii Swingle (a citrus relative) and Malus hupehensis (a wild apple) calli were also utilized as supporting systems to investigate the effect of altered carotenoid accumulation on carotenoid-related biological processes. RESULTS Transcriptomic analysis provided deep insight into the carotenoid-related biological processes of redox status, starch metabolism, and flavonoid/anthocyanin accumulation. By applying biochemical and cytological analyses, we determined that the altered redox status was associated with variations in O2 (-) and H2O2 levels. We also ascertained a decline in starch accumulation in carotenoid-rich calli. Furthermore, via an extensive cellular investigation of the newly constructed CrtB overexpressing Fortunella hindsii Swingle, we demonstrated that starch level reducation occurred in parallel with significant carotenoid accumulation. Moreover, studying anthocyanin-rich Malus hupehensis calli showed a negative effect of carotenoids on anthocyanin accumulation. CONCLUSIONS In citrus, altered carotenoid accumulation resulted in dramatic effects on metabolic processes involved in redox modification, starch degradation, and flavonoid/anthocyanin biosynthesis. These findings provided new perspectives to understand the biological importance of carotenogenesis and of the developmental processes associated with the nutritional and sensory qualities of agricultural products that accumulate carotenoids.
Collapse
Affiliation(s)
- Hongbo Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Jiangbo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: College of Plant Science, Tarim University, 843300, Alar, China.
| | - Xintian Dong
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Yan Han
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Fei Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Jiancheng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: Shanxi Agricultural University, 030801, Taigu, Shanxi, China.
| | - Haijiang Chen
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Renato M, Boronat A, Azcón-Bieto J. Respiratory processes in non-photosynthetic plastids. FRONTIERS IN PLANT SCIENCE 2015; 6:496. [PMID: 26236317 PMCID: PMC4505080 DOI: 10.3389/fpls.2015.00496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 05/22/2023]
Abstract
Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.
Collapse
Affiliation(s)
- Marta Renato
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centre de Recerca en Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Boronat
- Centre de Recerca en Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquín Azcón-Bieto
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Joaquín Azcón-Bieto, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona 08028, Spain,
| |
Collapse
|
31
|
Renato M, Pateraki I, Boronat A, Azcón-Bieto J. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening. PLANT PHYSIOLOGY 2014; 166:920-33. [PMID: 25125503 PMCID: PMC4213118 DOI: 10.1104/pp.114.243931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/06/2014] [Indexed: 05/23/2023]
Abstract
During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages.
Collapse
Affiliation(s)
- Marta Renato
- Departaments de Biologia Vegetal (M.R., J.A.-B.) and Bioquímica i Biologia Molecular (I.P., A.B.), Facultat de Biologia, Universitat de Barcelona, 08007 Barcelona, Spain; andCentre de Recerca en Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (M.R., I.P., A.B.)
| | - Irini Pateraki
- Departaments de Biologia Vegetal (M.R., J.A.-B.) and Bioquímica i Biologia Molecular (I.P., A.B.), Facultat de Biologia, Universitat de Barcelona, 08007 Barcelona, Spain; andCentre de Recerca en Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (M.R., I.P., A.B.)
| | - Albert Boronat
- Departaments de Biologia Vegetal (M.R., J.A.-B.) and Bioquímica i Biologia Molecular (I.P., A.B.), Facultat de Biologia, Universitat de Barcelona, 08007 Barcelona, Spain; andCentre de Recerca en Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (M.R., I.P., A.B.)
| | - Joaquín Azcón-Bieto
- Departaments de Biologia Vegetal (M.R., J.A.-B.) and Bioquímica i Biologia Molecular (I.P., A.B.), Facultat de Biologia, Universitat de Barcelona, 08007 Barcelona, Spain; andCentre de Recerca en Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (M.R., I.P., A.B.)
| |
Collapse
|
32
|
Zhao X, Han F, Shen S. Proteomics study of the effects of high pigment-1 on plastid differentiation during the ripening of tomato fruits. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Molassiotis A, Tanou G, Filippou P, Fotopoulos V. Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening. Proteomics 2014; 13:1871-84. [PMID: 23986917 DOI: 10.1002/pmic.201200428] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting-edge "omics" technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high-density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. A panoramic view of ripening-related proteins is also discussed, as an example of proteomic application in fruit science.
Collapse
|
34
|
Zeng Y, Pan Z, Wang L, Ding Y, Xu Q, Xiao S, Deng X. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. PHYSIOLOGIA PLANTARUM 2014; 150:252-70. [PMID: 23786612 DOI: 10.1111/ppl.12080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/18/2013] [Accepted: 05/27/2013] [Indexed: 05/18/2023]
Abstract
Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post-translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome-wide mapping of in vivo phosphorylation sites in chromoplast-enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide-based affinity chromatography for phosphoprotein enrichment with LC-MS/MS. A total of 109 plastid-localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif-X analysis, two distinct types of phosphorylation sites, one as proline-directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P(3) DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high-level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening.
Collapse
Affiliation(s)
- Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Kaundal R, Sahu SS, Verma R, Weirick T. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning. BMC Bioinformatics 2013; 14 Suppl 14:S7. [PMID: 24266945 PMCID: PMC3851450 DOI: 10.1186/1471-2105-14-s14-s7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. RESULTS In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, N(terminal)-Center-C(terminal) composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction accuracy for distinguishing plastid vs. non-plastids and only 20% in classifying various plastid-types, indicating the need and importance of machine learning algorithms. CONCLUSION The current work is a first attempt to develop a methodology for classifying various plastid-type proteins. The prediction modules have also been made available as a web tool, PLpred available at http://bioinfo.okstate.edu/PLpred/ for real time identification/characterization. We believe this tool will be very useful in the functional annotation of various genomes.
Collapse
|
37
|
Peng G, Wang C, Song S, Fu X, Azam M, Grierson D, Xu C. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:67-76. [PMID: 23883976 DOI: 10.1016/j.plaphy.2013.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/29/2013] [Indexed: 05/23/2023]
Abstract
Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.
Collapse
Affiliation(s)
- Gang Peng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pinheiro CB, Shah M, Soares EL, Nogueira FCS, Carvalho PC, Junqueira M, Araújo GDT, Soares AA, Domont GB, Campos FAP. Proteome analysis of plastids from developing seeds of Jatropha curcas L. J Proteome Res 2013; 12:5137-45. [PMID: 24032481 DOI: 10.1021/pr400515b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we performed a proteomic analysis of plastids isolated from the endosperm of developing Jatropha curcas seeds that were in the initial stage of deposition of protein and lipid reserves. Proteins extracted from the plastids were digested with trypsin, and the peptides were applied to an EASY-nano LC system coupled inline to an ESI-LTQ-Orbitrap Velos mass spectrometer, and this led to the identification of 1103 proteins representing 804 protein groups, of which 923 proteins were considered as true identifications, and this considerably expands the repertoire of J. curcas proteins identified so far. Of the identified proteins, only five are encoded in the plastid genome, and none of them are involved in photosynthesis, evidentiating the nonphotosynthetic nature of the isolated plastids. Homologues for 824 out of 923 identified proteins were present in PPDB, SUBA, or PlProt databases while homologues for 13 proteins were not found in any of the three plastid proteins databases but were marked as plastidial by at least one of the three prediction programs used. Functional classification showed that proteins belonging to amino acids metabolism comprise the main functional class, followed by carbohydrate, energy, and lipid metabolisms. The small and large subunits of Rubisco were identified, and their presence in the plastids is considered to be an adaptive feature counterbalancing for the loss of one-third of the carbon as CO2 as a result of the conversion of carbohydrate to oil through glycolysis. While several enzymes involved in the biosynthesis of several precursors of diterpenoids were identified, we were unable to identify any terpene synthase/cyclase, which suggests that the plastids isolated from the endosperm of developing seeds do not synthesize phorbol esters. In conclusion, our study provides insights into the major biosynthetic pathways and certain unique features of the plastids from the endosperm of developing seeds at the whole proteome level.
Collapse
Affiliation(s)
- Camila B Pinheiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará , Bld. 907, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 2013; 539:102-9. [PMID: 23851381 DOI: 10.1016/j.abb.2013.07.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 01/29/2023]
Abstract
Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.
Collapse
|
40
|
Kilambi HV, Kumar R, Sharma R, Sreelakshmi Y. Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits. PLANT PHYSIOLOGY 2013; 161:2085-101. [PMID: 23400702 PMCID: PMC3613478 DOI: 10.1104/pp.112.212191] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/09/2013] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids.
Collapse
Affiliation(s)
- Himabindu Vasuki Kilambi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rakesh Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rameshwar Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Yellamaraju Sreelakshmi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
41
|
Wang YQ, Yang Y, Fei Z, Yuan H, Fish T, Thannhauser TW, Mazourek M, Kochian LV, Wang X, Li L. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:949-61. [PMID: 23314817 PMCID: PMC3580812 DOI: 10.1093/jxb/ers375] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
- * These two authors contributed equally to this work
| | - Yong Yang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. E-mail:
| | - Zhangjun Fei
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Theodore W. Thannhauser
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Michael Mazourek
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Leon V. Kochian
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Li
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latché A, Pech JC. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. PLANT PHYSIOLOGY 2012; 160:708-25. [PMID: 22908117 PMCID: PMC3461550 DOI: 10.1104/pp.112.203679] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/16/2012] [Indexed: 05/18/2023]
Abstract
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Egea
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Michel Rossignol
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - David Bouyssie
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Carole Pichereaux
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Eduardo Purgatto
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Mondher Bouzayen
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Alain Latché
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Jean-Claude Pech
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| |
Collapse
|
43
|
Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteomics 2012; 75:2670-84. [DOI: 10.1016/j.jprot.2012.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/21/2012] [Accepted: 03/14/2012] [Indexed: 12/23/2022]
|
44
|
Angaman DM, Petrizzo R, Hernández-Gras F, Romero-Segura C, Pateraki I, Busquets M, Boronat A. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts. PLANT METHODS 2012; 8:1. [PMID: 22243738 PMCID: PMC3269359 DOI: 10.1186/1746-4811-8-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. RESULTS A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. CONCLUSIONS We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Collapse
Affiliation(s)
- Djédoux Maxime Angaman
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Unité Pédagogique et de Recherche (UPR) en Biochimie et Microbiologie, Unité Régionale de l'Enseignement Supérieur (URES) de Daloa, Université d'Abobo-Adjamé, 02 BP 150 Daloa, Côte d'Ivoire
| | - Rocco Petrizzo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
| | - Francesc Hernández-Gras
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Carmen Romero-Segura
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Irene Pateraki
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Montserrat Busquets
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
| | - Albert Boronat
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| |
Collapse
|